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The effect influence of elastic energy anisotropy on the mutual drag of electrons and phonons and the electrical

resistance of potassium crystals at low temperatures have investigated. We have analyzed the momentum exchange

between the electron and three phonon flows corresponding to three branches of the vibrational spectrum in the

hydrodynamic approximation. The actual mechanisms of phonon momentum relaxation have taken into account:

scattering at sample boundaries, dislocations, and in the processes of phonon-phonon transfer. It have shown that

in the limiting case of strong mutual drag of electrons and phonons, the electrical resistance will be much lower

than that given by the Bloch–Grüneisen theory, and the phonon and electron drift velocities are close and they are

determined by the total phonon relaxation rate in resistive scattering processes. In the opposite case, when resistive

scattering processes dominate for phonons and the phonon system remains in equilibrium, then the electrical

resistance follows the Bloch–Grüneisen theory. In this case, the drift velocities of all modes are different and much

less than the electron drift velocity.
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1. Introduction

This paper analyzed influence of elastic anisotropy on

electron-phonon relaxation, mutual drag of electrons and

phonons and electric resistance of potassium crystals. Pre-

viously, in research of these effects, for phonons, a model

of isotropic medium is used (see [1–4]). In this model only

longitudinal phonons may participate in electron-phonon re-

laxation. It was used in Bloch–Grüneisen theory to calculate

electric resistance of metals [5–12]. In papers [13–15] it

was demonstrated that this approximation turned out to be

incorrect for explanation of experimental data of thermo-

emf of drag in potassium crystals [16]. In elastic anisotropic

crystals, quasi-longitudinal and quasi-transverse phonons are

distributed (see [17]). They have non-zero longitudinal

component [17], therefore within the standard theory of

potential deformations may interact with electrons. It

turned out that at low temperatures the contribution of slow

quasitransverse modes in thermo-emf of potassium crystal

drag, which has not been previously taken into account

(see [1–12]), by order of magnitude exceeded contribution

of longitudinal phonons. Such approximation turned out to

be insufficient to explain experimental data [16]. Therefore,
in [18] the impact of shear waves at electron-phonon

relaxation is taken into account, and constant of electron-

phonon interaction was determined for shear components of

oscillatory modes E0t = 0.11 eV. Ziman in [9,19] mentioned

the need to take into account impact of shear deformations

at energy of conduction electrons in alkaline metals.

Paper [20] analyzed impact of elastic energy anisotropy at

electron-phonon relaxation and electric resistance of potas-

sium crystals in approximation of Bloch–Grüneisen [6–12].
Accounting of elastic energy anisotropy per phonon system,

and also contribution of shear waves to electron-phonon

relaxation made it possible to approve results of electric re-

sistance calculation results with data [21,22] at temperatures

above 40K. It was demonstrated that at temperatures that

are much lower than Debye temperature (T ≪ 2D), where

resistance followed dependence ρe−ph ≈ B1T 5, contribution

of quasi-transverse phonons to electric resistance, which

was not taken into account previously, 11.5 times exceeded

contribution of longitudinal phonons, and relaxation of

electrons on shear waves 4 times exceeded contribution

of longitudinal phonons. However, at high temperatures

(T ≫ 2D), where ρe−ph ≈ B2T , contribution of longitudi-

nal phonons was 4.5 times higher than total contribution of

electron relaxation in fast and slow transverse modes.

In Bloch–Grüneisen theory [5–12] it was assumed that

the system of phonons is balanced: the entire momen-

tum transmitted by electrons to phonons through normal

processes of electron-phonon scattering is not transmitted

back to electrons, but relaxes inside phonon subsystem.

In contrast to [19], in the present paper we have taken

into account the most relevant phonon relaxation processes:

scattering at sample boundaries, dislocations and in phonon-

phonon umklapp processes, and analyzed mutual drag of

electrons and phonons in potassium crystals with different

dislocation concentrations. To solve this problem, we used

the hydrodynamic approximation [23–25]: we considered
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relaxation and momentum exchange between electron and

three phonon fluxes corresponding to the three branches of

the phonon spectrum. Hydrodynamic approximation allows

inelasticity of electron-phonon relaxation to be correctly

taken into account when calculating electrical resistance

(see [19]). In the present paper it is shown that in

the limiting case of strong mutual drag of electrons and

phonons, electrical resistance will be much less than

that given by Bloch–Grüneisen theory, and phonon drift

velocities of all polarizations are equal and close to electron

drift velocity. In the opposite limiting case, when resistive

scattering processes dominate for phonons and the phonon

system remains in equilibrium, we have the limiting case

of Bloch–Grüneisen theory [7–9,20]. Electrical resistance is

determined by normal electron-phonon relaxation processes,

and drift velocities of all modes are different and much

smaller than electron drift velocity.

2. Electron-phonon relaxation
in elastically anisotropic metals

At temperatures much lower than Debye temperature,

the main contribution to electron relaxation in metals will

be made by long-wave phonons with wave vector q ≪ qD

(qD — Debye wave vector) [26,27]. Therefore, for phonons,
we will use the anisotropic continuum model [26,27].
In this model, phonon spectrum ωλ

q = Sλ(θ, ϕ)q and the

phase velocity Sλ(θ, ϕ) for potassium crystals are defined

in [13,18] and for polarization vectors, according to [17], we
have

eλj =
1

Aλ

{

h j

ψλj

}

, Aλ = ±

√

√

√

√

∑

j

n2
j

(ψλj )
2
, (eλn) =

1

Aλ

∑

j

n2
j

ψλj
,

ψλj =
1

3
+ z λ + (k − 1)n2

j , k = (c12 + c44)/(c11 − c44).

(1)

where c i j — second-order elastic moduli, n = q/q
= (sin θ cosϕ, sin θ sinϕ, cos θ) — unit phonon wave vec-

tor, z λ — roots of Christoffel equation, determining

the spectrum and polarization vectors (see [17] for de-

tails). The values of the second-order elastic moduli

at T = 4.2K are taken from [28]. Polarization index L
corresponds to longitudinal phonons, while t1 and t2 —
respectively,

”
fast“ and

”
slow“ quasi-transverse oscillatory

modes. Anisotropy parameters k − 1 in alkali crystals are

much larger than those for Si (see Table). Therefore,

phonon focusing and electron-phonon relaxation in potas-

sium crystals is significantly different from semiconductor

crystals (see [13–15] for more detail). Maximum value

of the longitudinal component of the slow quasi-transverse

mode t2 reaches 28%, twice that of silicon crystals, and the

average value of 〈(et2n)2〉 included in the electron-phonon

interaction constant increases four times when passing from

Si crystals to potassium (see Table). Increase in the mean

values of the longitudinal components 〈(eλn)2〉 leads to

a significant increase in contribution of quasi-transverse

modes to electron-phonon relaxation. As already noted

in [9,19], spectrum of conduction electrons with Fermi

energy in potassium crystals becomes anisotropic, and

they get an opportunity to interact with shear waves (i.e.,
with the transverse component of quasi-transverse modes).
Since all oscillatory modes in elastically anisotropic crystals

have longitudinal and transverse components, then phonon

polarization vectors eλ(q) can be decomposed into the

longitudinal eλ⇑ = n(eλn) (caused by compressive and tensile

strain) and transverse component eλ⊥ = [eλn] (due to shear

strain of the lattice) (see [29]). In paper [18] it is shown that

Fourier component of matrix element in electron-phonon

interaction may be presented as

(

Cλ
0(θ, ϕ)

)2 ∼= (Eλ
e f f )

2
~/

(

Sλ(θ, ϕ)ρ
)

,

(Eλ
e f f )

2 =
(

E2
0L(e

λn)2 + E2
0t([e

λn]2)
)

. (2)

In addition to the constant E0L = 1.41 eV characterizing the

interaction of electrons with longitudinal components, we

have introduced the constant E0t characterizing the interac-

tion of electrons with transverse components of oscillatory

modes. It was determined in [18] from comparison of

drag thermo-emf calculation results with data of [23] and

turned out to be lower than E0L; E0t = 0.11 eV by order

of magnitude. This is not surprising, since, according

to estimates of [19], deviation of Fermi surface from the

spherical one in potassium crystals is 7%. This ratio of

the constants E0L and E0t is significantly different from

semiconductor crystals, where, due to the much greater

anisotropy of the current carrier spectrum, constant E0t

is two orders of magnitude greater, and usually exceeds

value E0L [29,30]. It should be noted that in contrast to

the isotropic medium model, effective bonding constant
(

Eλ
e f f (θ, ϕ)

)2
is a function of θ and ϕ angles, whose

dependences are determined by squares of longitudinal

and transverse polarization vector components (see [18]
Fig. 2). For longitudinal phonons, deviation of function
(

EL
e f f (θ, ϕ)

)2
from isotropic distribution does not exceed

10%. However, for slow transverse mode, it changes quite

dramatically for both cross sections (see [18] Fig. 2).

3. Influence of focusing on mutual drag
of electrons and phonons
in potassium crystals

Let us calculate charge flux in metal due to the action

of a constant electric field. We proceed from a system of

kinetic equations for non-equilibrium electron f (k, r) and

phonon Nλ(q, r) distribution functions (see [2–4,13]):

e
~
E0

∂ f k

∂k
+ (vk∇r ) f k = Iei( f k) + Ieph( f k, Nλ

q), (3)

vλq∇r Nλ
q = −

(

Nλ
q − N(0)

qλ

)

ν
(1)λ
ph + I phe(N

λ
q, f k). (4)
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Elastic modules of the second order c i j (1012 dyne/cm2), density ρ (g/cm3), anisotropy parameter k − 1 for crystals HgSe : Fe and Si, K,

Li, Na

Compound c11 c12 c44 ρ k − 1 〈(eLn)2〉 〈(et1n)2〉 〈(et2n)2〉

HgSe : Fe 0.69 0.51 0.23 8.26 0.61 0.99 6.7 · 10−4 7.0 · 10−3

Si 1.677 0.65 0.804 2.33 0.67 0.99 7.5 · 10−4 7.9 · 10−3

K 0.0457 0.0374 0.0263 0.91 2.284 0.965 0.0028 0.0323

Li 0.148 0.125 0.108 0.55 4.825 0.942 0.0044 0.0536

Na 0.0615 0.0469 0.0592 1.01 45.13 0.902 0.0069 0.0908

Here vk = ∂εk/~∂k, vλq = ∂ωλ
q/∂q — group veloci-

ties of electrons and phonons with polarization λ,

N0
qλ — Planck function, total velocity of phonon relax-

ation ν
(1)λ
ph = νλphB(θ, ϕ) + νλphd + νλphU (q) includes all non-

electron resistive relaxation velocities, caused by scattering

of phonons on the boundaries of sample νλphB(θ, ϕ), dislo-

cations νλphd and in processes of phonon-phonon umklapp

νλphU (q). Integrals of electron collisions with impurities

Iei , phonons Ieph and phonons with electrons I phe are

determined in [2,14].

Ieph( f k, Nq) =
2π

~

1

V

∑

q,λ

|Cλ
q|
2

{

[

f k+q(1− f q)(N
λ
q + 1)

− f k(1− f k+q)N
λ
q

]

δ(εk+q − εk − ~ωλ
q) −

[

f k(1− f k−q)

× (Nλ
q + 1) − f k−q(1− f k)N

λ
q

]

δ
(

εk−q − εk + ~ωλ
q

)

}

,

(5)

I phe =
4π

~

1

V

∑

k

|Cλ
q|
2
[

f k+q(1− f k)(N
λ
q + 1)

− f k(1− f k+q)N
λ
q

]

δ
(

εk+q − εk − ~ωλ
q

)

, (6)

where |Cλ
q|
2 =

(

Cλ
0(θ, ϕ)

)2
q ∼= (Eλ

e f f )
2
~/

(

Sλ(θ, ϕ)ρ
)

q, and
Eλ

e f f is determined by equations (2). Spectrum of con-

duction electrons in potassium crystals is assumed to be

isotropic, and anisotropic continuum model [13–15,20] is

used for phonons.

A scheme describing momentum relaxation of quasiparti-

cles in non-equilibrium electron-phonon system is given in

Fig. 1. Non-equilibrium momentum of electrons received

from electric field relaxes on impurities and defects, and

in normal electron-phonon scattering processes part of this

momentum is transferred to phonons and provides drift

motion of phonons. If all the momentum transferred to

phonons is completely relaxed in resistive phonon scattering

processes: in scattering on sample boundaries, defects,

dislocations and in phonon-phonon umklapp processes, then

the phonon system remains in equilibrium, as assumed in

the Bloch-Grüneisen [5–8] theory. In this case, normal

electron-phonon scattering processes ensure relaxation of

the electronic system to a drift locally equilibrium state

E ue i
vei

vPhU

vPhD

vPhB
l

Ph PhU-

Dislocations

Boundaries

uph
l

L t1 t2 L t1 t2

Figure 1. Scheme illustrating momentum relaxation gained by

electrons from electric field in non-equilibrium electron-phonon

system

.

and, consequently, together with impurities and defects at

≫ 2D condition provide a linear temperature dependence

of metal electrical resistance. Since in perfect potassium

crystals at sufficiently low temperatures phonon-phonon

umklapp processes are frozen out, only a small part of

non-equilibrium momentum obtained by phonons relaxes

on impurities, defects and dislocations, while most of it

returns back to the electron subsystem. In contrast to Bloch-

Grüneisen theory, we have taken into account influence

of elastic energy anisotropy on relaxation of phonons and

analyzed contributions of all oscillatory modes to electrical

resistance of potassium crystals. As shown in [13–15,20],
the main role in this relaxation is played by slow quasi-

transverse phonons. Let us restrict ourselves to linear

approximation by external perturbations and represent the

electron and phonon distribution functions as [1–4]:

f k = f 0(εk) + δ f k, Nλ
q = N0

qλ + gλ(q), (7)

where f 0(εk) and N0
qλ — equilibrium distribution functions

for electrons and phonons, and δ f k and gλ(q) — non-

equilibrium additives to them. Let us linearize collision

integrals (3), (4) by these additives. Let us consider the

momentum balance in a system of electrons interacting

with impurities and phonons under isothermal conditions.

The electric field is assumed to be sufficiently weak that

we can restrict ourselves to a linear approximation. We
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assume that a drift-local equilibrium state is realized for

electron and phonon subsystems, which can be described in

a hydrodynamic approximation [23–25]:

f (k, u) =

(

exp
(εk − ζ − ~kue

kBT

)

+ 1

)−1

= f 0(εk) + δ f k, δ f k = (~kue)
(∂ f 0

∂εk

)

. (8)

N(q, uλ) = N0
qλ + gλ(q), gλ(q) =

{

~quλ
kBT0

}

N0
qλ(N

0
qλ + 1).

(9)
Here f 0(εk) and N0

qλ — Fermi and Planck functions, ue

and uλ — drift velocities of electrons and phonons, which

are determined from the bound system of quasiparticle mo-

mentum balance equations in the non-equilibrium electron-

phonon system. So, in the hydrodynamic description of the

electron transfer in elastically anisotropic metals, the elec-

tron flux interacts with three phonon ones, corresponding

to the three branches of the phonon spectrum. To obtain

balance equations, we multiply equations (5) and (6) by ~k

and ~q and summarize, respectively, over the electron and

phonon momenta

1

V

∑

k,σ

~k
{

Ieph(δ f k, N0
qλ) + Ieph

(

f 0(εk), gλ(q)
)

}

= mFne

∑

λ

{

uαe ν
λ
eph(δ f )(kF) − uαλν

λ(B)
eph(g)(kF)

}

. (10)

1

V

∑

q

~qα
{

I phe(δ f k, N0
qλ) + Iλphe

(

f 0(εk), gλ(q)
)

}

= mFne

{

uαe ν
λ
phe(δ f )(kF) − uαλν

λ(B)
phe(g)(kF)

}

. (11)

The first terms in equations (10) and (11) account for

momentum transfer from non-equilibrium electrons to

phonons, and the second terms — from non-equilibrium

phonons to electrons. Note that relaxation rates in electron-

phonon and phonon-electron scattering processes are equal:

νλeph(δ f )(kF) = νλphe(δF)(kF), ν
λ(B)
eph(g) = ν

λ(B)
phe(g). They can be

represented as

νλeph(δ f )(kF) = νλphe(δ f )(kF) =
mF

24π4~3ne

∫

d�|Cλ
0|
2(qTλ)

5

×

∫

dZλ
q(Z

λ
q)

4N0
qλ

∫

dyk

[

(

f 0(yk)
)(

1− f 0(yk + Zλ
q)

)

]

=
mF

24π4~3ne

1

ρ

(

kBT
~

)5

8λ
� · Jeph(δ f )(Z

λ
D),

8λ
� =

〈

(Eλ
e f f )

2

[Sλ(θ, ϕ)]5

〉

=

π
∫

0

sin(θ)dθ

2π
∫

0

dϕ
(Eλ

e f f )
2

[Sλ(θ, ϕ)]
,

(12)

qλT = (kB T )/
(

~Sλ(θ, ϕ)
)

,

Jλeph(δ f ) = J phe(δ f )(Z
λ
D) =

ZλD
∫

0

dZλ
q(Z

λ
q)

4N0
qλ

×

∫

dyk

[

(

f 0(yk)
)(

1− f 0(yk + Zλ
q)

)

]

ν
λ(B)
eph(g) = ν

λ(B)
phe(g) =

mF

24neπ4~3

∫

d�q(q
λ
T )5|Cλ

0|

×

ZλqD
∫

0

dZλ
qZλ4

q

{

N0
qλ(N

0
qλ + 1)

∫

dyk

[

f 0(yk)− f 0
(

yk + Zλ
q

)

]

}

=
mF

24neπ4~3

1

ρ

(

kBT
~

)5

8λ
� · J phe(g)(Z

λ
D),

J phe(g)(Z
λ
D) =

ZλqD
∫

0

dZλ
qZλ4

q

×

{

N0
qλ(N

0
qλ + 1)

∫

dyk

[

f 0yk − f 0(yk + Zλ
q)

]

}

(13)

Hydrodynamic approximation allows us to introduce distri-

bution functions of the most effective phonons in electron-

phonon and phonon-electron scattering processes:

8eph(δ f )(Z
λ
q)=(Zλ

q)
4N0

qλ

∫

dyk

[

(

f 0(yk)
(

1− f 0(yk+Zλ
q)

)

)

]

,

8phe(g)(Z
λ
q) = (Zλ

q)
4N0

qλ(N
0
qλ + 1)

×

∫

dyk

[

f 0(yk) − f 0

(

yk + Zλ
q

)

]

. (14)

It is not difficult to see from equation (14) that the functions
of the most effective scattering processes for electron-

phonon 8eph(δ f )(Zλ
q) and phonon-electron 8phe(g)(Zλ

q) pro-

cesses coincide. Therefore, momentum relaxation rates

in the electron-phonon and phonon-electron scattering pro-

cesses are equal: νλeph(δ f )(kF) = ν
λ(B)
phe(g). In this case integral

parts of balance equations (10) and (11) will be equal and

proportional to the difference of drift velocities of electrons

and phonons:

mFnt

∑

λ

νλeph(δ f )(kF)
{

uαe − uαλ

}

. (15)

Therefore, if electron and phonon drift velocities coincide,

electron-phonon interaction makes no contribution to elec-

tron and phonon momentum relaxation.

Let us consider the role of inelasticity of electron-phonon

relaxation in metals. In monographs [24,25] they believed

that inelasticity of electron-phonon scattering in metals may

be neglected, since Fermi energy is much higher than

phonon energy ~ωλ
q and kBT . In Ziman monographs [14,16]
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Figure 2. Distribution functions of most effective phonons

from parameter Zλ
q : curve 1 — 8eph(el)(Z

λ
q) = (Zλ

q)
4Nλ

q for elastic

scattering of electrons, curve 2 — 84(Zλ
q) = (Zλ

q)
4Nλ

q(N
λ
q + 1) (for

heat capacity), curve 3 — 8eph(δ f )(Z
λ
q) for inelastic scattering

of electrons, dotted curve 4 — 85(Zλ
q) = (Zλ

q)
5Nλ

q(N
λ
q + 1) de-

termines distribution of phonons when solving the problem by

variation method [8-12], curve 5 — for 86(Zλ
q) = (Zλ

q)
6Nλ

q(N
λ
q + 1)

phonon-phonon umklapp processes.

it was argued that since incident and scattered phonon

energies lie within thermal blur of Fermi energy, they

differ by order of magnitude kBT , which is much smaller

than εF , so their difference can be neglected. Naturally,

Fermi energies εF in metals at helium temperatures are

4−5 orders of magnitude greater than thermally excited

phonon energy ~ωλ
q and kBT , but these considerations have

nothing to do with the criterion of considering or neglecting

inelasticity of electron-phonon scattering. The fact is that the

integrals of electron-phonon collisions include Fermi func-

tions f 0(εk ± ~ωλ
q). Inelasticity parameter Zλ

q = ~ωλ
q/kBT

should not be compared with the ratio εF/(kBT ) but with

the value y k = (εk − εF)/(kBT ). For electrons at Fermi

level y k = 0, and within the Fermi level thermal blur is

|kk | ≤ 1. Electron momentum relaxation is provided by

all thermally activated phonons, and their distribution is

determined by distribution functions that are most efficient

for electron-phonon relaxation 8eph(δ f )(Zλ
q) = 8phe(g)(Zλ

q)
(see (14)). As seen in Fig. 2, this function (curve 1) reaches
maximum at Zλ

q = 5 and decreases rapidly at Zλ
q > 12

due to Planck distribution function. It should be noted

that it practically coincides with dashed curve 4, which

determines equation for the distribution function of the

most effective phonons 85(Zλ
q) when solving the problem

by the variation method (see [5–10], and also Fig. 2,

curves 3, 4). Neglecting inelasticity of electron-phonon scat-

tering Zλ
q → 0, we obtain 8eph(el)(Zλ

q) = (Zλ
q)

4Nλ
q (see Fig. 2,

curve 2). Calculation of the integrals over Zλ
q at low temper-

atures gives Jλeph(δ f ) = 124.4, and in elastic approximation

Jλeph(el) = 24.9. Thus, taking into account inelasticity of

electron-phonon scattering leads to 5 fold increase in electri-

cal resistance compared to elastic approximation. It should

be noted that for heat capacity, the distribution function

of thermally activated phonons, according to [14–16], is

determined by equation 8tepl(Zλ
q) = (Zλ

q)
4Nλ

q(N
λ
q + 1). It

reaches maximum at Zλ
q = 4 and is nonzero in the interval

1 < Zλ
q < 9 (see Fig. 2, curve 2). So, at low temperatures,

phonons that are most relevant to electrical resistance

are distributed in interval 1 < Zλ
q < 12 with maximum at

Zλ
q ≈ 5. For them, inequality Zλ

q ≪ 1 is not complied

with. Moreover, for relevant phonons in Fermi level thermal

blur region |y k | ≤ 1, the opposite inequality is complied

with: y k = (εk − εF)/(kB T ) ≪ Zλ
q . Therefore, the main

contribution to electric resistance at low temperatures is

made not by
”
vertical“ transitions ~ωλ

q ≈ kBT or
”
horizon-

tal“ ~ωλ
q ≫ kBT transitions by Ziman terminology [14,16],

but
”
oblique“ transitions, for which kBT ≤ ~ωλ

q ≤ 12kBT
(see Fig. 3). So, hydrodynamic approximation allows

inelasticity of electron-phonon scattering in metal to be

correctly taken into account.

For electron scattering on impurities, we have:

1

V

∑

k,σ

~kIei( f k) = −
1

V

∑

k,σ

~k(~ku)νei(k)

(

∂ f 0

∂εk

)

= −uαmF ne · νei(kF). (16)

From equations (7) and (8) for full momentum balance

equations under isothermal conditions ∇αT (r) = 0 we ob-

tain a system of four algebraic equations for drift velocities:

eEαne = mF ne

[

νei(kF)uαe +
∑

λ

νλeph(δ f )(kF)
{

uαe − uαλ
}

]

− uαλRλ + mFne
(

uαe − uαλ
)

νλphe(δ f )()kF = 0. (17)

From (17) we express phonon drift velocity through drift

velocity of electrons:

uαλ = uαe
mFnαe ν

λ(2)
phe(δ f )(kF)

{

Rλ + mF neν
λ(B)
phe(g)(kF)

}

= uαe
1

{

1 + Rλ/mFneν
λ(B)
phe(g)(kF)

}

. (18)

As it should be: direction of electron flux coincides with

direction of phonon flux and is opposite to direction of

electric current. It is obvious that in performance of

inequality ⌊Rλ/
(

mFneν
λ(B)
phe(g)

)

⌋ ≪ 1 drift velocity of mode

λ will be close to electron drift velocity uαλ
∼= uαe . Value Rλ

includes all non-electron mechanisms of phonon momentum

relaxation: scattering on boundaries, dislocations and in

Physics of the Solid State, 2022, Vol. 64, No. 8



906 I.G. Kuleyev, I.I. Kuleyev

phonon-phonon umklapp processes:

Rλ =
(kBT )4

3(2π~)3
J5(Z

λ
q)

〈

νλphB(θ, ϕ)
(

Sλ(θ, ϕ)
)5

〉

+
ν∗phd(kBT )5

~3(2π~)3
J5(Z

λ
q)

〈

1
(

Sλ(θ, ϕ)
)5

〉

+
(kB T )7

~33(2π)3
Aλ

U · exp

(

−
Cλ

U

T

)

· Jλ6(Z
λ
D)

〈

1
(

Sλ(θ, ϕ)
)5

〉

.

(19)
Phonon relaxation rates νλphB(θ, ϕ) in diffuse scattering at

boundaries of circular, square and rectangular samples are

defined in [17], value νλphd — in [24]. For umklapp pro-

cesses, coefficient Cλ
U is determined by Debye temperature

for each mode: Cλ
U
∼= T λ

D/δλ , where adjustable parameter

δλ ≈ 2−3, we use the method [17,31] to estimate coefficient

Aλ
U .

4. Phonon focusing and electrical
resistance of potassium crystals

From the system of equations (17), we find drift velocities

of electrons and phonons:

uαe =
eEαmF

ν̃eR(kF)
,

ν̃eR(kF) =

{

νei(kF) +
∑

λ

ν
(λ)
eph(δ f )(kF)

[

1−
1

1 + Kλ
U

]}

,

(20)

uαλ =
eEαmF

ν̃eR(kF)

mFnαe ν
λ(2)
phe(δ f )(kF)

{

Rλ + mF neν
λ(B)
phe(g)(k f )

}

=
eEαmF

ν̃eR(kF)

1
{

1 + Kλ
U

} ,

Kλ
U =

[

Rλ/(mFneν
λ(B)
phe(g)).

]

(21)

Let us calculate conduction current and determine electrical

resistance of potassium crystals:

J = −|e|uαne = −
e2ne

ν̃eR(kF) · mF
Eα,

ρxx =
ν̃eR(kF) · mF

e2ne

=

(

mF

e2ne

)[

∑

λ

ν
(λ)
eph(δ f )(kF)Kλ

U )

1 + Kλ
U

]

. (22)

As can be seen from (22), the entire effect of the partial

transfer of non-equilibrium momentum from phonons to

electrons is determined by factor Kλ
U and is reduced

to renormalizing the effective electron relaxation rate on

phonons due to resistive phonon relaxation mechanisms.

Scattering on impurities ensures electric resistance output

to a constant value. We will not consider this effect but will

analyze the effect of phonon relaxation in resistive processes

on the momentum exchange within the electron-phonon

system and electrical resistance of potassium crystals.

Obviously, in the case of weak phonon scattering in non-

electron relaxation mechanisms Kλ
U ≪ 1 electrical resistance

of potassium crystals will be much smaller than the Bloch–
Grüneisen theory gives:

ρxx
∼=

(

mF

e2ne

)[

∑

λ

ν
(λ)
eph(δ f )(kF)Kλ

U

]

≪ ρBG
xx

=

(

mF

e2ne

)[

∑

λ

ν
(λ)
eph(δ f )(kF)

]

. (23)

Within this limit, normal electron-phonon relaxation pro-

cesses dominate for both electrons and phonons. In this case

most of the momentum of the non-equilibrium electrons,

transferred to phonons, returns back to the electron system.

As a result we obtain a rather curious result: under

conditions of strong mutual drag of electrons and phonons,

electrical resistance no longer depends on electron-phonon

relaxation, but will be completely determined by resistive

mechanisms of phonon relaxation: scattering on boundaries,

dislocations and in phonon-phonon umklapp processes:

ρxx
∼=

(

mF

e2ne

)

∑

λ

ν
(λ)
eph(δ f )(kF)

[

Rλ/(mFneν
λ(B)
phe(g))

]

=

(

1

e2

)[

∑

λ

Rλ

]

. (24)

To this end, phonon drift velocities of all polarizations are

equal and coincide with the electron drift velocity. They

are determined by the phonon momentum relaxation rate in

resistive scattering processes:

uαe ≈ uαλ ≈
eEαmF

ν̃eR(kF)
≈ eEαmF/

∑

λ

Rλ. (25)

In the opposite limiting case Kλ
U ≫ 1 most of the drift

momentum from electrons is relaxed in resistive scatter-

ing processes inside the phonon system. This case is

realized at increasing temperature, when phonon-phonon

umklapp processes dominate. The phonon system remains

in equilibrium, and we move to the Bloch-Grüneisen

approximation [5–8]:

ρxx
∼=

(

mF

e2ne

)[

∑

λ

ν
(λ)
eph(δ f )(kF)

(

1− (Kλ
U )−1

)

]

≈

(

mF

e2ne

)[

∑

λ

ν
(λ)
eph(δ f )(kF)

]

= ρBG
xx . (26)

In this case drift velocities of all modes are different and

much smaller than the electron drift velocity:

uαe =
eEαmF

ν̃eR(kF)
∼=

eEαmF
∑

λ

ν
(λ)
eph(δ f )(kF)

,
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uαλ =
eEαmF

ν̃eR(kF)

1

{1 + Kλ
U}

≈
eEαmF

Kλ
U

∑

λ

ν
(λ)
eph(δ f )(kF)

,

uαe /Kλ
U ≪ uαe . (28)

Let us analyze temperature dependences of the renormal-

ization coefficient of the effective electron relaxation rate on

phonons Kλ
U . As can be seen from Fig. 3, phonon scattering

at sample boundaries cannot ensure equilibrium of the

phonon system: only a small part of the non-equilibrium

momentum obtained by phonons relaxes at the boundaries,

while most of it returns back to the electron subsystem.

For potassium crystals without dislocations the limiting case

Kλ
U ≪ 1 is realized for slow t2-mode in temperature range

1K < T < 5K, for L-phonons in range 1K < T < 15K

(see Fig. 3, curves 2, 2a). Since at low temperatures the

slow t2-mode dominates electrical resistance, for potassium

crystals the limiting case of strong mutual drag can be

realized only in the interval 1K < T < 5K. As can be

seen from Fig. 3, slow t2-phonons scatter much stronger

on dislocations than L-phonons. For potassium crystals

with minimum dislocation concentration of Nd = 0.03 at

T < 15K the KL
U factor is much less than unity (see Fig. 3,

curves 3). Therefore, for L-phonons the case of strong mu-

tual drag can be realized. In the model that we adopted, we

calculated temperature dependences of electrical resistance

of potassium crystals with different dislocation concentra-

tions and compared the calculation results with experimental

data (see Fig. 4, curves 1, 2, 3). Concentration values

were taken from papers [16,20], where thermal-emf but not

electrical resistance was measured. As can be seen from the

figure, for potassium crystals with maximum concentration

of dislocations Nd = 0.55 temperature dependences of the

electrical resistance are close to those calculated in Bloch–
Grüneisen approximation. Resistive processes of phonon

scattering dominate for it: at low temperatures due to dislo-

cations, and at high — due to umklapp processes (see Fig. 3,
curves 4, 4a). For t2-mode, coefficient is Kt2

U ≫ 1. Virtually

the entire momentum coming from the electrons to t2-mode

is relaxed on dislocations at low temperatures, and at

high — in umklapp processes. For such crystals the

ratio of contributions to electric resistance is: ρt2
e−ph : ρL

e−ph;

ρt1
e−ph = 0.94 : 0.035 : 0.025. Resistive processes of phonon

scattering dominate for them: at low temperatures due

to dislocations, and at high — due to umklapp processes

(see Fig. 3, curves 4a). For this mode the coefficient is

Kt2
U ≫ 1. Therefore t2-mode is in equilibrium, and Bloch–

Grüneisen regime is realized for it. For potassium crystals

with minimum concentration of dislocations Nd = 0.03

(with deformation ε = 0.027) contribution of slow t2-mode

to electrical resistance increases to 95%, and ratio of

contributions is: ρt2
e−ph : ρL

e−ph; ρ
t1
e−ph = 0.95 : 0.01 : 0.04.

At the same time the contribution of shear component of

t2-mode increases from 32% in Bloch–Grüneisen model

to 56%. For such crystals KL
u ≈ 0.5, and relaxation rate

of L-phonons in non-electron scattering mechanisms is

comparable to relaxation rate on electrons. Therefore, the

effect of mutual drag is mild. It provides minor effect at full

electrical resistance (see Fig. 4, curves 1, 2).

However, as the temperature increases, the contribution

of L-phonons to electrical resistance increases rapidly and

at T > 30K becomes greater than the contribution of the
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Figure 3. Temperature dependence of coefficient

Kλ
U =

[

Rλ/(mF neν
λ(B)
phe−g)

]

in potassium crystals for longitudinal

(curves 1, 2, 3, 4) and slow t2-phonons (curves 1a, 2a, 3a, 4a).
Curves 1, 1a — for boundary scattering, curves 2, 2a — for

boundary scattering and umklapp processes, curves 3, 3a — for

scattering on boundaries, dislocations with minimum concentration

Nd = 0.03 and in umklapp processes, curves 4, 4a — for scattering

on boundaries, dislocations with maximum concentration

Nd = 0.55 and in umklapp processes.
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Figure 4. Temperature dependences of electrical resis-

tance of potassium crystals: curves 1, 1a, 1b, 1c — results

for Bloch–Grüneisen theory; curves 2, 2a, 2b, 2c — for crys-

tals with maximum concentration of dislocations Nd = 0.55;

curves 3, 3a, 3b, 3c — for crystals with minimum concentration

of dislocations Nd = 0.03; curves 1a, 2a, 3a — contributions of

L-phonons, curves 1b, 2b, 3b — contributions of slow transverse

phonons, curves 1c, 2c, 3c — contributions of fast quasitransverse

phonons. Symbols — experimental data from papers [21,22,34,35].
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slow t2-mode. Moreover, the coefficient becomes much

greater than unity at T > 40K (see Figs. 3 and 5). It should
be noted that with increasing temperature, phonon-phonon

umklapp processes begin to play a major role, and at

T > 40K the results of calculations of electrical resistance

of potassium crystals with different dislocation concentration

agree well with both Bloch–Grüneisen theory and results of

measurements for pure samples [21,22,32,33]. In the Bloch–
Grüneisen model it was shown that at low temperatures

T < 10K the contribution of the slow t2-mode to electrical

resistance was an order of magnitude greater than that of

the longitudinal phonons, ratio of contributions being as

follows: ρt2
e−ph : ρL

e−ph; ρ
t1
e−ph = 0.9 : 0.08 : 0.02 (see [20]).

The dominant role of the slow transverse mode in electrical

resistance of potassium crystals at low temperatures is due

to the fact that it has the minimum phase velocity and

therefore the maximum wave vector at a fixed phonon

energy (see [20], Fig. 1) and as such it makes the maximum

contribution to electrical resistance. As can be seen from

equation (12), ratio of the coefficients 8λ
�(T ) for the slow

t2-mode and L-phonons looks like:

8t2
�/8

L
� =

〈

(

E t2
e f f (θ, ϕ)

)2
〉

/{

St2(θ, ϕ)
}6/

〈

(

EL
e f f (θ, ϕ)

)2/{

SL(θ, ϕ)
}6

〉

. (29)

Square of the effective bonding constant of longitudinal

phonons to electrons (EL
e f f )

2 is 25 times larger than for the

slow transverse mode. However, in directions such as [110],
the phase velocity of the t2-mode is 4 fold less than that

for the longitudinal phonons, and the ratio of the averaged

values gives 〈SL〉/〈St2〉 = 2.54. The sixth degree of this ratio

gives a value that is greater by two orders of magnitude.

As a result of calculating angular averages in equation (29)
we get: 8t2

�/8
L
�
∼= 11.5. For thermally excited phonons with

the same energy, the wave vector of the t2-mode is 2.5 times

larger than for longitudinal phonons, so their contribution

to electron momentum relaxation is an order of magnitude

greater than that of longitudinal phonons. It is necessary

to note a significant role of electron relaxation on shear

component of the t2-mode, which provides 32% of electrical

resistance of potassium crystals and is 4 fold greater

than contribution of longitudinal phonons. However, as

temperature increases, contribution of longitudinal phonons

increases much faster than that of the slow t2-mode,

and at temperatures above 30K it already dominates

(see Fig. 5). With further increase in temperature at T ≥ T L
D ,

contribution of longitudinal phonons dominates, and at room

temperature it reaches 82%, whereas the contribution of the

slow t2-mode decreases to 15%, and contribution of the fast

transverse mode is only 3% (see Fig. 5).
Comparison of the calculation results with experimental

data [21,22,32,33] shows that at temperatures above 40K

they agree well (see Fig. 4). This can be explained by

the fact that the entire momentum obtained by phonons in

normal electron-phonon scattering processes relaxes within

the phonon system mainly due to phonon-phonon umklapp
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Figure 5. Temperature dependences of relative contributions to

electrical resistance of potassium crystals ρλe−ph(T )/ρe−ph(T ) for

slow quasitransverse phonons — curves 2, 2a, 2b, for L-phonons —
1, 1a, 1b, for shear component of t2-mode — curves 3, 3a, 3b; for

crystals with minimum concentration of dislocations Nd = 0.03 —
curves 1, 2, 3, for crystals with maximum concentration of dislo-

cations Nd = 0.55 — curves 1b, 2b, 3b, calculation according to

Bloch–Grüneisen theory — curves 1a, 2a, 3a.

processes. These processes are activated at temperatures of

the order of θλD/γ , where γ ∼ (2−3). This result indicates

that accounting of elastic energy anisotropy per phonon

system, and also contribution of shear waves to electron-

phonon relaxation make it possible to approve results of

electric resistance calculation results with data [21,22,32,33]
without using adjustable parameters. However, as the

temperature drops below 40K, discrepancy between ex-

perimental data [21,22,32,33] and the calculation results

for potassium samples with different dislocation concen-

tration increases and reaches a maximum at T ∼ 7−8K.

This is due to the fact that the phonon-phonon umklapp

processes are frozen out, but the role of electron-phonon

umklapp processes, which are not considered in the present

paper, increases. The activation temperature of these

processes is 10−20K, and they play a maximum role in

the 5−10K [34,35] interval. According to the thermo-

emf data [18] as well as the analysis [35,36] the electron-

phonon scattering processes are frozen out at temperatures

T < 4−5K, and at T < 2K the normal electron-phonon

scattering processes already dominate. So, at temperatures

below 30K, taking into account the mutual drag of electrons

and phonons only leads to an increase in discrepancy

between the calculation results and the experimental data.

For their agreement it is necessary to take into account the

electron-phonon umklapp processes. Obviously, analysis of

the role of electron-phonon umklapp processes taking into

account the anisotropy of the phonon spectrum presents an

independent problem that requires a separate consideration.
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5. Conclusion

Influence of phonons focusing on mutual drag of elec-

trons and phonons in potassium crystals was studied. Its

main results can be formulated as follows.

1. In the limiting case of strong mutual drag of electrons

and phonons, when normal electron-phonon relaxation pro-

cesses dominate, both for electrons and phonons the electri-

cal resistance will be much lower than Bloch–Grüneisen
theory gives. It is determined by resistive mechanisms

of phonon scattering: on boundaries, dislocations and in

phonon-phonon umklapp processes. To this end (1) phonon
drift velocities of all polarizations are equal and close to

electron drift velocity; (2) they are determined by total

phonon relaxation rate in resistive scattering processes.

2. In the opposite limiting case, when resistive scattering

processes dominate for phonons and the phonon system

remains in equilibrium. We have the limiting case of Bloch–
Grüneisen theory [5–9]: electrical resistance is determined

by normal electron-phonon relaxation processes. In this case

phonon drift velocities for all modes are different and much

smaller than the electron drift velocity:

3. The role of inelasticity of electron-phonon relaxation

under conditions of mutual drag of electrons and phonons is

investigated. The distribution functions of the most relevant

mechanisms for phonon momentum relaxation are deter-

mined: in the electron-phonon relaxation processes, as well

as for phonon scattering on the boundaries, dislocations, and

in the phonon-phonon umklapp processes. It was shown

that relaxation rates in electron-phonon and phonon-electron

scattering processes coincide.

4. Role of shear waves in the electrical resistance of

potassium crystals is analyzed. It is shown that relax-

ation of electrons on the shear component of the slow

t2-mode in Bloch–Grüneisen approximation at temperatures

of T ≪ 2D provides 32% of the total electrical resistance,

which is 4 fold the contribution of L-phonons. In the mode

of strong mutual drag of electrons and phonons for potas-

sium crystals with a minimum dislocation concentration of

Nd = 0.03 the shear component of the t2-mode contributes

up to 56% to the electrical resistance.

It is obvious that the theory of electron transfer in

metals needs a substantial revision related to the effect of

elastic energy anisotropy on the dynamic characteristics of

phonons.
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