15

Измерение подвижности носителей заряда в образцах с низкой проводимостью методом полевого транзистора с использованием стоковых характеристик

© П.С. Парфенов, Ю.Г. Корженевский, А.А. Бабаев, А.П. Литвин, А.В. Соколова, А.В. Федоров

Университет ИТМО, Международный научно-образовательный центр физики наноструктур, 197101 Санкт-Петербург, Россия e-mail: grspeter@gmail.com

Поступило в Редакцию 20 декабря 2022 г. В окончательной редакции 3 февраля 2023 г. Принято к публикации 5 февраля 2023 г.

При измерении подвижности носителей заряда методом полевого транзистора в материалах с низкой проводимостью, а также в полупроводниковых материалах с высокой плотностью ловушечных состояний, таких как нанокристаллы и поликристаллические пленки, результаты бывают сильно искажены изза накопления заряда в транзисторной структуре. Проведено сравнительное исследование измерения подвижности носителей заряда в проводящих полимерах, нанокристаллах и поликристаллических пленках при помощи анализа стоковых и сток-затворных характеристик. Показано, что использование для расчета подвижности носителей заряда стоковых характеристик вместо сток-затворных характеристик помогает избежать систематической погрешности при измерении.

Ключевые слова: полевой транзистор, подвижность носителей заряда, стоковые характеристики, накопление заряда, нанокристаллы.

DOI: 10.21883/JTF.2023.04.55048.283-22

Введение

Метод полевого транзистора широко используется при измерении подвижности носителей заряда путем определения наклона кривой сток-затворной (currentgate voltage curve, transfer characteristics) характеристики — зависимости тока в канале от напряжения на затворе $I_{\rm DS}$ ($U_{\rm GS}$). Для линейного режима подвижность определяется как [1]:

$$\mu_{\rm lin} = \frac{L}{WC_{\rm ox}V_{\rm ds}} \frac{\partial I_{\rm ds}}{\partial V_{\rm gs}} \Big|_{V_{\rm ds} = \rm const}$$

где W — ширина канала, L — длина канала, C_{ox} емкость слоя изолятора на единицу площади (oxide capacitance), μ — подвижность. Метод измерений подробно изложена в работах [2,3]. Кроме того, структура полевого транзистора используется в сенсорах, где реакция материала канала (например, графена) с аналитом приводит к изменению реакции транзистора на напряжение затвора [4]. Сам по себе метод исследования подвижности с помощью полевых транзисторов характеризуется большим количеством факторов, способных повлиять на конечный результат и требующих внимания при исследовании [5]. Кроме того, в случае исследования материалов с низкой проводимостью и склонных к образованию ловушечных состояний, эти результаты бывают сильно искажены, а в ряде случаев их вообще не удается получить [6]. Это особенно распространено при исследовании пленок из нанокристаллов (НК) из-за большого отношения площади поверхности к объему (surface-to-volume ratio), что ведет к большому количеству поверхностных дефектных состояний. Эти состояния заряжаются протекающим током, что приводит к экранированию материала канала от поля затвора, а также зарядке самого затвора как второй обкладки конденсатора. При изменении напряжения на затворе, что требуется для получения сток-затворной кривой, процесс накопления заряда в транзисторной структуре становится динамическим процессом и оказывается основной причиной протекания тока в канале, если проводимость исследуемого материала мала и ожидаемая величина тока составляет наноамперы. Такой процесс легко обнаружить, так как он сопровождается появлением в электроде затвора тока, сопоставимого с током в канале. Этот ток является током зарядки емкости, образованной затвором и каналом, разделенными слоем изолятора [3].

Так как основная проблема при получении стокзатворных характеристик — это накопления заряда в транзисторной структуре по мере роста напряжения на затворе, то оценка подвижности из серии стоковых (output) зависимостей $I_{\rm DS}(V_{\rm DS})$, полученных при разном напряжении на затворе $V_{\rm DS}$, представляется более надежным, так как при их получении накопление заряда происходит однократно при включении напряжения на затворе, после чего степень влияния заряда на измерение тока в канале $I_{\rm DS}$ не меняется (хотя сама по себе зарядка емкости может вносить постоянную поправку на проводимость канала). Сравнение результатов, полученных двумя разными способами, также может предоставить дополнительную информацию об исследуемом объекте, а именно о наличии заряжающихся ловушечных состояний в активном слое или на интерфейсе активного слоя и изолятора. Кроме того, в некоторых случаях изменение метода может обеспечить повышение чувствительность сенсоров на основе полевых транзисторов.

В настоящей работе мы анализируем данные, полученные с помощью метода полевого транзистора для ряда материалов, широко используемых при создании многослойных фотовольтаических устройств как в качестве активного, так и вспомогательных (электронтранспортного и дырочно-транспортного) слоев: проводящего полимера (PEDOT:PSS), полупроводниковых НК оксида цинка (ZnO) и сульфида свинца (PbS), а также поликристаллического полупроводника со структурой перовскита (MAPbI₃). Получение данных о подвижности носителей заряда в данных материалах является важным для дальнейшего развития оптоэлектронных устройств. Используется две схемы создания полевого транзистора и показывается отличие результатов измерения подвижности носителей заряда, полученных из стоковых и стокзатворных характеристик.

1. Обзор

Явление накопления заряда в полупроводниковом полевом транзисторе достаточно хорошо известно. Оно вызывается образованием зарядов в объеме диэлектрика, а также поверхностных состояний на межфазных границах, и приводит к изменению порогового напряжения включения, а также влияет на угол наклона вольтамперных характеристик транзистора [7]. Явление зарядки транзисторной структуры, делающее невозможным исследование подвижности носителей зарядов в тонких пленках НК, было неоднократно отмечено в литературе. Так, в статье [6] описывается исследование воздействия воздуха на слои НК PbSe диаметром 6-8 nm, покрытых лигандной оболочкой 1,2-этандитиола (EDT). В них после экспозиции на воздухе при ступенчатом изменении потенциала на затворе сила тока быстро возвращается к прежнему значению (за несколько секунд), как если бы поле затвора полностью экранировалось зарядами в канале. Авторы с помощью ИК фурье-спектроскопии и рентгеновской фотоэлектронной спектроскопии (FTIR и XPS) показывают, что основной причиной этого является окисление, так как EDT не полностью защищает поверхность НК. В работе по исследованию подвижности зарядов в пленках НК PbSe диаметром 6 nm [8] показано, что измерение силы тока возможно в течение периода менее 500 ms, пока экранирующие заряды не успевают скопиться с канале. Недавно нами было показано, что схожий эффект наблюдается в тонких пленках НК PbS с лигандной оболочкой EDT [3].

Другой причиной накопления заряда является образование ловушечных состояний на поверхности диэлектрика (например, акцепторные состояния в оксиде кремния) и на интерфейсе диэлектрика с активным слоем [9]. В связи с этим большою роль играет выбор диэлектрика. И если в случае обычного "bottom-gate" транзистора с изолирующим слоем оксида кремния и предварительно нанесенными металлическими электродами замена диэлектрика невозможна и доступна только модификация поверхности с помощью обработки поверхности силанами, то в других случаях возможна частичная или полная замена материала слоя. К ним относятся схемы, гле металлические электроды напыляются после нанесения на оксидную поверхность подложки дополнительного полимерного слоя [10,11], а также транзисторы, изготовленные по схеме "top-gate" с применением полимерного изолятора. В последнем случае следует учитывать, что выбор полимера оказывает большое влияние на результаты. Так, статья [12] описывает различия в работе "top-gate" транзистора при использовании разных полимерных изоляторов (фторопласт Cytop, полиметилметакрилат РММА и поливинилиденфторид PVDF), обусловленные различной диэлектрической проницаемости и различной способностью к образованию ловушечных состояний.

О проблеме влияния ловушечных состояний на результаты измерений известно также из сравнительного анализа измерений подвижности методом полевого транзистора и из измерения тока, ограниченного пространственным зарядом (space-charge limited current, SCLC) [13]. Так, например, показано, что в слоях НК PbS высокая плотность ловушек препятствует зонному транспорту носителей заряда (band-like transport) при низком смещении. В случае использования CsPbBr₃ перовскитов дополнительным фактором, влияющим на результаты измерения, является эффект ионной миграции — большая концентрация ионов приводит к экранированию поля затвора [14]. Для преодоления ионной миграции требуется приложение довольно высокого напряжения, что не только затрудняет определение подвижности, но и накладывает ограничения на работу полевых транзисторов и устройств на их основе, таких как светодиодов и фотодетекторов.

2. Материалы и методы

В качестве опорного образца был использован промышленный *п*-канальный полевой транзистор IRF640N. Наночастицы оксида цинка (ZnO), производная фуллерена PCBM ([6,6]-phenyl-C₆₁-butyric acid methyl ester) и проводящие полимеры PEDOT:PSS (poly(3,4ethylenedioxythiophene) polystyrene sulfonate) и PTB7 (Poly[[4,8-bis17(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3, 4-b]thiophenediyl]]) были приобретены в Sigma-Aldrich (Merck). НК PbS были синтезированы методом горячей инжекции [15]. Длинноцепочечные лиганды олеиновой кислоты были удалены, и поверхность НК была пассивирована иодидом свинца (PbI₂). Тонкие пленки

Рис. 1. Полевой транзистор IRF640N. a — стоковые характеристики (здесь и далее на фрагменте a указано напряжение на затворе), b — сток-затворные характеристики (линии — экспериментальные данные, символы соответствуют пересчитанным данным, здесь и далее на фрагменте b указано напряжение на стоке).

(50-70 nm) из данных материалов были получены методом нанесения из раствора на вращающуюся подложку (spin-coating). Предварительно подложки были очищены органическими растворителями в ультразвуковой ванне с последующей плазменной очисткой. Поликристаллические пленки MAPbI₃ (толщиной 300 nm) были получены методом кристаллизации антирастворителем с последующим термическим отжигом [16]. Вольтамперные кривые получены с помощью пикоамперметра Keithley 2636b.

Использованные в настоящей работе кремниевые подложки (Ossila Prefabricated OFET Test Chips, Low-Density) для транзисторов со структурой "bottom-gate", а также процедура силанизации с помощью гексаметилдисилазана (HMDS) описаны в работе [3]. Для изготовления "top-gate" структуры мы использовали стеклянную подложку Ossila с предварительно нанесенными электродами из ITO (ITO Glass Substrates, 20×15 mm, OFET and Sensing). После нанесения на подложку образца на него наносили пленку PMMA толщиной около 400 nm (также методом нанесения на вращающуюся подложку раствора PMMA в толуоле 60 mg/ml), после чего термическим вакуумным напылением через маску наносили серебряный электрод толщиной 100 nm.

Все расчеты проводились по формуле для линейного режима, при этом стоковые кривые не демонстрировали насыщения.

3. Тестовые образцы

Для начала мы проверили различаются ли данные при исследовании кремниевого полевого транзистора. Как говорилось выше, величину подвижности можно

Журнал технической физики, 2023, том 93, вып. 4

получить из анализа наклона сток-затворной характеристики, причем последнюю также можно получить из серии стоковых характеристик, снятых при постоянном значении напряжения на затворе. Теоретически эти данные должны совпадать, поскольку стоковые характеристики можно поставить в соответствие стокзатворным, и наоборот. В случае промышленного *N*-канального полевого транзистора IRF640N все данные совпадают — точки, построенные из пересчитанных стоковых кривых, точно ложатся на экспериментальные данные (рис. 1). Подсчет подвижности не проводился, поскольку геометрические размеры канала транзистора и его емкость в документации не приводятся.

585

Далее мы исследовали коммерчески доступные материалы — нанокристаллы ZnO (обладающие электронным типом проводимости) и проводящий полимер PEDOT:PSS (обладающего дырочным типом проводимости). В случае PEDOT:PSS подвижность дырок, рассчитанная по линейной части сток-затворной характеристики в интервале от -8 до -2 V, составила $3.7 \cdot 10^{-2}$ cm²/(V · s) (рис. 2, *b*).

Значение подвижности на основании расчета из стоковых кривых (рис. 2, *a*), соответствующее напряжению -5 V, составило $5.8 \cdot 10^{-2}$ cm²/(V · s), что в 1.6 раза больше экспериментального.

Линейная часть стоковой характеристики пленки нанокристаллов ZnO начинается со смещения 10 V (рис. 3, *a*), вероятно из-за образовавшегося барьера на контактах. На сток-затворной характеристике (рис. 3, b) видно, что при напряжении на стоке 10 V напряжение включения превышает 20 V и определение наклона кривой затруднительно, но при напряжении на стоке 20 V зависимость линейная, и подвижность состав-

Рис. 2. Пленка PEDOT:PSS. *a* — стоковые характеристики, полученные при напряжении на затворе V_{GS} от 0 до -30 V; *b* — стокзатворные характеристики (сплошная линия — экспериментальная, полученная при $V_{DS} = 5$ V, соединенные штриховыми линиями символы — пересчитанные для указанных значений V_{DS}).

Рис. 3. Пленка НК ZnO. *а* — стоковые характеристики, *b* — сток-затворные характеристики (сплошные линии — экспериментальные данные, соединенные штриховыми линиями символы — пересчитанные данные).

ляет $4.6 \cdot 10^{-6} \text{ cm}^2/(\text{V} \cdot \text{s})$. Сток-затворные кривые были пересчитаны по стоковым кривым, аппроксимированным линейной функцией на интервале 10-40 V. Наклон пересчитанной характеристики, соответствующей 20 V, немного меньше экспериментальной, и ему соответствует подвижность $4.2 \cdot 10^{-6} \text{ cm}^2/(\text{V} \cdot \text{s})$.

Сравнение результатов, полученных для двух образцов с высоким сопротивлением (PEDOT:PSS, ZnO) и эталонного промышленного транзистора показывает, что для более сложных для измерения материалов наклон пересчитанной сток-затворной кривой может быть примерно на 20% выше экспериментальной.

4. Пленка MAPbl₃

Продемонстрированное выше отклонение свойственно не только материалам с плохой проводимостью, но и материалам, которым свойственны прыжковая проводимость и ловушечные состояния (поликристаллические и аморфные полупроводники). В качестве такого примера

Рис. 4. Пленка перовскитов MAPbI₃. *а* — стоковые характеристики (напряжение на затворе указано по модулю), *b* — стокзатворные характеристики (сплошная линия — экспериментальная, штриховые линии — пересчитанные данные, пунктир аппроксимация линейными функциями).

мы рассмотрели пленку перовскита MAPbI₃, являющейся поликристаллической структурой.

Стоковые и сток-затворные характеристики пленки перовскита MAPbI₃ приведены на рис. 4, и если на стоковых видно, что проявляется оба вида проводимости, то сток-затворную характеристику удалось получить только для *n*-проводимости при напряжении на затворе 20 V. Подвижность для участка, аппроксимированного на интервале от -4 до 5 V, составила $4.1 \cdot 10^{-6}$ cm²/(V · s).

Пересчет по стоковым кривым при напряжении 25 V дал подвижность $1.3 \cdot 10^{-5}$ и $1.6 \cdot 10^{-5}$ сm²/(V · s) для *p*- и *n*-канального режима. В данном случае видно, что пересчет позволяет не только увидеть занижение значений, но и получить данные, когда обычный способ измерения не дает результат.

5. PbI-PTB7-PCBM

В устройствах на основе НК часто дополнительно используются проводящие добавки, улучшающие транспорт зарядов. Поэтому мы исследовали образец пленки, нанесенной из коллоидного раствора нанокристаллов PbS с добавлением проводящего полимера с дырочной проводимостью PTB7 и фуллереном PCBM, обеспечивающим электронную проводимость (в пропорции 9:1:1).

На графике сток-затворных характеристик видно, что наклон экспериментальных кривых и расчетных отличается при малом напряжении и практически совпадает при большом (рис. 5). Расчет подвижности по сток-затворной кривой при -5 V показывает некоторое занижение экспериментальных данных относительно пересчитанных — $6.5 \cdot 10^{-4}$ против $8.2 \cdot 10^{-4}$ cm²/(V · s).

Но проблемы с измерениями, вызванные накоплением заряда, как в случае без применения проводящего полимера, отсутствуют.

Для сравнения мы исследовали эту же пленку в структуре "top-gate" с использованием в качестве изолятора РММА, который часто используется в таких структурах. По-прежнему видно только дырочную проводимость (рис. 6). В отличие от предыдущего случая, со структурой "bottom-gate", токи и напряжение меньше, и данные подвижности, полученные при -5 V, различаются сильнее — $1.2 \cdot 10^{-4}$ и $2.4 \cdot 10^{-4} \text{ cm}^2/(V \cdot \text{s})$ для экспериментальной и пересчитанной кривой соответственно. Это показывает, что рассматриваемый эффект объясняется не только самим материалом канала, но и его взаимодействием с изолятором.

6. Обсуждение результатов

Результаты объединены в таблицу, также приведены литературные данные по аналогичным образцам. Значение подвижности перовскита MAPbI₃ находится в большом диапазоне и определяется технологией создания слоя. Значения для композита PbI–PCBM–PTB7 приведены для всех трех компонентов, и измеренная величина коррелирует с составом.

В большинстве случаев данные, полученные с помощью пересчитанных стоковых характеристик, выглядят завышенными относительно данных, полученных классическим способом по сток-затворным кривым. Мы считаем, что данные, полученные по стоковым кривым, в целом надежнее, поскольку при этом не происходит непрерывное накопление заряда, дополнительно влияющего на ток в канале, и метод позволяет получить данные там,

Рис. 5. Пленка PbI–PTB7–PCBM на кремниевой подложке, структура "bottom-gate". *a* — стоковые характеристики, *b* — стокзатворные характеристики (линии — экспериментальные данные, соединенные штриховыми линиями значки — пересчитанные данные).

Рис. 6. Пленка PbI–PTB7–PCBM на стеклянной подложке, структура "top-gate". *a* — стоковые характеристики, *b* — сток-затворные характеристики (сплошные линии — экспериментальные данные, соединенные штриховой линией значки — пересчитанные данные).

где их не удалось получить по сток-затворным кривым. Поэтому мы полагаем, что в рассмотренных случаях расхождение показывает занижение данных, полученных из сток-затворных кривых, а не завышение данных, полученных по стоковым характеристикам.

Само по себе расхождение данных, полученных двумя способами, свидетельствует о том, что ловушечные состояния и заряды на границе раздела сред между исследуемым слоем и изолятором значительно влияют на процесс переноса носителей заряда в исследуемом

слое (что может быть дифференцировано в отдельных опытах, например с модификацией изолятора).

Основным недостатком метода расчета подвижности по стоковым кривым является то, что вместо получения одной сток-затворной кривой требуется получение серии стоковых кривых, что сопряжено с увеличением времени измерения, особенно для получения данных сопоставимого качества. Так, если сток-затворная кривая состоит из N точек, то для получения сопоставимых данных требуется аналогичное количество стоковых кривых. В ряде

Образец	Экспериментальные значения, $cm^2/(V\cdot s)$	Сравнение	Пересчитанные значения, $cm^2/(V\cdot s)$	Литературные данные, $cm^2/(V\cdot s)$
IRF640N, μ_e	-	=	_	
PEDOT:PSS, μ_h	$3.7 \cdot 10^{-2}$	<	$5.8 \cdot 10^{-2}$	$10^{-1} - 10^{-2}$ [17–18]
HK ZnO, μ_e	$4.6\cdot 10^{-6}$	~	$4.2\cdot 10^{-6}$	$10^{-6} - 10^{-4}$ [19–20]
MAPbI ₃ , μ_h	-	_	$1.3 \cdot 10^{-5}$	$5\cdot 10^{-6} - 50$ [21–22]
MAPbI ₃ , μ_h	$4.1 \cdot 10^{-6}$	<	$1.6 \cdot 10^{-5}$	см. выше
PbI–PTB7–PCBM ("bottom-gate"), μ_h	$6.5 \cdot 10^{-4}$	<	$8.2 \cdot 10^{-4}$	PCBM: $10^{-3} - 10^{-2}$ [23–24] PTB7: $5 \cdot 10^{-5} - 3 \cdot 10^{-4}$ [24] PbS: $2 \cdot 10^{-7} - 2 \cdot 10^{-3}$ [3]
PbI–PTB7–PCBM ("top-gate"), µ _h	$1.2\cdot 10^{-4}$	<	$2.4 \cdot 10^{-4}$	см. выше

Сравнение методов расчета подвижности зарядов

случаев, особенно при измерении органических и перовскитных материалов, под действием тока за время измерения свойства исследуемого материала могут заметно измениться. Поэтому может потребоваться компромисс между качеством данных и временем измерения.

Выводы

Проведено измерение подвижности носителей заряда в материалах с низкой проводимостью, а также в пленках из нанокристаллов, на основании расчетов по стоковым и сток-затворным характеристикам полевого транзистора. Показано, что расчет подвижности таких материалов оптимальнее проводить, основываясь на стоковых характеристиках, поскольку общепринятое использование сток-затворных характеристик может приводить к появлению систематической погрешности, вызванной накоплением заряда в транзисторной структуре.

Финансирование работы

Работа выполнена при поддержке Российского научного фонда (проект № 19-13-00332-П).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- V. Podzorov. MRS Bull., 38, 15 (2013). DOI: 10.1557/mrs.2012.306
- J. Zaumseil, H. Sirringhaus. Chem. Rev., 107, 1296 (2007). DOI: 10.1021/cr0501543
- [3] П.С. Парфенов, Н.В. Бухряков, Д.А. Онишук, А.А. Бабаев, A.B. Соколова, А.П. Литвин. ФТП, 56 (2), 236 (2022).
 DOI: 10.21883/FTP.2022.02.51968.9734 [P.S. Parfenov, N.V. Bukhryakov, D.A. Onishchuk, A.A. Babaev, A.V. Sokolova, A.P. Litvin. Semiconductors, 56 (2), 175 (2022). DOI: 10.21883/SC.2022.02.53049.9734]

- [4] M. Kaisti. Biosens. Bioelectron., 98, 437 (2017).
 DOI: 10.1016/j.bios.2017.07.010
- [5] H.H. Choi, K. Cho, C.D. Frisbie, H. Sirringhaus, V. Podzorov. Nat. Mater., 17, 2 (2018). DOI: 10.1038/nmat5035
- [6] J.M. Luther, M. Law, Q. Song, C.L. Perkins, M.C. Beard, A.J. Nozik. ACS Nano, 2, 271 (2008). DOI: 10.1021/nn7003348
- [7] О.В. Александров, С.А. Мокрушина. ФТП, **52** (6), 637 (2018). DOI: 10.21883/FTP.2018.06.45929.8717
 [O.V. Aleksandrov, S.A. Mokrushina. Semiconductors, **52** (6), 783 (2018). DOI: 10.1134/S1063782618060027]
- [8] Y. Liu, M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H.W. Hillhouse, M. Law. Nano Lett., 10, 1960 (2010). DOI: 10.1021/nl101284k
- [9] V. Podzorov, M.E. Gershenson, Ch. Kloc, R. Zeis, E. Bucher. Appl. Phys. Lett., 84, 3301 (2004). DOI: 10.1063/1.1723695
- [10] H. Roger. ETH Zurich., 2013.DOI: 10.3929/ETHZ-A-010103856
- Z. Qin, H. Gao, J. Liu, K. Zhou, J. Li, Y. Dang, L. Huang,
 H. Deng, X. Zhang, H. Dong, W. Hu. Adv. Mater., 31, 1903175 (2019). DOI: 10.1002/adma.201903175
- [12] M.I. Nugraha, R. Häusermann, S. Watanabe, H. Matsui, M. Sytnyk, W. Heiss, J. Takeya, M.A. Loi. ACS Appl. Mater. Interfaces, 9, 4719 (2017). DOI: 10.1021/acsami.6b14934
- [13] M.J. Speirs, D.N. Dirin, M. Abdu-Aguye, D.M. Balazs, M.V. Kovalenko, M.A. Loi. Energy Environ. Sci., 9, 2916 (2016). DOI: 10.1039/C6EE01577H
- B. Jeong, L. Veith, T.J.A.M. Smolders, M.J. Wolf, K. Asadi. Adv. Mater., 33, 2100486 (2021). DOI: 10.1002/adma.202100486
- [15] E.V. Ushakova, A.P. Litvin, P.S. Parfenov, A.V. Fedorov, M. Artemyev, A.V. Prudnikau, I.D. Rukhlenko, A.V. Baranov. ACS Nano, 6, 8913 (2012). DOI: 10.1021/nn3029106
- [16] X. Zhang, Q. Zeng, Y. Xiong, T. Ji, C. Wang, X. Shen, M. Lu, H. Wang, S. Wen, Y. Zhang, X. Yang, X. Ge, W. Zhang, A.P. Litvin, A.V. Baranov, D. Yao, H. Zhang, B. Yang, A.L. Rogach, W. Zheng. Adv. Funct. Mater., **30**, 1910530 (2020). DOI: 10.1002/adfm.201910530
- [17] S.A. Rutledge, A.S. Helmy. J. Appl. Phys., 114, 133708 (2013).
 DOI: 10.1063/1.4824104
- [18] S.H. Kim. Bull. Korean Chem. Soc., 38, 1460 (2017). DOI: 10.1002/bkcs.11327

- [19] Y. Kim, M. Chang, S. Cho, M. Kim, H. Kim, E. Choi, H. Ko, J. Hwang, B. Park. J. Alloys Compd., 804, 213 (2019). DOI: 10.1016/j.jallcom.2019.06.352
- [20] A.K. Diallo, M. Gaceur, S.B. Dkhil, Y. Didane, O. Margeat, J. Ackermann, C. Videlot-Ackermann. Colloids Surf. A Physicochem. Eng. Asp., 500, 214 (2016). DOI: 10.1016/j.colsurfa.2016.04.036
- [21] Y. Kim, B. Park. J. Phys. Chem. C Nanomater. Interfaces, 123, 30689 (2019). DOI: 10.1021/acs.jpcc.9b08819
- [22] F. Paulus, C. Tyznik, O.D. Jurchescu, Y. Vaynzof. Adv. Funct. Mater., 31, 2101029 (2021). DOI: 10.1002/adfm.202101029
- [23] F.M. Li, G.-W. Hsieh, S. Dalal, M.C. Newton, J.E. Stott, P. Hiralal, A. Nathan, P.A. Warburton, H.E. Unalan, P. Beecher, A.J. Flewitt, I. Robinson, G. Amaratunga, W.I. Milne. IEEE Trans. Electron Devices, 55, 3001 (2008). DOI: 10.1109/TED.2008.2005180
- [24] B. Ebenhoch, S.A.J. Thomson, K. Genevičius, G. Juška, I.D.W. Samuel. Org. Electron., 22, 62 (2015).
 DOI: 10.1016/J.ORGEL.2015.03.013