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1. Introduction

In recent years, studies of mechanical, vibrational, and

thermal conductivity properties of various nanostructured

materials have become increasingly important. Among

such materials, structures containing both crystalline and

amorphous components are widely used. Misaligned

arrangement of atoms inherent in amorphous bodies sig-

nificantly affects both behavior of amorphous bodies on

nanometer scale and their macroscopic properties. Macro-

scopic deformations of an amorphous body lead to het-

erogeneous local deformations, specific scale of which is

estimated by tens of interatomic distances [1,2]. Such

heterogeneous deformations are called non-affine, since

they cannot be described by a combination of local

extensions or shears. Non-affine deformations have been

observed in many misaligned solids: metallic glasses [3],
polymeric hydrogels [4], supercooled liquids [5], Lennard-
Jones glasess [6], quartz glasses [7]. Non-affine deformations

provide for important contribution to macroscopic elasticity

properties.

For macroscopic description of elastic properties of

amorphous bodies, classical elasticity theory using macro-

scopic moduli of elasticity can be applied. However,

this method is not applicable to the description of micro-

scopic deformations of nanostructures and nanocomposites

containing amorphous regions, because in this case the

characteristic scale of non-affine deformations Rnaff may

be comparable with typical dimensions of structural ele-

ments.

Recent research shows that in amorphous regions near

their boundary with a stiffer body, a boundary region is

formed, described by significantly higher elastic moduli

compared to their values in the volume of the amorphous

body. In paper [8], effect of nanoparticles on the local

elasticity of polystyrene around nanoparticles has been

investigated using molecular dynamics method. Increase of

elastic modulus of epoxy polymer near bemite nanoparticles

was shown in paper [9].
In paper [8] it is shown that increase in local elastic

modulus in the boundary region may not be due to a change

in the local structure of the substance, but is caused by

misaligned structure of the amorphous body itself. However,

effect of misalignment on local elastic properties requires

more detailed study.

In the present paper, in order to determine local elastic

properties in the boundary region and their relation to non-

affine deformations, we applied the random matrix model.

Such a model has proven itself well in describing elastic

and vibrational properties of amorphous solids, based on

the most general assumptions about the properties of an

amorphous body [10,11].
This article has the following structure. In Section 2,

random matrix model used is formulated. In Section 3,

specific scale of non-affine deformations as a function

of misalignment degree in the system is determined.

In Section 4, effect of boundary conditions on elastic

properties of an amorphous body in the boundary region

is shown. In Section 5, elastic properties of a nanostructure

containing layers of amorphous and crystalline material are

studied.

2. Random matrix model

The random matrix model [10] was applied to describe

elastic properties of nanostructures with amorphous and

crystalline phases. Such a model makes it possible to vary

strength of misalignment and to describe both crystals and

highly misaligned amorphous bodies. Besides, the random

matrix model is based on the most general assumptions
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about mechanical stability of an amorphous body and allows

to describe universal vibrational and mechanical properties

of amorphous bodies [10,11]. In this paper, the random

matrix model will be applied to study elastic properties

under quasistatic deformations.

For simplicity, this paper considers a simple cubic lattice

with unit lattice constant a0 = 1 and unit atomic masses

mi = 1. We use a scalar model, which assumes that

the displacement of the ith atom, ui , is a scalar quantity.

Displacement ui can be thought of as displacement along

axis z in the direction of which external deformation will be

applied.

To describe crystalline regions, the simplest model was

considered, in which neighboring atoms are connected by

single elastic bonds, and nonzero non-diagonal elements of

the dynamic matrix have the form M(c)
i j = −1 for neighbor-

ing atoms i and j . The rule of sums M(c)
ii = −

∑

j 6=i M(c)
ji is

satisfied for diagonal elements, which is related to invariance

of the potential energy of the system with respect to

displacing it as a whole. In the considered case of a simple

cubic lattice M(c)
ii = 6.

For amorphous regions, elements of the dynamic matrix

are to some extent random variables. In this case, the

requirement of mechanical stability plays an important

role. In the most general form, a strongly misaligned

stable mechanical system can be described by a dynamic

matrix M = AAT [11]. Let us assume that matrix elements

Ai j are Gaussian random numbers for neighboring atoms

i and j . Just as in the construction of M(c)
ii , the

rule of sums Aii = −
∑

j 6=i A ji is imposed on the matrix

elements A.
To describe an amorphous phase with an arbitrary degree

of misalignment, a dynamical matrix was considered in the

form

M(a) = AAT + µM(c). (1)

Dimensionless parameter µ controls the misalignment of the

amorphous phase. µ ≫ 1 case describes a crystal with small

fluctuations of the dynamic matrix elements. µ ≪ 1 case

describes a strongly misaligned amorphous solid and is of

most interest for the present paper.

3. Non-affine deformations

Because of local misalignment in the amorphous medium,

which is described by the random matrix model (1), macro-

scopic deformation can cause local non-affine displacements.

Let us consider a sample L × L × L in which the atoms

have integer coordinates (x , y, z ) and form a cubic lattice

with a degree of misalignment µ. To study deformation

of the amorphous medium, we apply single forces of

opposite sign to each atom in the lower (z = 0) and

upper (z = L − 1) layers. The sample has periodic

boundary conditions along x and y directions, and open

boundary conditions (Neumann boundary conditions) are

used in z direction. Equilibrium displacements of atoms

ui are determined by a system of linear algebraic equa-

tions

M(a)u = F, (2)

in which F — a column describing the force acting on the

corresponding atom. Fig. 1, a shows resulting displacements

for different degrees of misalignment µ. For each coordinate

z , all displacements for atoms in a given layer are shown.

Displacements ui can be decomposed into affine and non-

affine components

ui = uaff
i + unaff

i , (3)

where the affine component is a linear function of z :

uaff
i = az + b. (4)

Distribution of the non-affine component unaff
i is shown in

Fig. 1, b. This distribution is Gaussian with zero mean and

standard deviation σnaff. To determine non-affine length

scale, let us consider relative displacement between two

atoms i and j caused by deformation

ui − u j = a(z i − z j) + (unaff
i − unaff

j ). (5)

For large distances z i − z j , relative displacement is deter-

mined by the first (affine) term of equation (5). However,

for small distances z i − z j , relative displacement is deter-

mined by the random non-affine component. This allows us

to estimate non-affine length scale as the distance at which

affine and non-affine components have the same order of

magnitude: Rnaff = σnaff/a . Fig. 1, c shows dependence Rnaff

on parameter µ. One can see that non-affine length scale

has scale ratio

Rnaff ∝ µ−1/4 (6)

for µ ≪ 1. This ratio matches length scale of Ioffe–Regel
lIR, which represents a length of free passage of phonons

near Ioffe–Regel frequency [10].

4. Influence of boundary conditions

Before turning to description of the amorphous nanos-

tructure, it is worth noting that the pattern of displacement

distribution across the sample changes as the boundary con-

ditions change. Instead of applying forces to the boundary

atoms, we set their displacements at the boundary (Dirichlet
boundary conditions). Let us assume that displacements of

the atoms in the lower layer (z = 0) are zero ui = 0, and in

the upper layer (z = L − 1) single displacements ui = 1 are

given. In transverse directions (along x and y) the boundary
conditions will still be periodic.

Fig. 2, a shows resulting equilibrium displacements of

atoms ui at a given displacement of the atoms at the

upper and lower boundaries. Note that, in contrast to

Fig. 1, a, spread of displacements at the edge of the

sample decreases, which is caused by complete certainty

of boundary displacements due to the boundary condition.
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Figure 1. a) Displacements of atoms ui as a function of coordinate z for an amorphous sample of size L = 40 at various values of

parameter µ. Displacements are normalized so that the average displacement does not depend on the parameter µ. b) Distribution of

the probabilities of non-affine displacement for case µ = 1. Solid line — Gaussian distribution function with standard deviation σnaff.

c) Dependence of non-affine length scale on parameter µ.

Dependence of layer-averaged equilibrium displacements

u(z ) becomes markedly nonlinear — see Fig. 2, b.

Also note that in equilibrium the average mechanical

stress σ is independent on coordinate z . Therefore,

nonlinear dependence u(z ) means uneven distribution of

elastic properties along coordinate z . Besides, relationship

between average mechanical stress σ and average deforma-

tion du(z )/dz is determined by effective Young’s modulus

E(z ):

σ = E(z )
du(z )

dz
. (7)

Corresponding effective ductility of the system is propor-

tional to du/dz :

S(z ) =
1

E(z )
=

1

σ

du(z )

dz
. (8)

In the scalar model under study, elastic modulus E and

ductility S are scalar quantities [10]. The results obtained in

this paper can be generalized to the case of a vector model,

where corresponding quantities will be described by tensors

of rank 4.

The resulting dependence of ductility S(z ) on coordinate

z is shown in Fig. 2, c for different values of µ. It can

be seen that ductility of the system near the boundary is

lower than in the volume. At the same time, the size

of the region with a reduced value of ductility depends

on the degree of misalignment, which is controlled by

parameter µ. Analysis of dependences S(z ) demonstrated

their exponential behavior away from the boundaries. To

determine specific size of the boundary region w , we

approximated the dependence of S(z ) on the coordinate z
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by the equation

S(z ) = S0 + S1 exp

(

−
z − z 0

w

)

+ S1 exp

(

−
z 1 − z
w

)

,

(9)
where z 0 = 0 and z 1 = L − 1 — coordinates of upper and

lower boundaries, accordingly.

Dependence of width of boundary region w on parameter

µ is given on Fig. 3. It is seen that w ∼ µ−1/4, which
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Figure 2. a) Equilibrium displacements of atoms ui when

setting displacements at the upper and lower boundaries of an

amorphous body. b) Dependence of layer-averaged z equilibrium

displacements for different values of parameter µ. c) Dependence

of effective yield of S(z ) on coordinate z for different values of the

parameter µ.
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Figure 3. Dependence of boundary layer width w on value of

parameter µ. Colored symbols comply with width of boundary

layer for amorphous body with fixed boundaries. Open symbols

comply with width of boundary layer for amorphous body in

contact with crystalline line (see section 5). The line indicates

dependence w ∼ µ−1/4.

coincides with behavior of non-affinity radius Rnaff, shown

on Fig. 1, c.

The resulting heterogeneous ductility of the amorphous

body (9) also affects elastic properties of the amorphous

body as a whole. The average effective ductility of the

amorphous body together with the boundary regions looks

like

S =
1

z 1 − z 0

∫ z 1

z 0

S(z )dz ≈ S0 − 2
w

La
S1 (10)

at La ≫ w, where La = L — full thickness of amorphous

body. As a result, full ductility of amorphous body reduces

by value proportionate to thickness of boundary region w .

5. Amorphous nanostructure

The results of the previous section demonstrated that

amorphous body boundaries form effectively stiffer regions

compared to regions in the volume of the medium if

the boundary of the amorphous body is given as a non-

deformable plane. In real structures, an amorphous medium

may contact with a stiffer aligned medium, such as a crystal.

In this case the crystal has finite stiffness, which may cause

nonzero deformations of the crystal boundary due to non-

affine deformations of the amorphous body.

For more detailed study of the interaction between non-

affine deformations and effects at the crystal-amorphous

body boundary, let us consider the three-layer L × L × L
nanostructure shown in Fig. 4, a. The central amorphous

layer of thickness La is described by an amorphous

dynamic matrix M(a) with given parameter µ. The

external crystal layers are described by matrix M(c). The

interfaces of the crystalline and amorphous phases have

coordinates z 0 = (L − La − 1)/2 and z 1 = (L + La − 1)/2.
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Figure 4. a) Layered nanostructure with a central amorphous layer (blue) and outer crystalline layers (green). Thickness of amorphous

layer is La = 30. The total size of the nanostructure is L × L × L at L = 60. All dimensions are counted in units of lattice constant a0 .

b−e) Equilibrium displacements ui in different cross sections with given coordinates z , calculated for µ = 0.001. These cross sections are

indicated by arrows with corresponding letters on the panel (a).

For numerical simulations, we use system size L = 60 and

La = 30, which is sufficient to study non-affine deformations

(Fig. 4, a).
To study nanostructure deformation, we apply single

forces of opposite signs to the lower (z = 0) and upper

(z = L − 1) layers. For each realization of misalignment in

the amorphous layer, we find equilibrium displacements ui .

Fig. 4, b−e shows equilibrium displacements ui in different

sections with given coordinates z in color. This figure

demonstrates how non-affine deformations of an amorphous

body propagate into the crystalline region.

To quantitatively analyze elastic properties of such a

three-layer system, we considered equilibrium displace-

ments ui in various sections with given coordinates z ,
shown in Fig. 5, a, b and average displacement value u(z ).
Derivative du(z )/dz allows us to determine ductility S(z )
according to equation (8). Resulting ductility S(z ) of the

three-layer structure is shown in Fig. 5, c for different values

µ. It can be seen that a boundary region with reduced

ductility is formed near the crystal boundary.

To determine thickness of the boundary region, we will

also use equation (9) to approximate ductility inside the

amorphous layer. The resulting dependence of boundary

region thickness w on parameter µ is shown in Fig. 3.

Same as for fixed displacements of atoms at the boundary,

dependence w ∼ µ−1/4 is observed.

6. Discussion of results

Elastic properties of amorphous solids depend substan-

tially on microscopic non-affine deformations. Using the

random matrix model, it has been shown that radius

of non-affine deformations depends on parameter µ as

Rnaff ∼ µ−1/4. At such scales, the classical (continuum) the-
ory of elasticity becomes inapplicable, since it is impossible

to determine a smooth dependence of a displacement on

the coordinate.

However, for structures whose statistical properties de-

pend only on coordinate z , we can introduce a transverse

averaged displacement u(z ) as a function of coordinate z .
Behavior of such an averaged displacement is determined by

effective Young’s modulus E(z ) and corresponding effective

ductility S(z ) = 1/E(z ). In this case, dependence of

ductility S(z ) on coordinate z depends substantially on the

boundary conditions. For Neumann boundary conditions

(when forces are applied to the boundary atoms), ductility
S(z ) does not depend on coordinate z .
However, for Dirichlet boundary conditions (when dis-

placement of the boundary atoms is set), ductility near the

boundaries becomes significantly smaller than ductility away

from the boundaries. This effect is due to the fact that

any deformation of an amorphous body is accompanied by

chaotic microscopic non-affine deformations, whose specific

radius is determined by the size Rnaff. Presence of a

boundary with given displacements of atoms suppresses not

only the average displacement of atoms, but also non-affine

deformations. As a result, the medium becomes less ductile

near the boundary, and specific size of such a region w is

comparable to radius of non-affine deformations Rnaff.

This effect is also observed for amorphous nanostructures,

where an amorphous layer is located between two crys-

talline layers. In this case, non-affine deformations are not

completely suppressed at the boundary, and some of non-

affine deformations propagate into crystal depth. However,

specific width of boundary layer w is also determined by

radius of non-affine deformations Rnaff.

The random matrix model is based on the most general

assumptions about the properties of amorphous solids.

This theory also allows us to describe such universal

features of amorphous solids as boson peak and Ioffe–
Regel crossover [10,11]. The random matrix theory

demonstrates that frequency of boson peak coincides in

order of magnitude with frequency of Ioffe–Regel crossover.
Oscillations below Ioffe–Regel frequency have a certain

wave vector and a certain free passage length, which

exceeds the wavelength. At Ioffe–Regel frequency, free

passage length becomes comparable to the wavelength, as

a result, at higher frequencies it is impossible to describe
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oscillations by a certain wave vector, and propagation of

such oscillations is of diffusive nature. Thus, at Ioffe–Regel
frequency, free passage length acquires its minimal value

lIR among such range of frequencies, where the concept of

free passage length is applicable to oscillations [10]. The

results of this paper demonstrate that Rnaff ∼ lIR ∼ µ−1/4.

Therefore, Ioffe–Regel length lIR, the non-affinity radius

Rnaff and the thickness of the boundary region w have one

order of magnitude and separate the macroscopic scales to

which classical (continuum) elasticity theory is applicable

and the microscopic scales, where system misalignment

plays an essential role.

The results of this paper are of great significance for

physics of nanocomposites because they demonstrate that

an effective stiffer shell can form around nanoparticles in a

highly misaligned medium, size of which is determined by

the non-affinity radius in such a misaligned medium, which

depends on misalignment degree. For example, molecular

dynamics calculations of polystyrene with SiO2 nanoparticle

show an increase in stiffness at the distance of about

1.4 nm around the nanoparticle [8]. For other amorphous

substances, non-affinity radius was estimated to be about

ten typical interatomic or intermolecular distances [2,7].
Direct experimental observation of elastic properties of

a substance on scales of about of 1 nm can be difficult.

However, results of this paper show a possible way to

verify increase in stiffness of an amorphous body in the

boundary region. A multilayered structure, where layers of

amorphous material alternate with layers of a stiffer aligned

body, will have a higher stiffness than a similar structure,

where amorphous layers are combined into thicker layers.

According to equation (10), the effect will be proportional

to w/La , where La — thickness of a single amorphous layer.

7. Conclusion

This paper studied non-affine displacements in amor-

phous solids and amorphous-crystalline nanostructures. Us-

ing the random matrix model, a specific scale of non-affine

deformations Rnaff in amorphous solids was determined.

Effect of boundaries on elastic properties of an amor-

phous solid in the boundary region was determined. It was

shown that both in fixed setting of amorphous body dis-

placements at the boundary and in contact of an amorphous

body with a crystalline one, a boundary region is formed

with thickness w, where effective stiffness is higher than in

the volume of an amorphous body. This phenomenon is due

to the fact that, under such boundary conditions, non-affine

deformations of an amorphous body at the boundary are

suppressed, resulting in a decrease in effective ductility of

a substance at distances of around the radius of non-affine

deformations Rnaff.

In this case, thickness of the boundary region w coincides

in order of magnitude with non-affinity radius Rnaff as

well as Ioffe–Regel length lIR, which plays a crucial

role in vibrational properties of amorphous solids. The

results obtained play an important role in understanding

the macroscopic elastic properties of nanostructures and

nanocomposites.
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