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The dynamics of three coupled generators capable of demonstrating autonomous quasiperiodic oscillations is

considered. The complex structure of Lyapunov charts of the system revealing invariant tori of different (high)
dimensions, quasiperiodic bifurcations, Arnold resonance web, and other features is discussed. There was revealed

the possibility of four−frequency tori in case of individual subsystems that exhibit the limit cycle mode.
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Quasi-periodic oscillations are an independent class quite

common in science and technology [1]. The best known and

most comprehensively studied oscillations are those arising

in interactions between self-oscillating subsystems with peri-

odic regimes. On the other hand, paper [2] considers a case

of an electronic system with an autonomous quasiperiodic

dynamics. In addition to [2], relatively recently a few

versions of similar systems (quasiperiodic generators) were

proposed [3–5], which were implemented experimentally.

Taking them into account made it possible to define a wide

range of tasks. For instance, the problems of dynamics of

autonomous generators, generators under external forces,

two coupled generators, and external excitation of two cou-

pled generators were considered sequentially [3–9]. Notice

that the problem of quasiperiodic bifurcations (bifurcations
of invariant tori) is also associated with this subject [10–14].
As known from the oscillation theory, an increase in the

number of interacting subsystems essentially enriches the

dynamics. For the purpose of developing the problem of

dynamics of two quasiperiodic generators [7], let us consider
the case of three coupled subsystems. Let us choose the

chain-type coupling (the case of the ring-type coupling is a

separate task). As a tool, we will use the Lyapunov analysis

as in [7]. This analysis is capable of revealing the global

structure of the parameter plane, including such aspects

as constructing the hierarchy of different−dimensional tori,

and very complex structures like the Arnold resonance

web [15], which seems yet unattainable by other methods.

Notice that the Lyapunov analysis allows revealing local

torus bifurcations by the method presented in [10] with the

accuracy sufficient for physical problems.

Let us write the set of equations in a manner similar to

that for two generators [7]:

ẍ1 − (λ1 + z 1 + x2
1 − βx4

1)ẋ1 + ω2
0x1 + MC(ẋ1 − ẋ2) = 0,

ż 1 = b(ε − z 1) − kẋ2
1,

ẍ2 − (λ2 + z 2 + x2
2 − βx4

2)ẋ2 + (ω0 + 11)
2x2

+ MC(2ẋ2 − ẋ1 − ẋ3) = 0,

ż 2 = b(ε − z 2) − kẋ2
2,

ẍ3 − (λ3 + z 3 + x2
3 − βx4

3)ẋ3 + (ω0 + 12)
2x3

+ MC(ẋ3 − ẋ2) = 0,

ż 3 = b(ε − z 3) − kẋ2
3. (1)

Here x , z are the generator variables, ω0 is the first gen-

erator eigen frequency, 11,2 are the frequency mismatches

of the second and third generators with respect to the first

one, MC is the coupling coefficient. As per [6,7], let us

choose the following parameters: ε = 4, b = 1, k = 0.02,

β = 1/18, λ1 = λ2 = λ3 = −1.

In an individual generator, two-frequency quasiperiodic

modes T2 are observed in a certain variation range of

parameter ω0 except for very narrow resonance intervals.

Fig. 1 presents a relevant illustration in the form of a

bifurcation diagram constructed for the Poincare, section

with plane ẋ = 0, with which the set of points (x s ,0,z s) is
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Figure 1. Bifurcation diagram of an individual generator of

quasiperiodic oscillations. NS1 and NS2 are the Neimark−Sacker

bifurcation points.
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Figure 2. The chart of Lyapunov exponents (a), its fragment (b), plots of Lyapunov exponents curves (c). QSN2 are the saddle−node

bifurcations of two-frequency tori, QSN3 are the saddle−node bifurcations of three-frequency tori, QH are the quasiperiodic Hopf

bifurcations of three-frequency tori. The colored figure is available in the electronic version of the paper.

associated. The diagram presented in Fig. 1 is given in

the projection on variable x s . At the range limits NS1

(ω0 ≈ 6.201) and NS2 (ω0 ≈ 8.45), the Neimark−Sacker

bifurcations get realized, while beyond the range the limit

cycle mode P is observed.

For the system of coupled generator (1), let us first

select frequency parameters ω0 = 5 and 12 = 1 at which

the first and third generators exhibit the mode of periodic

oscillations. In this case, variations in parameter 11 exhibit

that the second generator switches from the limit cycle

mode to the quasiperiodic mode at 11a = 1.201 and back

at 11b = 3.45. Fig. 2 demonstrates the Lyapunov chart of

set (1) and its zoomed fragment on the plane (11, MC).

We can see areas of four— (T4), three— (T3) and two-
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Figure 3. Lyapunov exponent charts on the plane of the generators frequency mismatches. MC = 0.1 (a) and 0.3 (b). The colored figure

is available in the electronic version of the paper.

frequency (T2) tori, periodic modes (P), oscillation death

(OD), chaos (C) and hyperchaos (H). The mode type may

be determined from the spectrum of Lyapunov exponents as

in [7]; dimensions of invariant tori are defined by the number

of zero exponents. Let us discuss the chart structure more

comprehensively. Area 11 < 11a is organized simpler than

others, namely, here all the individual generators are in the

limit cycle mode. In this case, the zoomed fragment of the

chart (Fig. 2, b) demonstrates two tongues of two-frequency

tori T2 between which there is the area of three-frequency

quasiperiodicity T3. At a large coupling (Fig. 2, a), overlap
of the tongues gives rise to the periodic mode P of the

complete synchronization of three generators. In this case,

the pattern is similar to that for three coupled van der Pol

generators [16]. Differences emerge when frequency

parameter 11 passes through value 11a at which the second

generator switches to the mode of quasiperiodic oscillations.

Accordingly, the area of four-frequency quasiperiodicity T4

appears in the chart (Fig. 2, b). This transition proceeds

through quasiperiodic Hopf bifurcation QH1. In Fig. 2, b,

the line of this bifurcation originates from point 11 = 11a .

This bifurcation may be diagnosed using the Lyapunov

exponent curves by the method given in [10]. The condition

for its occurrence is the equality of two largest non-zero

exponents 34 = 35 < 0 before the bifurcation threshold.

At the moment of bifurcation, exponent 34 becomes non-

zero, while 35 becomes negative again. Thereat, torus

T4 softly arises from torus T3. In its turn, the appeared

area of four-frequency tori contains a submerged set of

tongues of three-frequency tori having tips on the frequency

mismatch axis 11. Fig. 2, c demonstrates the boundaries of

one of those tongues QSN3 associated with saddle−node

bifurcations of three-frequency tori. The bifurcation of this

type is characterized by the fact that, when the parameter

is varied, only one Lyapunov exponent approaches zero

and gets zero [10], namely, 34, while 35 < 0 (Fig. 2, c).
Then, when the tongue boundary is crossed, stable torus T3

collides with the saddle−type torus of the same dimension,

which gives rise to torus T4 [10]. Notice also that chaos

C and hyperchaos H areas appear with increasing coupling

strength when the tori get damaged. In passing through

11 = 11b, the second generator again switches to the limit

cycle mode, and three-frequency tori again arise through

the quasiperiodic Hopf bifurcation QH2 that is passed-

through in the reverse order (Fig. 2, b, c). Let us return to

Fig. 2, a. One can see that at high 11 values, as the coupling

strength increases, three-frequency tori transform back to

four-frequency ones. This transition is also associated with

the quasiperiodic Hopf bifurcation QH3 . Such tori emerge

despite all three individual generators are in the limit cycle

mode, which is one more fact distinguishing this case

from the case of three van der Pol oscillators [16]. This

area of four-frequency tori is pierced by narrow strips of

three-frequency tori and forms a structure named as the

Arnold resonance web [15]. As the coupling increases, there

become possible two-frequency tori corresponding to a

broad strip free of resonance inclusions. Then an extremely

narrow periodic-mode area arises, while at MC > 3.0 only

the equilibrium state remains stable: the oscillation death

(OD) mode is observed.

We have discussed the case when only one individual

generator exhibits quasiperiodic oscillations. Now let us

vary both the frequency mismatches (11 and 12). Assume

that parameter ω0 is equal to 2π, which is relevant to the
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quasiperiodic−oscillations mode in the first autonomous

generator. Therefore, all the three generators can exhibit

quasiperiodic oscillations in the autonomous mode. To

visualize the emerging modes, in this case it is convenient to

use the Lyapunov exponent chart on the plane of frequency

mismatches (11,12) shown in Fig. 3 at two fixed coupling

strengths. It is clearly seen that now six-frequency T6 and

five-frequency T5 tori are possible at a small coupling. With

increasing coupling, six-frequency tori fully disappear, while

areas of the five-frequency ones decrease significantly. A set

of characteristic intersecting strips in the form of the Arnold

resonance web is also observed. Now such a structure

arises based not only on four-frequency tori but also on

five-frequency ones. Notice that areas of the two-frequency

tori are quite small and correspond to the intersection of

resonance strips of the three-frequency tori. Periodic modes

(the complete-synchronization modes) are absent at these

coupling levels.

Hence, the problems on quasiperiodic generator dynam-

ics appear to be rather complex. A logical development

of the case of two coupled generators is switching to the

analysis of three coupled generators. Such a system may

be studied, to a large extent, by using the two-parameter

Lyapunov analysis. In the case of quasiperiodic oscillations

in one individual generator, the pattern proves to be different

from that in the case of three coupled van der Pol gener-

ators. The quasiperiodic Hopf bifurcations, saddle−node

bifurcations of invariant tori and Arnold resonance web are

observed. Four-frequency tori emerge also in case three

individual generators are in the limit cycle mode, which

is one more fact distinguishing this case from the case

of van der Pol oscillators. In the case of quasiperiodic

oscillations, each individual generator exhibits emergence

of high-dimensional tori and Arnold resonance web based

on different-dimensional tori.
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