Состав и оптические свойства аморфного плазмохимического оксинитрида кремния переменного состава *a*-SiO_xN_y : H

© В.А. Володин,^{1,2} Г.Н. Камаев,¹ В.А. Гриценко,^{1,3} С.Г. Черкова,¹ И.П. Просвирин⁴

 ¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, 630090 Новосибирск, Россия
 ² Новосибирский государственный университет, 630090 Новосибирск, Россия
 ³ Новосибирский государственный технический университет, 630073 Новосибирск, Россия
 ⁴ Институт катализа им. Г.К. Борескова СО РАН, 630090 Новосибирск, Россия
 е-mail: volodin@isp.nsc.ru

Поступило в Редакцию 23 июня 2022 г. В окончательной редакции 16 января 2023 г. Принято к публикации 2 февраля 2023 г.

Пленки $a-\text{SiO}_x N_y$: Н различного состава были получены методом плазмохимического осаждения из газовой смеси 10% моносилана (разбавлен аргоном) и азота в присутствии остаточного кислорода в рабочих газовых смесях. Расход азота изменялся в диапазоне от 4 до 6 сm³/min, мощность генератора высокой частоты (13.56 MHz) изменялась в диапазоне 50–150 W. Электронная структура и оптические свойства пленок были исследованы с применением рентгеновской фотоэлектронной спектроскопии, колебательной спектроскопии, спектроскопии пропускания и отражения и спектральной эллипсометрии. Показано, что при уменьшении мощности генератора повышается содержание избыточного кремния в пленках и возникают нанокластеры аморфного кремния. С увеличением мощности генератора в пленках снижается концентрация кислорода, что позволяет управлять составом пленок $a-\text{SiO}_x N_y$: Н не только изменяя поток азота, но и варьируя мощность генератора.

Ключевые слова: оксинитрид кремния, плазмохимическое осаждение, стехиометрический состав, нанокластеры кремния.

DOI: 10.21883/JTF.2023.04.55047.167-22

Введение

13

Широко применяемые в микроэлектронике диэлектрики, такие, как оксид кремния и нитрид кремния, в последнее время имеют все шансы на использование в новых элементах энергонезависимой памяти — мемристорах. Для этих целей наиболее перспективны пленки на основе нестехиометрического оксида кремния (SiO_x, x < 2) [1–4] и нитрида кремния (SiN_x, x < 4/3) [5–7]. Хотя к настоящему моменту SiO_x более близок к индустриальному использованию в матрицах мемристоров ReRAM (компания WeeBit Nano анонсирует промышленный выпуск продуктов с памятью ReRAM на основе SiO_x в виде встраиваемых массивов), пока неясно, оксид или нитрид кремния будет иметь лучшие запоминающие свойства, а соответственно и большие перспективы. Согласно современным представлениям, переход мемристора из высокоомного состояния в низкоомное происходит при протекании импульса тока и дрейфа вакансий кислорода в SiO_x или азота в SiN_x с образованием проводящего филамента (нанопроволоки диаметром 1-5 nm, обогащенной кремнием). Известно, что энергия образования вакансии кислорода в SiO_x меньше энергии образования вакансии азота в SiN_x.

Итак, можно ожидать, что быстродействие мемристоров на основе SiO_x в режиме переключения из высокоомного состояния в низкоомное будет выше, чем быстродействие мемристоров на основе SiN_x. С другой стороны, при обратном процессе переключения из низкоомного состояния в высокоомное, которое происходит за счет диффузии вакансий (кислорода в SiO_x и азота в SiN_x) к кремниевому филаменту, можно ожидать, что процесс аннигиляции филамента в случае SiN_x будет более медленным по сравнению с SiO_x. Время хранения информации в мемристоре определяется временем окисления (в SiO_x) или временем азотирования (в SiN_x) кремниевого филамента. Таким образом, можно ожидать, что время хранения информации в мемристоре на основе SiN_x будет больше, чем время хранения информации в мемристоре на основе SiO_x. Мемристоры на основе SiO_x и SiN_x имеют как преимущества, так и недостатки. Вполне возможно, что оксинитрид кремния SiO_xN_y, состоящий из Si-O- и Si-N-связей, а в случае обогащения кремнием, также из Si-Si-связей [8,9], объединит достоинства обоих материалов. Итак, целью настоящей работы является исследование электронной структуры и оптических свойств аморфного гидрогенизированного оксинитрида кремния переменного состава $a-\text{SiO}_x N_y$: H, полученного при низкой температуре. Использование процессов с низким термическим бюджетом крайне важно, так как позволяет получать мемристорные структуры в конце всех технологических процессов (так называемые back-end-of-line процессы [10]). Недавно была продемонстрирована возможность создания мемристоров на основе пленок гидрогенизированного оксинитрида кремния ($a-\text{SiO}_x N_y$: H) для нейронных сетей [11].

1. Методики эксперимента

Нестехиометрические гидрогенизированные оксинитриды кремния $(a - \text{SiO}_x N_y : H)$ получены методом стимулированного плазмой (плазмохимического) осаждения из газовой смеси SiH₄-N₂ при контролируемом потоке газов. Однородные пленки *a*-SiO_xN_v: Н осаждались на очищенные от естественного окисла пластины Si (100) р-типа проводимости марки КДБ-7.5 на установке плазмохимического осаждения с широкоаппертурным источником и индуктивным возбуждением (при частоте возбуждения 13.56 MHz). Остаточное давление в рабочей камере было меньше 10⁻⁶ Тогг и достигалось с помощью турбомолекулярного насоса типа ТМН-1500, который работал и в процессе роста пленок. Подаваемый в реакционную зону поток моносилана (газовая смесь 10% SiH₄, разбавленная Ar) был постоянен и составлял 10 cm³/min. Пленки $a - \text{SiO}_x N_y$: Н различного состава получены путем изменения расхода N2 в диапазоне от 4 до 6 cm³/min и мощности высокочастотного генератора в диапазоне 50-150 W. Кислород попадал в реакционную зону как остаточная примесь к рабочим газам. Температура подложки поддерживалась на уровне 200°С.

Энергетический спектр и стехиометрический состав пленок *a*-SiO_xN_y:Н был установлен из анализа данных рентгеновской фотоэлектронной спектроскопии (РФЭС). Данные РФЭС были получены с использованием спектрометра SPECS, оборудованного источником рентгеновского излучения с двойным анодом Al/Ag, эллипсоидальным кристаллическим рентгеновским монохроматором FOCUS-500, полусферическим электронным анализатором PHOIBOS 150 и источником ионов. Спектры получены с использованием монохроматического излучения Al K_{α} ($h\nu = 1486.74 \, \text{eV}$) с энергией пропускания анализатора 20 eV. Энергия связи экспериментальных пиков была калибрована с использованием пика С 1s при 284.8 eV, связанного с углеводородами на поверхности образцов. Спектральную информацию анализировали с использованием программного обеспечения XPSPeak 4.1 [12]. Более подробно методика проведения измерений описана в работе [13].

Поскольку метод РФЭС является поверхностночувствительным, была проведена оценка глубины анализа изученных образцов. С помощью программы QUASES-IMFP-TPP2M [14] проведена оценка длин свободного пробега фотоэлектронов для a—Si, Si₃N₄ и SiO₂. На основании полученных данных глубина анализа пленок $a - \text{SiO}_x N_v$: Н составляет несколько нанометров [15].

Структурные свойства пленок $a - \text{SiO}_x N_y$: Н были также исследованы с применением методов колебательной спектроскопии — как методики комбинационного рассеяния света (КРС) так и инфракрасной (ИК) фурьеспектроскопии (Fourier Transformed InfraRed — FTIR). Спектры КРС регистрировались с применением спектрометра T64000 (Horiba Jobin Yvon) при комнатной температуре в геометрии обратного рассеяния, для возбуждения использовалась линия Ar⁺ лазера с длиной волны 514.5 nm. Спектральное разрешение составляло величину не хуже 2 cm⁻¹. Мощность лазерного пучка, доходящего до образца, составляла 1 mW, диаметр пятна — 20 µm. Так как поглощение света с длиной волны 514.5 nm в данных пленках невелико, используемый режим измерения не приводил к локальному нагреву образцов в процессе измерения. Для регистрации спектров ИК поглощения использовался фурье-спектрометр ФТ-801 ("СИМЕКС", Новосибирск, Россия). Спектральный диапазон прибора составляет от 650 до $4000 \,\mathrm{cm}^{-1}$, спектральное разрешение — 4 ст⁻¹. Для получения опорного сигнала использовалась подложка кремния без пленки.

Оптические свойства пленок *a*-SiO_xN_y: Н в видимой области частотного спектра, а также в областях ближнего ИК и ультрафиолетового (УФ) диапазонов, были исследованы с применением методов спектроскопии пропускания и спектральной эллипсометрии. Для исследования спектров пропускания пленок *a*-SiO_xN_y:Н были выращены специальные образцыспутники в абсолютно тех же условиях роста, но на прозрачных подложках из плавленого кварца. Использовался спектрофотометр СФ-56 ("ЛОМО-Спектр", Санкт-Петербург, Россия). Спектральное разрешение составляло 2 nm, диапазон измерений от 1100 до 190 nm (от 1.13 до 6.53 eV соответственно). Для эллипсометрического анализа пленок *a*-SiO_xN_y:Н на непрозрачной подложке кремния использовался спектральный эллипсометр "ЭЛЛИПС-1891-САГ" (ИФП СО РАН) [13,16]. Измерения спектральных зависимостей эллипсометрических углов $\Psi(E)$ и $\Delta(E)$ проводились в диапазоне энергий фотонов 1.12-4.96 eV. Спектральное разрешение прибора составляло $\sim 0.01 \, \text{eV}$, угол падения луча света — 70°, использовалась четырехзонная методика измерений с последующим усреднением по всем четырем зонам.

2. Результаты и обсуждение

Обычно для роста пленок оксинитрида кремния применяют смесь из моносилана (SiH_4) , аммиака (NH_3) и закиси азота (N_2O) , либо дихлорсилана (SiH_2Cl_2) , аммиака и закиси азота. Процесс с использованием аммиака легко управляем, поскольку энергии диссоциации моносилана и аммиака близки и составляют 3.1 и 3.6 eV соответственно (энергия диссоциации азота

Рис. 1. Зависимость интенсивности свечения компонентов плазмы при изменении потока азота. На вставке — эмиссионный спектр плазмы смеси газов He-N₂-O₂.

равна 9.9 eV). Кроме того, аммиак может диссоциировать многоступенчато с потреблением малой энергии. Использование молекулярного азота (N₂) позволяет уменьшить содержание водорода в пленках [14,17].

В нашем случае использовались N_2 и газовая смесь — 10% SiH₄, разбавленная Ar. Однако известно, что даже в самых чистых газах есть остаточные следы кислорода и воды. Кислород обладает очень высокой реакционной способностью при взаимодействии с кремнием. Даже незначительное его содержание в плазмообразующем газе приводит к высокой скорости роста окисла. При этом ранее в экспериментах по окислению поверхности кремния в плазме кислорода была выявлена существенная роль инертных газов (He, Ne, Ar) при их контролируемом подмешивании в плазмообразующую среду. Так, был обнаружен эффект высокой скорости окисления в плазме, образованной преимущественно гелием, при относительно малой концентрации кислорода [15,18].

Были проведены эксперименты, направленные на рассмотрение оптической светимости компонентов плазмы при изменении в ней относительного содержания азота (в качестве газа-носителя использовался гелий при потоке 78 cm³/min). Измерения спектров оптического эмиссионного излучения плазмы проводились с помощью спектрометра "Кварц-2000" в диапазоне длин волн 500-800 nm со спектральным разрешением не хуже 0.3 nm.

В спектрах наблюдались выраженные линии свечения азота N^* (группа линий в области 664-672 nm) и остаточного кислорода O^* (линия 777 nm). На рис. 1 приведены интенсивности этих линий в зависимости от потока молекулярного азота в стандартных кубических сантиметрах в минуту. На вставке к рис. 1 представлен спектр с линиями свечения. Мощность плазменного разряда в этом случае составляла 450 W. Видно, что с увеличением потока азота растет интенсивность линии

Таблица 1. Параметры роста исследуемых пленок *a*-SiO_xN_y:H

577

Номер образца	5-500	5-100	5-150	4-100	6-050	6-100
Поток N ₂ , cm ³ /min	5	5	5	4	6	6
Мощность ВЧ-генератора, W	50	100	150	100	50	100

свечения атомарного азота N^{*}, что, в общем, очевидно. Но наблюдается также интересный эффект подавления интенсивности линии атомарного кислорода O^{*}, хотя концентрация остаточного кислорода не меняется. Такой эффект наблюдается, когда в плазмообразующей смеси увеличивается доля компонента, обладающего значительно меньшей энергией ионизации. В нашем случае это азот. Таким образом, увеличение доли азота должно приводить к уменьшению доли активного кислорода, и соответственно к уменьшению концентрации Si–Oсвязей в осаждаемых пленках $a-SiO_x N_y$: H.

Итак, был выращен набор образцов при различных потоках азота и при различной мощности плазменного разряда. Параметры образцов показаны в табл. 1.

Рис. 2. Фотоэлектронные спектры Si2p-уровня в оксинитриде кремния a-SiO $_x$ N $_y$: Н переменного состава, а также в стехиометрических диоксиде и нитриде кремния.

Рис. 3. Фотоэлектронные спектры валентной зоны и субвалентных уровней O2s и N2s в оксинитриде кремния $a-\text{SiO}_x N_y$: Н переменного состава, а также в стехиометрических диоксиде и нитриде кремния.

На рис. 2 представлены фотоэлектронные спектры Si2*p*-уровня в оксинитриде кремния переменного состава $(a-\text{SiO}_x\text{N}_y:\text{H})$, осажденного в разных режимах, а также для сравнения спектры аморфного кремния (a-Si), нитрида (Si_3N_4) и оксида кремния (SiO_2) . Вертикальными линиями указано положение Si2*p*-уровня в кремнии Si (99.4 eV), нитриде кремния Si₃N₄ (101.7 eV), оксиде кремния SiO₂ (103.4 eV). Пик с энергией 103.2 eV в кремнии обусловлен тонким слоем естественного окисла на его поверхности. Видно, что образцы 5-050, 5-100, 5-150, 6-100 представляют собой смесь оксида кремния, нитрида кремния и кремния в разных пропорциях.

Этот вывод подтверждается как фотоэлектронными спектрами валентной зоны, так и субвалентными состояниями кислорода и азота (рис. 3). Пик с энергией связи 25.3 eV соответствует O2s-уровню кислорода в SiO₂ (особенно виден в спектре диоксида кремния). Широкий пик с энергией связи \sim 19 eV соответствует N2s-уровню азота в SiN_x. Полученные значения энергии связи данных пиков хорошо согласуются с литературными данными [19–22]. Таким образом, по данным фотоэлектронной спектроскопии a-SiO_xN_y: Н представ-

ляет собой систему типа твердого раствора замещения, состоящую из тетраэдров ${\rm SiO}_{\nu}{\rm N}_{\delta}{\rm Si}_{\eta}$, где $\nu + \delta + \eta = 4$. При этом в соответствии с октаэдрическим правилом Мотта атом кремния, как в кремнии, координирован четырьмя атомами (кислорода, азота и кремния), атом кислорода, как в SiO₂, координирован двумя атомами кремния, атом азота, как в Si₃N₄ координирован тремя атомами кремния [8,9]. Отличие оксинитрида, исследованного в настоящей работе, от оксинитрида, изученного в [8], состоит в том, что оксинитрид, изученный в [8], состоит из Si–O- и Si–N-связей, а в настоящей работе в оксинитриде, кроме Si–O- и Si–N-связей, имеются также Si–Si-связи. Другими словами, некоторые пленки оксинитрида, изученные в настоящей работе, обогащены избыточным кремнием.

Количественный анализ спектров РФЭС показал, что наблюдается четкая корреляция между введенной в плазму мощностью и относительным содержанием кислорода и азота в пленках оксинитрида: с увеличением мощности концентрация азота растет, а кислорода — падает. Таким образом, можно управлять составом пленок a-SiO_xN_y: Н не только изменяя поток азота, но и варьируя мощность ВЧ-генератора.

Анализ спектров КРС также подтверждает наличие избыточного кремния (Si-Si-связей) в некоторых пленках a-SiO_xN_y: H. Спектры КРС регистрировались для

Рис. 4. Спектры КРС пленок *a*-SiO_xN_y:H; для сравнения также приведен сигнал от подложки кварца.

пленок, выращенных как на кремниевых, так и на кварцевых подложках, но на рис. 4 показаны спектры только для пленок, выращенных на кварцевых подложках. Это связано с тем, что пленки почти прозрачные, и в их спектрах проявляются интенсивные линии от подложки кремния, что затрудняет анализ.

Для сравнения на рис. 4 приведен также спектр от кварцевой подложки, и видно, что в спектрах образцов 5-150 и 6-100 практически нет особенностей, кроме вклада от подложки. Известно, что локальные колебания связей Si-Si в аморфном кремнии дают в спектрах КРС особенности, связанные с наличием максимумов в плотности колебательных состояний. Это две широких моды с максимумами $\sim 480\,\text{cm}^{-1}$ (вклад преимущественно от поперечных оптических мод — TO) и $\sim 150\,{
m cm^{-1}}$ (вклад преимущественно от акустических поперечных мод — ТА) [23]. Наибольший вклад от этих мод наблюдается в спектрах пленок 5-050 и 6-050. В спектрах образцов 4-100 и 5-100 эти моды слабы, но все же видны на фоне вклада от подложки. Итак, можно сделать вывод о том, что, во-первых, избыточный кремний начинает появляться при снижении потока азота (сравнение образцов 6-100, 5-100 и 4-100), что естественно, так как уменьшается концентрация Si-N-связей. Во-вторых, количество избыточного кремния растет при уменьшении мощности плазменного разряда (сравнение образцов 5-150, 5-100 и 5-050). Это, по-видимому, обусловлено тем, что энергия диссоциации моносилана гораздо меньше энергии диссоциации молекулярных азота и кислорода.

Практически не проявляющиеся в спектрах КРС полярные связи Si-N, Si-O, Si-H, N-H и другие проявляются в спектрах ИК поглощения, показанных на рис. 5. Во всех спектрах доминирует пик с положением 850-860 cm⁻¹, соответствующий валентным колебаниям (stretching modes) связей Si-N [24]. Также во всех спектрах проявляются валентные колебания связей Si-O в виде особенностей с положением $950-1050\,\mathrm{cm}^{-1}$. Известно, что частота этой моды сильно зависит от ближайшего окружения атомов кремния и кислорода, в частности от стехиометрического параметра в пленках SiO_x [24]. Как уже было отмечено выше, по данным РФЭС пленки оксинитрида кремния представляют собой систему типа твердого раствора замещения, состоящую из тетраэдров SiO_{ν}N_{δ}Si_{η}, где $\nu + \delta + \eta = 4$. Частота локальных деформационных колебаний Si-Oсвязей $\sim 1080\,{\rm cm^{-1}}$ при $\nu = 4$ [18,25,26], а при росте параметров δ и η частота этих колебаний понижается [27] и в нашем случае составляет $\sim 950 \, {\rm cm}^{-1}$. Итак, данные ИК спектроскопии подтверждают данные РФЭС.

Но в отличие от метода РФЭС, с помощью которого невозможно анализировать связи водорода, метод ИК поглощения позволяет анализировать эти связи. Доминирующими пиками, связанными с наличием водорода в пленках, являются пики, обусловленные валентными колебаниями Si-H-связей ($2080-2220 \,\mathrm{cm}^{-1}$) и N-H-связей ($\sim 3335 \,\mathrm{cm}^{-1}$). Если в последнем случае частота колебаний практически не зависит от ближайшего

Рис. 5. Спектры ИК поглощения пленок $a - \text{SiO}_x N_y$: H: a — образцы с потоком азота 5 стандартных кубических сантиметров в минуту; b — образцы с потоком азота 4 и 6 стандартных кубических сантиметров в минуту.

окружения атома азота (положение пика находится в пределах 3325–3350 сm⁻¹ [17,24,28]), то в случае Si–Hсвязей такая зависимость существенна. Так, в случае тетраэдра Si–Si₃H, частота составляет ~ 2000 см⁻¹, а в случае тетраэдров Si–Si₂H₂ и Si–SiH₃, частота достигает 2100–2120 сm⁻¹ [29]. В случае тетраэдров SiSi_vN_δH_η, где $v + \delta + \eta = 4$, частота также будет зависеть от всех трех параметров v, δ и η , и в нашем случае положение пика в различных образцах меняется от 2080 до 2220 сm⁻¹. Такая зависимость наблюдалась в пленках a–SiN_x: Н при вариации стехиометрического xв широких пределах [30].

Стоит обратить внимание также на особенности, связанные с наличием деформационных (изгибных) колебаний (bending modes) различных связей. Это, прежде всего, связи Si-H [31] — слабый пик при $670 \,\mathrm{cm^{-1}}$ и N-H [26] — 1150 cm⁻¹. Следует также отметить присутствие слабых пиков с положением 1275 и 2970 cm⁻¹, которые могут быть связаны с деформационными и валентными колебаниями С-H-связей соответственно [32]. Это говорит о том, что в пленках возможно наличие углерода в качестве фоновой примеси. Некоторые спектры, после вычета фона были разложены на составляющие пики (кривые Гаусса) с

Номер образца	Концентрация связей N–H, 10 ²² сm ⁻³	Концентрация связей Si-H, 10 ²² cm ⁻³
5-050	< 0.2	1.8
5-150	1.2	0.5

Таблица 2. Концентрация водорода в различных химических связях в некоторых пленках $a-{
m SiO}_x{
m N}_y$: Н

Рис. 6. Спектры пропускания в видимом диапазоне пленок $a-{
m SiO}_x {
m N}_y$: H; для сравнения также приведен спектр пропускания подложки кварца.

использованием программы Fityk [33]. Анализ пиков показал, что при одинаковом потоке азота (рис. 5, *a*) рост мощности плазменного разряда приводит к тому, что уменьшается количество водорода в Si-H-связях и увеличивается его содержание в N-H-связях. Причем стоит напомнить, что для роста использовался азот, а источником водорода являлся моносилан. Водород, образовавшийся при диссоциации моносилана, насыщал оборванные связи азота. Толщина всех пленок составляла примерно 200 nm, для анализа концентрации водорода был применен метод, изложенный в работах [12,24], соответствующие сечения рассеяния были взяты из работ [34–36]. Данные по концентрации водорода для пленок 5-050 и 5-150 приведены в табл. 2.

На рис. 6 показаны спектры пропускания пленок, осажденных на прозрачных кварцевых подложках.

В спектрах пропускания пленок, выращенных на подложках из кварца, наблюдались особенности, связанные с интерференцией в спектральной области, в которой поглощение слабое. Известно, что край поглощения в стехиометрическом нитриде кремния составляет $\sim 5 \, \text{eV} \ (\sim 250 \, \text{nm})$, а в аморфном кремнии край поглощения зависит от содержания водорода и варьируется от 1.5 до $2 \, \text{eV} \ [37]$. В нашем случае в связи с наличием интерференции невозможно было точно определить спектральную зависимость коэффици-

ента поглощения и соответственно край поглощения. Тем не менее на рис. 6 видно, что менее прозрачны образцы 5-050 и 6-050 с наибольшим избытком кремния. А образец 5-150 самый прозрачный, в нем практически нет избыточного кремния. Эти данные коррелируют с данными РФЭС, спектроскопии КРС и ИК поглощения.

Данные спектральной эллипсометрии, показанные на рис. 7, подтвердили данные спектроскопии пропускания и отражения. Обратная задача эллипсометрии (получение оптических констант пленок из анализа эллипсометрических углов) решалась следующим образом. В однопленочной модели рассчитывались спектральные зависимости эллипсометрических углов $\Psi(E)_{calc}$ и $\Delta(E)_{calc}$, которые подгонялись к экспериментальным зависимостям $\Psi(E)_{exp}$ и $\Delta(E)_{exp}$. Минимизировалось отклонение рассчитанных значений от экспериментальных. Реальная часть показателя преломления пленок *n* приведена на рис. 7, а. Зная мнимую (k) часть показателя преломления, можно определить коэффициент поглощения (показан на рис. 7, b) как $\alpha = 4\pi k/\lambda$, где λ — длина волны. В пленках твердых растворов *a*-SiO_xN_y: Н на оптические константы влияют многие факторы: избыточный кремний приводит к росту показателя преломления и коэффициента поглощения, а присутствие связей Si-O или Si-H приводит к уменьшению показателя преломления и коэффициента поглощения. Все это можно заключить из анализа данных спектральной эллипсометрии. В образцах 5-050 и 6-050 с максимальным содержанием избыточного кремния показатель преломления максимален (рис. 7, а), а край поглощения (рис. 7, b) смещен в низкоэнергетический диапазон до $\sim 2-2.5$ eV. Как уже отмечалось, сдвиг края поглощения в аморфном гидрогенизированном кремнии может быть обусловлен влиянием водорода, но, помимо этого, может оказывать влияние и квантоворазмерный эффект. Известно, что при уменьшении размеров нанокластеров кремния край поглощения в них смещается в коротковолновую область [38,39]. К сожалению, невозможно разделить эти два эффекта, и информацию о размерах нанокластеров аморфного кремния в данных пленках может дать только электронная микроскопия. Как и из спектров пропускания, так и из спектральной зависимости коэффициента поглощения видно, что наименьшее поглощение наблюдается для образца 5-150 с минимальным содержанием избыточного кремния. Стоит также отметить, что в образцах 4-100 и 5-100 показатель преломления для энергии фотонов 2 eV заметно меньше значения 1.98 (показатель преломления для стехиометрического нитрида кремния). Это связано с тем, что в данных образцах концентрация Si-O-связей максимальна. Для образца 5-150 показатель преломления для энергии фотонов 2 eV составляет 1.96, что чуть меньше, чем показатель преломления для стехиометрического нитрида кремния; возможно, это связано с наличием N-H- и Si-H-связей.

Рис. 7. Зависимости показателя преломления (*n*) и коэффициента поглощения (*α*) от энергии фотона (*E*) для пленок *a* – SiO_xN_y : H.

Выводы

Было продемонстрировано, что при росте пленок $a-{
m SiO}_x N_y$: Н методом плазмохимического осаждения из смеси SiH₄(10%)Ar(90%) и N₂ в присутствии остаточного кислорода в рабочих газовых смесях управлять их стехиометрическим составом можно не только изменением потока азота, но и изменением мощности плазменного разряда. С увеличением мощности генератора (частота 13.56 MHz) снижается содержание избыточного кремния, а также снижается концентрация кислорода в пленках. По-видимому, это связано с большей диссоциацией молекулярного азота при повышении мощности плазменного разряда и повышением концентрации активного азота. Таким образом, можно оптимизировать состав пленок $a-{
m SiO}_x N_y$: Н для улучшения их мемристорных свойств.

Благодарности

Авторы благодарны А.Х. Антоненко за помощь в измерении спектров оптического эмиссионного излучения. Авторы благодарны В.Н. Кручинину за помощь в измерении и интерпретации данных эллипсометрии. Авторы выражают благодарность ЦКП "ВТАН" НГУ за предоставленное оборудование для регистрации спектров комбинационного рассеяния света.

Финансирование работы

Работа выполнена при поддержке Российского научного фонда, проект № 22-19-00369.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A. Mehonic, A.L. Shluger, D. Gao, I. Valov, E. Miranda, D. Ielmini, A. Bricalli, E. Ambrosi, C. Li, J.J. Yang, Q. Xia, A.J. Kenyon. Adv. Mater., **30**, 1801187 (2018).
- [2] M. Zackriya, H.M. Kittur, A. Chin. Scientific Reports, 7, 42375 (2017).
- [3] T. Kawauchi, S. Kano, M. Fujii. J. Appl. Phys., 124, 085113 (2018).
- [4] T.J. Yen, A. Gismatulin, V. Volodin, V. Gritsenko, A. Chin. Scientific Reports, 9, 6144 (2019).
- [5] T. Anutgan, M. Anutgan, I. Atilgan, B. Katircioglu. Appl. Phys. Lett., 111, 053502 (2017).
- [6] S. Kim, S. Jung, M.-H. Kim, Y.-Ch. Chen, Y.-F. Chang, K.-Ch. Ryoo, S. Cho, J.-H. Lee, B.-G. Park. Small, 14, 1704062 (2018).
- [7] T.J. Yen, A. Chin, V. Gritsenko. Scientific Reports, **10**, 2807 (2020)
- [8] V.A. Gritsenko, J.B. Xu, I.H. Wilson, R.M. Kwok, Y.H. Ng, Phys. Rev. Lett., 81, 1054 (1998).

- [9] В.А. Гриценко. УФН, 178, 727 (2008).
- [10] J. Fan, O. Kapur, R. Huang, S.W. King, C.H. de Groot, L. Jiang. AIP Advances, 8, 095215 (2018). https://doi.org/10.1063/1.5046564
- [11] K. Leng, X. Zhu, Zh. Ma, X. Yu, J. Xu, L. Xu, W. Li, K. Chen. Nanomaterials, **12**, 311 (2022)
- [12] Электронный ресурс. Режим доступа: http://xpspeak.software.informer.com/4.1/
- [13] В.А. Гриценко, В.Н. Кручинин, И.П. Просвирин, Ю.Н. Новиков, А. Чин, В.А. Володин. ЖЭТФ, 156, 1003 (2019).
- [14] Электронный ресурс. Режим доступа: http://www.quases.com/products/quases-imfp-tpp2m/
- [15] M.A. Isaacs, J. Davies-Jones, P.R. Davies, S. Guan, R. Lee, D.J. Morgan, R. Palgrave. Mater. Chem. Front., 5, 7931 (2021). https://doi.org/10.1039/D1QM00969A
- [16] В.Н. Кручинин, В.А. Володин, Т.В. Перевалов, А.К. Герасимова, В.Ш. Алиев, В.А. Гриценко. Опт. и спектр., 124, 777 (2018).
- [17] C. Doughty, D.C. Knick, J.B. Bailey, J.E. Spencer. J. Vacuum Sci. Technol. A, **17**, 2612 (1999).
- [18] А.Х. Антоненко, В.А. Володин, М.Д. Ефремов, Г.Н. Камаев, Д.В. Марин, П.С. Зазуля. Автометрия, 45, 52 (2011).
- [19] R. Reiche, F. Yubero, J.P. Espinos, A.R. Gonzalez-Elipe. Surf. Sci., 457, 199 (2000).
- [20] A.F. Zatsepin, D.A. Zatsepin, D.W. Boukhvalov, N.V. Gavrilov, V. Ya Shur, A.A. Esin. J. Alloys Compd., 728, 759 (2017).
- [21] V.A. Gritsenko, A.V. Shaposhnikov, W.M. Kwok, H. Wong, G.M. Jidomirov. Thin Solid Films, 437, 135 (2003).
- [22] P.M. Sylenko, A.M. Shlapak, S.S. Petrovska, O.Y. Khyzhun, Y.M. Solonin, V.V. Atuchin. Res. Chem. Intermed., 41, 10037 (2015).
- [23] J.E. Smith, Jr., M.H. Brodsky, B.I. Crowder, M.I. Nathan, A. Pinczuk. Phys. Rev. Lett., 26, 642 (1971).
- [24] G. Lucovsky, J. Yang, S.S. Chao, J.E. Tyler, W. Czubatyj. Phys. Rev. B, 28, 3234 (1983).
- [25] P.G. Pai, S.S. Chao, Y. Takagi, G. Lucovsky. J. Vacuum Sci. Technol. A, 4, 689 (1986).
- [26] C.T. Kirk. Phys. Rev. B, 38, 1255 (1988).
- [27] L.-N. He, T. Inokuma, S. Hasegawa. Jpn. J. Appl. Phys., 35, 1503 (1996).
- [28] Т.Т. Корчагина, Д.В. Марин, В.А. Володин, А.А. Попов, М. Vergnat. ФТП, 43, 1557 (2009).
- [29] M.H. Brodsky, M. Cardona, J.J. Cuomo. Phys. Rev. B, 16, 3556 (1977).
- [30] H. Mäckel, R. Lüdemann. J. Appl. Phys., 92, 2602 (2002).
- [31] Ю.К. Ундалов, Е.И. Теруков, И.Н. Трапезникова. ФТП, 53, 1547 (2019).
- [32] И.А. Аверин, А.А. Карманов, В.А. Мошников, И.А. Пронин, С.Е. Игошина, А.П. Сигаев, Е.И. Теруков. ФТТ, 57, 2304 (2015).
- [33] M.J. Wojdyr. J.Appl. Crystallography, 43, 1126 (2010).
- [34] А.В. Ржанов (ред.). *Нитрид кремния в электронике* (Наука, СО, Новосибирск, 1982)
- [35] H.J. Stein, H.A.R. Wegener. J. Electrochem. Soc., 124, 908 (1977).
- [36] W.A. Lanford, M.J. Rand. J. Appl. Phys., 49, 2473 (1978).
- [37] G.D. Cody, B. Abeles, C.R. Wronski, R.B. Stephens, B. Brooks. Sol. Cells, 2, 227 (1980).
- [38] S. Furukawa, T. Miyasato. Phys. Rev. B, 38, 5726 (1988).
- [39] H. Rinnert, M. Vergnat, A. Burneau. J. Appl. Phys., 89, 237 (2001).