
Optics and Spectroscopy, 2022, Vol. 130, No. 9

01

Coherent kinetics of a multistage λ scheme for laser isotope separation
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Analytical solutions of the Schr?dinger equations for coherent excitation of an atom in the scheme of two- and

three-stage photoionization are obtained as applied to the problem of laser isotope separation. A feature of the

study is the introduction of laser excitation from an additional initial state to increase the fraction of the atoms

involved in the separation process. The optimal from the points of view of photoion ratios of radiation intensities

at individual photoionization stages are found.
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Introduction

One of the most important parameters of laser isotope

separation is the degree of the target isotope extraction

using photoionization. The essence of the method is that the

flow of atoms, formed by the evaporator in vacuum, passes

through the working volume — the region filled with laser

radiation, in which selective photoionization of the target

isotope occurs. The photoions of the target isotope are

pulled out of the flow by the electric field to the product

collector, while the atoms of other isotopes, remaining

neutral, continue their way to the waste collector. The

components of the degree of the target isotope extraction

are the efficiency of photoionization, the probability of

irradiating an atom with pulsed laser radiation, and the

probability of extraction and retention of a photoion on the

collector. In this context, the photoionization efficiency is

understood as the probability of photoionization of an atom,

that has been subjected to laser irradiation. This probability

depends, in addition to the parameters of transitions and

laser radiation, on the fraction of irradiated atoms, which

are generally involved in the photoionization process. Most

atoms have either a ground state or split, or have nearby

metastable states. Thus, the population of the starting level,

which is used in the photoionization scheme, turns out

to be far from 1. For example, upon photoionization of

the 150Nd isotope, the population of the ground state 5I4
at the neodymium evaporation temperature is 0.58, while

there is a metastable state 5I5 with energy 1128 cm−1 and

population 0.26 [1]. When using in the photoionization

scheme the first transition to an excited level with the total

electronic moment of the atom J = 4 or J = 5, it is possible

to use an additional laser, that provides a transition from the

metastable state 5I5 to the same level, allowing the second

and third power lasers to photoionize these additional atoms.

This will increase the fraction of atoms involved in the

photoionization process by 45%. A similar situation exists

in actual cases of photoionization separation of 63Ni, 176Lu,
177Lu, and 177Lu isotopes.

In the case of lutetium, the population of the ground

state at an evaporation temperature of 1700◦C is ∼ 0.7, but

the ground state, like other levels, is split into multiplets

due to hyperfine interaction. The sublevels in the multiplet

are determined by the total atomic moment F = J + I ,
J + I − 1, . . . , |J − I|, where I – is the nuclear spin. The

splitting, as a rule, exceeds the spectral width of the laser

radiation, and at a certain frequency setting of the lasers of

the first, second, and third stages, photoionization occurs

taking into account the selection rules (1F = 0,±1) along

a certain chain of sublevels F — along the photoionization

channel. For example, for 177Lu the sublevels of the

ground state 5d6s2 2D3/2 (I = 7/2) with quantum num-

bers F = 2, 3, 4, 5 are populated in accordance with their

statistical weights 2F + 1, and accordingly, when using the

photoionization channel 5-6-5-4 [2], 0.7.11/32 = 0.24 are

involved in the photoionization process from all irradiated

atoms. At the same time, the simultaneous use of channels

2-3-4-3 and 4-3-4-3 is possible, in this case the fraction of

involved atoms 0.7 · (9 + 7)/32 = 0.35 turns out to be by

46% larger. The use of two initial states with excitation

to the same sublevel leads to the formation of the so-

called λ photoionization scheme. However, under certain

conditions [3], the presence of a side stage can, on the

contrary, suppress the atoms excitation due to
”
dark states“

(population trapping
”
dark“ states), which arise under the

condition of an exact two-photon resonance between two

initial levels.

In the laser separation of isotopes of rare earth elements,

one has to often deal with small (about 1 GHz) frequency

differences during excitation of various isotopes, that re-

quires the use of narrow-band single-mode dye lasers with a

spectral width of 120−150 MHz. When using such lasers,

the experimenter often encounters the effects of splitting

atomic transitions and a decrease in the photoion current
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with increasing laser radiation intensity, that is explained in

terms of the coherent interaction of laser radiation with an

atom.

The theoretical consideration of multistage coherent pho-

toionization of classical schemes (not λ-schemes) is widely

presented in the literature [4–7]. The most universal

condition for effective photoionization in such schemes is

the equality of the Rabi frequencies f i at each transition.

In particular, in the case of a three-level system, when

the laser frequency is tuned to resonance with transitions,

the time-averaged population of the upper excited state W3

in the absence of relaxation is proportional to the factor
f 21 f 22

( f 2
1
+ f 2

2
)

[4], which maximum corresponds to the condition

f 1 = f 2, where f 1 and f 2 are the Rabi frequencies at the

first and second transitions respectively. Unfortunately, this

condition cannot be directly extended to the case of a λ-

scheme. This paper is an attempt to find a condition for

efficient multistage photoionization with two initial states

excited by laser radiation to a common intermediate level.

Analytic assessments

Modern laser technology has in its arsenal a well-

developed apparatus for measuring and stabilizing laser

frequencies, so the theoretical consideration of the case of

exact resonance is of great practical importance. In addition,

in the case of exact resonance, the theoretical expressions

are significantly simplified and it becomes possible to obtain

simple analytical results, which llow to understand the

common patterns. In the case of three-stage photoionization,

two options of using the third stage are possible (Fig. 1).
The first option is realized during photoionization into a

continuum (Fig. 1, a), the second option corresponds to

the tuning of the third-stage laser radiation wavelength to

resonance with the autoionization state (Fig. 1, b ). In

both cases, we consider an idealized system of atom levels,

which participate in photoionization by monochromatic

(single-frequency) laser radiation. It is assumed, that the

levels are not degenerate, the laser radiation frequencies

ω0, ω1, ω2 coincide with the Bohr transition frequencies.

Laser pulses have a rectangular shape and their duration

is much less, than the lifetime of excited levels —2¿ and

—3¿. We assume, that in the first case the transitions

—0¿→—2¿, —1¿→—2¿and —2¿→—3¿are coherent, and

the transition from level —3¿ to the continuous spectrum

(ionization) — is incoherent and is not considered. In the

second case all transitions are coherent.

In a more general form, the N-level coherent excitation

dynamics was studied in papers [4]. The difference is

that in our case the excitation to the first excited level

occurs from two lower levels. The presence of the second

lower state —1¿ is based on the need to populate the

preionization level to the maximum and obtain, accordingly,

the maximum photocurrent. The level —1¿ lies close to

the level —0¿ and has a comparable population at the

initial moment of time. We assume, however, that the

levels —0¿ and —1¿ are sufficiently separated in energy,

so that there are no forced transitions from level —2¿
to level —1¿ under the radiation with a frequency of ω0

and vice versa, there are no transitions from level —2¿
to level —0¿ induced by radiation with frequency ω1. In

contrast to the incoherent case with monotonic behavior

of populations, coherent dynamics in the absence of strong

relaxation is characterized by level population oscillations,

and therefore the problem is to determine such ratios of

radiation intensities with frequencies ωi , which provide the

maximum population of levels —3¿ or —4¿, averaged by

pulse duration. For a classical three-level system, when there

is one level below [4,7], this relation consists in the equality

of the Rabi frequencies at the transitions —0¿→—2¿ and

—2¿→—3¿. However, we did not find any papers for the

case of two excited lower levels, where the solution would

be obtained analytically.

The interaction of an atom with a laser field will be

considered as a perturbation, and the total wave function

of the atom 9(t), which depends on time, is sought as a

superposition of the wave eigenfunctions of the stationary

states of the unperturbed atom. In the case of two-stage

excitation, these are the wave functions 90, 91, 92, 93, so

that

9(t) = a0(t)90 + a1(t)91 + a2(t)92 + a3(t)93. (1)

For three-stage excitation, we use five unperturbed wave

functions (90, 91, 92, 93, 94), and the total wave function

is

9(t) = a0(t)90 + a1(t)91 + a2(t)92 + a3(t)93 + a4(t)94.

(2)
The squares |a i |2 — are the probabilities of finding the

atom in the stationary states —0¿, —1¿, —2¿, —3¿
and —4¿ at time t . At the initial moment of time the

coefficients a2, a3 and a4 are equal to zero. Assuming,

that the electric field of laser radiation has the form of

E j(t) = E j(exp(iω jt) + exp(−iω jt)) and the dipole approx-

imation for the interaction with an atom is valid, the

Schr?dinger equation for 9(t) in the RWA (rotating wave

approximation) reduces to a system of equations for two-

stage photoexcitation [8]:

da3

dt
= i f 2a2 (3)

da2

dt
= i f ∗

2a3 + i f 0a0 + i f 1a1 (4)

da1

dt
= i f ∗

1a2, (5)

da0

dt
= i f ∗0a2. (6)

In the left side of the equations are the time derivatives of

the coefficients a i(t), and in the right side the multipliers

f i are Rabi resonance frequencies:

f 0 =
d02E0

~
, f 1 =

d12E1

~
, f 2 =

d23E2

~
. (7)
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Figure 1. λ — photoionization schemes: a — two-stage scheme, b — three-stage scheme.

Here d ji — the dipole matrix elements of the corresponding

transitions.

If the initial states are not prepared coherently, then the

phases for a0(0) and a1(0) can be chosen equal to zero,

and then the coefficients a i at the time t = 0 are real values

and satisfy the following initial conditions:

a3(t = 0) = 0, (8)

a2(t = 0) = 0. (9)

a1(t = 0) =
√

M, (10)

a0(t = 0) =
√

G. (11)

Here G and M the initial populations of the states —0¿
and —1¿, respectively. The values G and M depend

on the nature of the lower states — these can be the

components of the hyperfine structure of the ground state

or, for example, a combination of the ground state and a

nearby metastable one. The task of the calculation is to

determine the conditions, under which the population of

the upper state (W3 = |a3|2 for two-stage excitation and

W4 = |a4|2 for three-stage one) will be maximum. The

solution of system (3)−(6) with initial conditions (8)−(11)
for the preionization state |a3|2 can be written as

W3 = |a3|2 = 4

(

f 0 f 2

√
G + f 1 f 2

√
M

�2

)2(

sin
�

2
t

)4

,

(12)
where

� =
√

| f 0|2 + | f 1|2 + | f 3|2. (13)

Averaging the value of W3 over oscillations with a frequency

of �, we obtain the average value of the probability W3

W̄3 =
3

2

(

f 0 f 2

√
G + f 1 f 2

√
M

f 2
0 + f 2

1 + f 2
2

)2

. (14)

With equal Rabi frequencies f 0 = f 1 = f 2 and

G = M = 0.5

W̄3 =
1

3
. (15)

Considering W̄3 as a function of two variables f 0 and f 1 for

constants f 2, G and M, it is easy to see, that the maximum

of W̄3 is realized at

{

f 0 = f 2

√
G

f 1 = f 2

√
M.

(16)

Substituting condition (16) into (14), we obtain

(G + M = 1)

W̄3 =
3

8
. (17)

Thus, in the case of two-stage photoexcitation using the

λ-scheme at the first transition, the optimal distribution

of intensities are the intensities proportional to the initial

populations of the lower states.

For three-stage photoexcitation the following system of

equations should be considered:

da4

dt
= i f 3a3, (18)

da3

dt
= i f ∗

3a4 + i f 2a2, (19)

da2

dt
= i f ∗

2a3 + i f 0a0 + i f 1a1, (20)

da1

dt
= i f ∗

1a2, (21)

da0

dt
= i f ∗

0a2, (22)
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and the solution for the top level becomes much more

complicated

W4 = |a4|2 =

(

f 2 f 3( f 0

√
G + f 2

√
W )

�2
+ −�2

−

)2

×
(

sin�+t
�+ − sin�−t

�−

)2

. (23)

Two characteristic frequencies �+ and �− appear:

�+ =

√

√

√

√

( f 20+ f 21+ f 22+ f 2
3)+

+
√

( f 2
0
+ f 2

1
+ f 2

2
+ f 2

3
)2−4( f 2

3
f 2
0
+ f 2

3
f 2
1
)

2
, (24)

�− =

√

√

√

√

( f 20+ f 21+ f 22+ f 2
3)−

−
√

( f 2
0
+ f 2

1
+ f 2

2
+ f 2

3
)2−4( f 2

3
f 2
0
+ f 2

3
f 2
1
)

2
, (25)

The average value of W4 over oscillations with frequencies

�+ and �− is equal to

W̄4 =
f 2
2( f 0

√
G + f 1

√
M)2( f 2

0 + f 2
1 + f 2

2 + f 2
3)

2[( f 2
0 + f 2

1 + f 2
2 − f 2

3)
2 + 4 f 2

2 f 2
3]( f 2

0 + f 2
1)
. (26)

If the Rabi frequencies are equal and G = M = 0.5, from

(26) follows W̄4 = 0.25. If we extend the optimal condition

(16) to the case of three-stage photoexcitation:

f 0√
G

=
f 1√
M

= f 2 = f 3, G + M = 1, (27)

then the averaged value W̄4 = 0.3, which is 20% higher,

than in the case of equal Rabi frequencies. Note, that

the expressions for the average values W̄3 of the system

(3)−(6) and W̄4 of the system (18)−(22) coincide with

similar expressions of the average values from the paper [4]
if we set f 1 = 0, M = 0, G = 1 in our formulas (14) and

(26) respectively.

Fig. 2 shows the dependence of W̄4 on f 1 under

the condition f 0/
√

G = f 3 = 100MHz, G = 0.6, M = 0.4

for different values of f 2. As can be seen from the

figure, a maximum is observed under condition (27), and
as f 2 decreases, the maximum becomes sharper, while

its amplitude changes insignificantly. This is apparently

the result of the interference of oscillations of the level

populations of the photoionization scheme under idealized

conditions of the relaxation absence. As f 2 ( f 2 ≪ f 3)
decreases, it is easy to see, that at the maximum under

conditions

f 0√
G

=
f 1√
M

= f 3, G + M = 1 (28)

the frequencies

�+ ≈ f 3 + f 2/2, (29)

�− ≈ f 3 − f 2/2, (30)

turn out to be very close to each other, and the sum of

sines in (23) can be represented as the square of the cosine
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Figure 2. Dependence of the population W̄4 on the frequency

f 1 for different values of f 2 and f 0/
√

G = f 3 = 100MHz for

G = 0.6, M = 0.4. f 2 = 1 (dotted line), 10 (thin line), 100MHz

(thick line).

f 3 modulated by the slower square of the sine f 2/2. The

rise time of W4 to its maximum value increases significantly

and, accordingly, the requirement for the accuracy of

compliance with conditions (28) increases, which leads to

peak sharpening. For f 2 ≪ f 3 the average population of W̄4

as a function of f 1 near the maximum can be represented

with good accuracy in the form of a resonance-like curve:

W̄4 ≈
f 2
2 f 2

3

[( f 2
1 − M f 2

3)
2 + 4 f 2

2 f 2
3]
, (31)

where the maximum width is proportional to f 2( f 2 f 3). In
the coordinates of laser radiation intensities (proportional to
the square of the Rabi frequency), the maximum (31) has

a Lorentzian shape with a width proportional to the root of

the product of the second and third steps intensities.

Conclusion

The objective of this work was to obtain analytical

dependences in the description of coherent excitation in a

scheme of multistage laser photoionization. These results

can be used to predict the behavior of the population of the

system preionization state, to which it is required to transfer

the maximum number of atoms from the system initial

levels. In the standard formulation of the problem, effective

excitation of the preionization state requires the equality

of the Rabi frequencies at intermediate transitions, and this

equality is realized due to different intensities to compensate

for different dipole matrix elements of the transitions. In

the problem, when there are two initial levels, this condition

changes. To obtain the maximum ionization output, the laser

radiation intensities in the first stages should be in a certain

ratio with the intensities of the upper stages, and this ratio
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depends on the initial population of the first levels. Such an

additional correlation of intensities is a direct result of the

coherent nature of the interaction of radiation with an atom.

The presented results show, that in the case of coherent

excitation, the process is very sensitive to the choice and

maintenance of preset values of the laser radiation intensity

at all stages of the photoionization circuit, and failure to

comply with these conditions leads in some cases to a sharp,

resonant-like drop in efficiency.
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