03

О решении проблемы рассеяния света сфероидами для ТМ- и ТЕ-мод при использовании сфероидального базиса

© В.Г. Фарафонов¹, В.Б. Ильин^{1,2,3}, Д.Г. Туричина^{2,3}

¹ Санкт-Петербургский государственный университет аэрокосмического приборостроения,

190000 Санкт-Петербург, Россия

² Санкт-Петербургский государственный университет,

199034 Санкт-Петербург, Россия

³ Главная (Пулковская) астрономическая обсерватория РАН,

196140 Санкт-Петербург, Россия

e-mail: far@aanet.ru

Поступила в редакцию 21.12.2022 г. В окончательной редакции 21.12.2022 г. Принята к публикации 30.12.2022 г.

Рассеяние света сфероидами играет важную роль в различных приложениях. Наиболее эффективный алгоритм расчета оптических свойств сфероидов использует разложения полей по специальному сфероидальному базису, и его применение ограничено из-за трех проблем — трудностей вычисления сфероидальных функций комплексного аргумента, отсутствия перехода к стандартной *T*-матрице и потери точности из-за сложности расчетов при одном случае поляризации падающего излучения (ТЕ-моде). Первые две трудности были недавно в значительной степени преодолены, и в данной работе мы решаем последнюю проблему — используя преобразования *T*-матриц, находим как решение для ТЕ-моды может быть выражено через более простое и устойчивое решение для другой (ТМ) моды. Проведенные нами численные расчеты показывают, что предлагаемый подход улучшает точность результатов на несколько порядков, ускоряет решение в несколько раз и существенно расширяет область его применимости (до дифракционных параметров более 100).

Ключевые слова: рассеяние света, Т-матрица, сфероидальные рассеиватели.

DOI: 10.21883/OS.2023.01.54535.2894-22

1. Введение

Представление несферических рассеивателей сфероидами является подходом, применяемым в разных областях науки, например, в нанооптике [1], медицине [2], лабораторном анализе [3], микроволновых экспериментах [4] и т.д. Подход часто использовался в оптике атмосферы [5–8] и находит широкое применение в современной астрофизике из-за недостаточной пока информации о форме и структуре космических пылинок [9–13].

Популярность сфероидальной модели рассеивателей объясняется двумя аспектами. Во-первых, важнейшие оптические эффекты несферической формы реальных частиц связаны не с мелкомасштабной неровностью поверхности, а в первую очередь с отношением наибольшего размера рассеивателей к наименьшему и соответственно хорошо воспроизводятся сфероидами [1,14,15]. Во-вторых, такая модель, с одной стороны, является достаточно простой, а с другой — весьма гибкой, включающей как сильно вытянутые (иглоподобные), так и сильно сплюснутые (дискообразные) частицы.

Оптические свойства сфероидов, необходимые для применения модели, могут быть рассчитаны разными способами. Известны универсальные методы, использующие различные формулировки проблемы рассеяния света (FDTD, DDA, FEM ит.п. — см., например, обзоры [16,17]). Такие методы обычно ориентированы на рассмотрение частиц сложной формы и структуры, и поэтому для однородных (слоистых) сфероидов в большинстве случаев практически неэффективны, а часто требуют и нереалистично больших ресурсов [18].

Используемое в теории Ми разложение полей по сферическим функциям легко распространяется на осесимметричные частицы и, в частности, сфероиды [19]. Такой подход, названный методом Т-матриц по стандартному обозначению матрицы, связывающей коэффициенты разложения полей падающего и рассеянного излучения по сферическому базису, оказался востребованным [20,21]. Однако несоответствие между применяемыми при этом сферическими координатами и сфероидальной геометрией рассеивателя, как известно, приводит к тому, что подход быстро теряет точность с ростом как асферичности частицы, так и ее дифракционного параметра (при форме, заметно отличающейся от сферической). Это происходит несмотря на специальные модификации, предназначенные для преодоления данного недостатка [22,23].

Естественным подходом при решении проблемы рассеяния света сфероидом является использование сфероидальных координат, связанных с поверхностью частицы, и разложение полей по соответствующим сфероидальным функциям. При этом обычно используется метод разделения переменных (separation of variables method, SVM) [24,25], в рамках которого разложения полей подставляются в граничные условия и после умножения на базисные (угловые) функции и интегрирования получается система линейных алгебраических уравнений относительно коэффициентов разложения неизвестного поля рассеянного излучения. Для слоистых сфероидов оказывается удобнее применять метод расширенных граничных условий (extended boundary condition method, ЕВСМ), в котором разложения полей подставляются в поверхностные интегральные уравнения, эквивалентные дифференциальной формулировке задачи, используемой в SVM [26]. Отметим, что применение нестандартных (неортогональных) базисных функции из [27] в SVM и ЕВСМ, сформулированных в сфероидальных координатах, позволяет создать эффективные и уникально точные алгоритмы, рассчитывающие оптические свойства сфероидов в области значений параметров, существенно более широкой, чем остальные методы [28].

Обстоятельствами, затрудняющими использование разложений полей по нестандартному сфероидальному базису, являются: а) трудности вычисления сфероидальных функций комплексного аргумента; б) отсутствие перехода к стандартной (сферической) *T*-матрице, широко используемой в приложениях; в) относительная сложность и трудоемкость алгоритма. Заметим, что затруднения с вычислением сфероидальных функций существенно уменьшились после появления алгоритмов с расширенной точностью вычислений и, в частности, недавних работ van Buren [29,30], а путь разрешения второго затруднения был недавно намечен нами в [31].

В данной работе предлагается новый подход к уменьшению вычислительной сложности (а также улучшению точности и ускорению) методов, использующих разложения полей по нестандартному сфероидальному базису из [27]. Будет показано, как более трудоемкое решение проблемы в случае ТЕ-моды¹ может быть связано с более простым и устойчивым решением для ТМ-моды. Приводя необходимые базовые соотношения, мы находим из них связь *T*-матриц для этих мод при разных базисах, что лежит в основе нашего подхода. Мы также приводим данные численных расчетов, подтверждающих найденные соотношения и иллюстрирующих свойства предлагаемого подхода, и обсуждаем полученные результаты.

2. Основные соотношения

Рассмотрим решение проблемы рассеяния света сфероидом при использовании различных базисных функций, определим соответствующие им *T*-матрицы и свяжем решения проблемы (нахождение *T*-матрицы) в случаях ТЕ- и ТМ-мод при применении нестандартного базиса из [27].

2.1. Проблема рассеяния света и ее решение

Как принято в методах решения данной проблемы, использующих разложения полей, будем рассматривать гармонические поля $\mathbf{E}(\mathbf{r}, \omega)$, $\mathbf{H}(\mathbf{r}, \omega)$, т.е. поля, зависящие от радиуса-вектора **r** и частоты ω и удовлетворяющие векторному уравнению Гельмгольца (k – волновое число в среде):

$$\Delta \mathbf{E} + k^2 \, \mathbf{E} = \mathbf{0},\tag{1}$$

а также граничным условиям на поверхности рассеивателя [32].

При разложении полей могут быть выбраны разные базисные функции. В общем случае, например, для электрического поля на любой частоте можно написать

$$\mathbf{E}(\mathbf{r}) = \sum_{\nu} \left(a_{\nu} \mathbf{A}_{\nu}^{\mathbf{s}_{1}}(\mathbf{r}) + b_{\nu} \mathbf{B}_{\nu}^{\mathbf{s}_{2}}(\mathbf{r}) \right).$$
(2)

Здесь a_{ν}, b_{ν} — искомые или известные коэффициенты разложения, $\mathbf{A}_{\nu}^{\mathbf{s}_1}(\mathbf{r}), \mathbf{B}_{\nu}^{\mathbf{s}_2}(\mathbf{r})$ — соответственно следующие решения векторного уравнения Гельмгольца (1):

$$\mathbf{M}_{\nu}^{\mathbf{s}}(\mathbf{r}) = \nabla \times (\mathbf{s} \psi_{\nu}(\mathbf{r})) ,$$
$$\mathbf{N}_{\nu}^{\mathbf{s}}(\mathbf{r}) = \frac{1}{k} \nabla \times \nabla \times (\mathbf{s} \psi_{\nu}(\mathbf{r})) = \frac{1}{k} \nabla \times \mathbf{M}_{\nu}^{\mathbf{s}}(\mathbf{r}), \quad (3)$$

где s есть либо радиус-вектор r, либо постоянный вектор (например, координатный орт \mathbf{i}_z), а $\psi_v(\mathbf{r})$ – решение соответствующего скалярного уравнения Гельмгольца. При использовании сфероидальных координат (ξ, η, φ) , стандартным образом связанных со сферическими (r, θ, φ) ,

$$\psi_{\nu}(\mathbf{r}) = R_{mn}^{(i)}(c,\xi) S_{mn}(c,\eta) F_m(\varphi), \qquad (4)$$

где $S_{mn}(c, \eta)$ и $R_{mn}^{(i)}(c, \xi)$ – сфероидальные угловые и радиальные функции *i*-го рода $(i = 1, 3), F_m(\varphi)$ – либо тригонометрические $(\sin m\varphi, \cos m\varphi)$, либо экспоненциальные $(\exp im\varphi)$ функции, параметр c = kd/2и c = -ikd/2 для вытянутых и сплюснутых сфероидальных координат соответственно, d — межфокусное расстояние (например, [19]). При использовании тригонометрических функций появляются 2 раздельных решения, названные ТЕ- и ТМ-модами [19].

Вместо полей удобнее использовать скалярные потенциалы. В теории рассеяния света традиционно (например, [24,33,34]) применяются потенциалы Дебая V_e, V_m с представлением полей, например, для ТЕ-моды в виде

$$\mathbf{E}^{\mathrm{TE}} = \nabla \times (\mathbf{r} V_{\mathrm{m}}) + \frac{1}{k} \nabla \times \nabla \times (\mathbf{r} V_{\mathrm{e}}) \,. \tag{5}$$

В таком случае разложению потенциалов V_e , V_m по функциям $\psi_v(\mathbf{r})$, включающим сов $m\varphi$, соответствует разложение \mathbf{E}^{TE} по функциям $\mathbf{M}_{e,mn}^{\mathbf{r}}, \mathbf{N}_{o,mn}^{\mathbf{r}}$, где индексы e, o означают использование в $F_m(\varphi)$ четных или нечетных тригонометрических функций. Набор подобных функции $\mathbf{M}_v^{\mathbf{r}}(\mathbf{r}), \mathbf{N}_v^{\mathbf{r}}(\mathbf{r})$ будем называть базисом D. Отметим, что разложение скалярных потенциалов по функциям $\psi_v(\mathbf{r})$

¹ ТЕ- (Transverse Electric) и ТМ- (Transverse Magnetic) моды — два случая поляризации падающей волны.

имеет те же коэффициенты, что и разложение поля по векторным функциям, соответствующим этим потенциалам (сравним (3) и (5)), и в этом смысле разложения скалярных потенциалов и полей эквивалентны.

В некоторых случаях целесообразно применять иные потенциалы. Например, в работах [25,26] показано, что при рассмотрении рассеяния света сфероидами предпочтительнее использовать потенциал Дебая V и *z*-компонент вектора Герца U таким образом, что, например, для ТЕ-моды

$$\mathbf{E}^{\mathrm{TE}} = \nabla \times \left(\mathbf{i}_{z} U_{\mathrm{m}}\right) + \nabla \times \left(\mathbf{r} V_{\mathrm{m}}\right). \tag{6}$$

Это соответствует разложению поля по функциям $\mathbf{M}_{\nu}^{\mathbf{i}_{c}}(\mathbf{r}), \mathbf{M}_{\nu}^{\mathbf{r}}(\mathbf{r})$, которые мы будем называть базисом *F*.

В методе ЕВСМ подстановка разложений полей или потенциалов в соответствующие поверхностные интегральные уравнения и последующие стандартные операции [19] дают 2 системы линейных уравнений относительно коэффициентов разложения внутреннего (int) и рассеянного (sca) полей при известных коэффициентах разложения падающей волны (in) и функции Грина:

$$Q_{\rm S} \mathbf{a}^{\rm int} = \mathbf{a}^{\rm in}, \quad Q_{\rm R} \mathbf{a}^{\rm int} = \mathbf{a}^{\rm sca},$$
 (7)

где векторы а содержат коэффициенты a_v, b_v из соотношения (2), а элементы сходных матриц Q_R и Q_S в общем случае являются поверхностными интегралами от сфероидальных функций и их производных, содержащими соответственно только регулярные или нерегулярные в начале координат радиальные функции [19]. В работах [25,26] показано, что для сфероидального базиса F элементы матриц в формулах (7) выражаются через отношения радиальной функции $R_{mn}(c, \xi)$ к ее производной и интегралы от произведений угловых функций $S_{mn}(c, \eta)$. Данные интегралы в свою очередь представляются бесконечными рядами, включающими коэффициенты $d_l^{mm}(c)$ разложения $S_{mn}(c, \eta)$ по присоединенным функциям Лежандра, что делает решение задачи более точным и быстрым.

Важную роль в приложениях играет *Т*-матрица, связывающая коэффициенты разложений падающего и рассеянного полей,

$$T^{\rm sp} = Q_{\rm R} \, Q_{\rm S}^{-1}.$$
 (8)

При любом базисе и любой падающей волне такая матрица дает возможность по получаемым коэффициентам разложения найти поле рассеянного излучения на любом расстоянии от частицы, т.е. позволяет рассчитывать любые оптические свойства рассеивателя. В стандартном сферическом базисе, соответствующем потенциалам Дебая и включающем экспоненциальные функции ехр $m\varphi$, оказывается возможным аналитическое (что существенно ускоряет расчеты) усреднение такой матрицы по всем ориентациям частицы для часто встречающихся в приложениях ансамблей хаотически ориентированных рассеивателей [35]. Ниже *T*-матрицы, связанные с разложениями по сферическим и сфероидальным функциям, мы будем соответственно называть

сферической и сфероидальной. Если известно преобразование сфероидальной T-матрицы в стандартную, то вычисление матрицы T из (8) можно считать решением проблемы рассеяния.

Отметим, что формулировки проблемы для ТЕ- и ТМмод в целом сходны, однако для базиса F появляется важное отличие. Оно состоит в том, что в ТЕ-моде в уравнениях присутствует множитель ($\varepsilon - 1$), а в TMмоде – $(\mu - 1)$ [25]. Как следствие, в часто имеющем место случае частиц с $\mu = 1$ решение для ТМ-моды заметно упрощается. Упрощение оказывается существенным по двум причинам. Во-первых, из-за сложности систем (7) для ТЕ-моды результаты для нее часто оказываются на несколько порядков менее точными, чем для ТМ-моды. Во-вторых, сходимость решения для ТЕ-моды с ростом числа *N* учитываемых слагаемых в разложениях потенциалов/полей происходит заметно медленнее, чем для ТМ-моды [25]. Поскольку время при вычислениях в основном тратится на обращение матриц размерности 2N, то время расчета мод с одинаковой заданной точностью различается весьма существенно.

При применении базиса D и подобных ему такого различия решений для разных мод нет — оба похожи на случай ТЕ-моды для базиса F. При использовании экспоненциальных функций в $F_m(\varphi)$ решение так же сложно, как и при использовании тригонометрических. В методе SVM *T*-матрица получается после некоторых дополнительных преобразований [36], но отмеченное различие решений для базисов F и D остается.

Рассмотрим преобразование сфероидальной *Т*-матрицы для ТМ-моды при базисе F во вторую часть решения — *Т*-матрицу для ТЕ-моды.

2.2. Связь *Т*-матриц для разных мод при сфероидальном базисе F

Чтобы найти эту связь, последовательно рассмотрим трансформацию сфероидальной $T^{\rm sp,TM}$ -матрицы из формулы (8) для ТМ-моды при базисе F в матрицу $T^{\rm TM}$, определенную для стандартного сферического базиса D, в котором известна связь *T*-матриц для разных мод, и затем сделаем обратное преобразование *T*-матрицы для TE-моды и получим $T^{\rm sp,TE}$. Таким образом, чтобы установить связь $T^{\rm sp,TM}$ и $T^{\rm sp,TE}$, должны быть сделаны следующие 5 шагов.

1) Переход от сфероидального базиса к аналогичному сферическому (одинаковые потенциалы, но разные системы координат) был рассмотрен в работе [31]. Было найдено, что для любого базиса такой переход меняет *T*-матрицу следующим образом:

$$T^{\mathrm{s,TM}} = D(c) T^{\mathrm{sp,TM}} D^T(c), \qquad (9)$$

где $T^{\rm sp}$ и $T^{\rm s}$ — сфероидальная и сферическая T-матрицы, матрица D(c) зависит от параметра c и нормировки сфероидальных угловых функций, которые определены с точностью до константы, индекс T

означает транспонирование. Часто используется нормировка Flammer, связанная со значением функции при $\eta = 0$: $\bar{S}_{mn}(c, \eta) = S_{mn}(c, \eta)/N_{mn}(c)$, где $N_{mn}(c)$ бесконечная сумма, включающая коэффициенты $d_r^{mn}(c)$ разложения $S_{mn}(c, \eta)$ по присоединенным функциям Лежандра [37]. Другой вид нормировки, предложенный Meixner & Schäfke, определяется интегралом по всем η и имеет вид $\bar{S}_{mn}(c, \eta) = S_{mn}(c, \eta)/N_{mn}(0)$, причем коэффициенты разложения угловой функции равны $d_r(c|mn) = d_r^{mn}(c) N_{mn}(0)/N_{mn}(c)$. Здесь и ниже (в отличие от работ [25,26]) мы используем второй вид нормировки в (4), и элементы соответственно равны $D_{nl}(c) = i^{l-n}d_{l-m}(c|mn)$.

2) Переход от неортогонального сферического базиса F к практически стандартному сферическому базису D из [34] был сделан в [38], но лишь в частном случае азимутального числа m = 0. Обобщение на случай произвольного $m \neq 0$ выглядит сложнее:

$$T_{11}^{\rm TM} = k F T_{12}^{\rm s, TM} + T_{22}^{\rm s, TM}, \tag{10}$$

$$T_{12}^{\text{TM}} = \begin{bmatrix} F T_{11}^{\text{s,TM}} + T_{21}^{\text{s,TM}} - \left(k F T_{12}^{\text{s,TM}} + T_{22}^{\text{s,TM}}\right) F \end{bmatrix} G^{-1},$$
(11)

$$T_{21}^{\text{TM}} = k G T_{12}^{\text{s,TM}},$$
(12)

$$T_{22}^{\rm TM} = G\left(T_{11}^{\rm s,TM} - k \, T_{12}^{\rm s,TM} \, F\right) G^{-1},\tag{13}$$

где матрицы $T^{s,TM}$ и T^{TM} , получаемые для указанных базисов, разделены на 4 блока, соответствующие векторам, включающим отдельно коэффициенты a_v и b_v из (2), k – волновое число. Для всех m матрица G является диагональной с элементами $G_{nn} = -m/[n(n+1)]$, а матрица F – двухдиагональной:

$$F_{n,n+1} = \sqrt{\frac{(n-m+1)(n+m+1)}{(n+1)^2(2n+1)(2n+3)}},$$

$$F_{n-1,n} = \sqrt{\frac{(n-m)(n+m)}{n^2(2n+1)(2n-1)}}.$$
 (14)

3) Рассмотрение результатов показывает, что в базисе D, выбранном в [34],

$$T_{kl}^{\rm TE} = (-1)^{k+l} T_{kl}^{\rm TM},$$
(15)

где *k*, *l* = 1, 2.

4) Обратное преобразование к сферическому базису F, очевидно, есть

$$T_{11}^{\rm s,TE} = G^{-1} T_{22}^{\rm TE} G + G^{-1} T_{21}^{\rm TE},$$
(16)

$$T_{12}^{\rm s,TE} = \frac{1}{k} \, G^{-1} \, T_{21}^{\rm TE}, \tag{17}$$

$$T_{21}^{s,TE} = T_{12}^{TE} G + T_{11}^{TE} F - F G^{-1} T_{22}^{TE} G - F G^{-1} T_{21}^{TE},$$
(18)
$$T_{22}^{s,TE} = T_{11}^{TE} - F G^{-1} T_{21}^{TE}.$$
(19)

5) Переход далее к сфероидальному базису F, учитывая свойства D(c) [31], несложен:

$$T^{\rm sp,TE} = D^T(c) \ T^{\rm s,TE} D(c). \tag{20}$$

Таким образом, вместо трудоемкого нахождения матрицы $T^{\text{sp,TE}}$ "в лоб" можно получить ее из $T^{\text{sp,TM}}$, используя приведенные выше относительно несложные преобразования.

Рассмотрим вычислительную сложность всех шагов преобразований (9)-(20). Шаги 1 и 5 включают по паре умножений матриц $2N \times 2N$ (*N* — число слагаемых, учитываемых в разложениях по сфероидальным функциям) на матрицы $2N \times 2N_s$ или $2N_s \times 2N$, где $2N_s$ размерность получаемой сферической Т-матрицы. Из общих соображений N_s должно быть существенно больше N, однако наши тесты показывают, что для сохранения точности результатов достаточно $N_{\rm s} \approx 1.3N$. Поэтому оба эти шага требуют ~N³ сравнительно простых операций. Шаги 2 и 4 подразумевают ~ N² действий, поскольку обращение G производится аналитически и *G*⁻¹ – также диагональная матрица. Шаг 3 состоит в смене знака у ~N² чисел. Таким образом, асимптотическая сложность всех преобразований N³ для каждого азимутального числа $m \leq N$.

При расчете ТЕ-моды напрямую требуется время $\sim N^2$ на расчет довольно сложных элементов матриц Q_R и Q_S , а также время $\sim N^3$ на обращение Q_S и умножение матриц в (2). Отличие от подхода (9)–(20) состоит не в степени N (не для малой размерности матриц), а в свойствах системы для ТЕ-моды, приводящих к существенно большей потере точности при вычислениях.

3. Численные расчеты и обсуждение

Мы провели тестовые расчеты *T*-матриц и других оптических характикристик (включая сечения поглощения $C_{\rm ext}$ и рассеяния $C_{\rm sca}$) как напрямую, так и предложенным выше способом для вытянутых и сплюснутых сфероидов в широком диапазоне значений параметров: отношения полуосей a/b, показателя преломления \tilde{m} , дифракционного параметра $x_{\rm v} = 2\pi r_{\rm v}/\lambda$ ($r_{\rm v}$ — радиус шара, объем которого равен объему сфероида, λ длина волны падающего излучения) и угла α между направлением падения волны и осью симметрии сфероида.

Некоторые результаты этих расчетов представлены в табл. 1 и 2, в которых N означает число слагаемых, использованных в разложениях потенциалов по сфероидальному базису, t — максимальное время расчетов для одного значения азимутального индекса m, δ — оценка погрешности результатов, а именно $\delta = |C_{\text{ext}}(N) - C_{\text{sca}}(N)|/C_{\text{ext}}(N)$ для непоглощающих частиц ($\text{Im}(\tilde{m}) = 0$) и $\delta = |C_{\text{ext}}(N) - C_{\text{ext}}(N-4)|/C_{\text{ext}}(N)$ для поглощающих ($\text{Im}(\tilde{m}) \neq 0$). Как известно, в обоих случаях относительная ошибка сечений составляет порядка 10–30 δ [19]. В последнем столбце таблиц

$x_{\rm v}$	a/b	ñ	Ν	Мода	δ	<i>t</i> , s	$\delta_{\mathrm{TE}} = \delta_{\mathrm{TE}^*}$	
3	4	1.3	24	TM TE TE*	$\begin{array}{c} 1.7\cdot 10^{-17} \\ 4.4\cdot 10^{-7} \\ 3.6\cdot 10^{-16} \end{array}$	0.048 0.048 0.027	$N \approx 70, t \approx 1$	
3	50	1.3	56	TM TE TE*	$\begin{array}{c} 5.0\cdot 10^{-16} \\ 1.1\cdot 10^{-6} \\ 5.3\cdot 10^{-15} \end{array}$	0.57 0.57 0.35	Нет решения	
70	4	1.3	190	TM TE TE*	$\begin{array}{c} 1.0\cdot 10^{-16}\\ 2.4\cdot 10^{-11}\\ 3.5\cdot 10^{-14}\end{array}$	23.6 23.3 12.8	$N \approx 200, t \approx 30$	
3	4	5 + 2.5i	52	TM TE TE*	$\begin{array}{c} 1.6\cdot 10^{-14} \\ 3.2\cdot 10^{-10} \\ \sim 10^{-16} \end{array}$	0.53 0.54 0.14	$N \approx 90, t \approx 3.5$	

Таблица 1. Оценка точности результатов δ и время вычислений *t* для вытянутых сфероидов при $\alpha = 45^{\circ}$ и $N_{\rm s}/N = 1.3$

Примечание. *Рассчитано через ТМ-моду.

Таблица 2. Оценкя точности результатов δ и время вычислений *t* для сплюснутых сфероидов при $\alpha = 45^{\circ}$ и $N_{\rm s}/N = 1.3$

_							
x_{v}	a/b	ñ	Ν	Мода	δ	<i>t</i> , s	$\delta_{\mathrm{TE}} = \delta_{\mathrm{TE}^*}$
3	4	1.3	18	TM TE TE*	$\begin{array}{c} 1.1 \cdot 10^{-15} \\ 6.9 \cdot 10^{-5} \\ 3.0 \cdot 10^{-16} \end{array}$	0.023 0.022 0.012	$N \approx 75, t \approx 1$
3	50	1.3	24	TM TE TE*	$\begin{array}{c} 7.9\cdot 10^{-16} \\ 3.0\cdot 10^{-4} \\ 1.8\cdot 10^{-16} \end{array}$	0.052 0.052 0.031	Нет решения
70	4	1.3	130	TM TE TE*	$\begin{array}{c} 4.7\cdot 10^{-19} \\ 6.4\cdot 10^{-15} \\ 2.5\cdot 10^{-19} \end{array}$	7.7 7.7 5.4	$N \approx 140, t \approx 11$
3	4	5 + 2.5i	40	TM TE TE*	$\begin{array}{c} 5.6 \cdot 10^{-15} \\ 5.3 \cdot 10^{-7} \\ \sim 10^{-16} \end{array}$	0.27 0.27 0.061	$N \approx 80, t \approx 3$

Примечание. *Рассчитано через ТМ-моду.

даны значения N и t, необходимые при вычислении ТЕмоды напрямую для достижения точности результатов, полученных предложенным способом (ТЕ*).

В табл. 1 и 2 приведены значения для типичных диэлектрических частиц ($\tilde{m} = 1.3, a/b = 4, x_v = 3$), а также для частиц большого размера ($x_v = 70$), с большим отношением полуосей (a/b = 50) или большим показателем преломления ($\tilde{m} = 5 + 2.5i$). Сравнение таблиц показывает, что вытянутые и сплюснутые сфероиды отличаются в рассматриваемом аспекте незначительно.

Характерные особенности решений для диэлектрических частиц (\tilde{m} от ~1.3 до ~1.7+0.03i) с часто встречающимися параметрами ($x_v = 1 - 20$ и a/b = 2 - 10) иллюстрирует приведенный вариант с $\tilde{m} = 1.3$, a/b = 4, $x_v = 3$. В частности, время вычисления ТМ- и ТЕ-мод напрямую при одинаковом числе слагаемых N практически не различается даже при N = 20, поскольку основные затраты все еще идут на обращение и умножение матриц. При этом точность расчета ТЕмоды, как ожидалось, на много порядков хуже, чем для ТМ-моды. Исключая сильно вытянутые/сплюснутые частицы, точность ТЕ-моды можно улучшить до уровня ТМ-моды, рассмотрев больше слагаемых в разложениях. Однако это увеличивает время расчетов в 10–50 раз, исключая очень большие частицы, для которых такое увеличение незначительно.

Предлагаемый подход (в таблицах обозначен как TE*) при том же числе слагаемых, что и для TMмоды, за меньшее время дает результаты для ТЕ-моды, которые имеют лишь на порядок худшую точность, чем у ТМ-моды. Причем это справедливо для всех случаев, рассмотренных в табл. 1 и 2. Отметим, что развитый подход — по-видимому, единственный способ полностью решить проблему рассеяния света в сфероидальных координатах (т.е. найти обе моды с высокой точностью) для сильно асферичных сфероидов. Добавим, что методы, основанные на использовании базиса F, имели принципиальные трудности для малых сильно сплюснутых сфероидов (радиальная сфероидальная координата $\xi_0 \approx 0$ при f = -1) из-за очень малых значений знаменателе
й $(\xi_0^2-f\,\eta^2),$ присутствующих только в ТЕ-моде [25,26], и предлагаемый метод решает эту проблему.

В табл. 1 и 2 мы произвольно ограничились данными, соответствующими $\delta < 10^{-14}$, но даже для выбранных значений параметров можно было взять более аккуратные результаты, точность которых зависит не только от числа слагаемых N, но и от погрешности вычисления сфероидальных функций, при этом последняя может быть на уровне 10⁻²² и лучше [29]. С другой стороны, во многих практических задачах часто не требуется относительной точности результатов выше $10^{-3} - 10^{-4}$ и в подавляющем большинстве случае – выше 10⁻⁶. Как показывает табл. 3, расчеты напрямую позволяют получать такие результаты для обеих мод за сравнимое время для больших $x_v, a/b$ или |m|, однако для диэлектрических сфероидов с $x_v = 1 - 20$ и a/b = 2 - 10предлагаемый подход дает полное решение проблемы (обе моды) с заданной (невысокой) точностью примерно на порядок быстрее, чем решение "в лоб".

В любом случае новый подход имеет более широкую область применимости: для диэлектрических сфероидов она примерно ограничивается соотношением $x_a = 2\pi a/\lambda \approx 300$, где a — большая полуось частицы.

Для больших или сильно асферических сфероидов требуются расчеты с большим N и, следовательно, с учетом сравнимых по объему вычислений задач для многих значений m ($m \sim N$). В таких случаях, как мы нашли, использование параллельных вычислений позволяет существенно ускорить расчеты как с OpenMP, так и MPI. Дальнейшее ускорение вычислений примерно на порядок может быть произведено исключением из матриц $Q_{\rm R}, Q_{\rm S}$ нулевых элементов, которых ровно

	Па	арамет	гры	$\delta pprox 10^{-4}$		$\delta pprox 10^{-6}$	
xv	a/b	т	Мода	Ν	<i>t</i> , s	Ν	<i>t</i> , s
3	4	1.3	TM (TE*) TE	10 14	0.004 0.01	12 24	0.007 0.05
3	50	1.3	TM (TE*) TE	32 20	0.1 0.07	36 56	0.3 0.6
70	4	1.3	TM (TE*) TE	165 170	15 17	170 175	17 18

Таблица 3. Оценка времени вычислений t при низкой точности результатов δ для вытянутых сфероидов при $\alpha = 45^{\circ}$ и $N_{\rm s}/N = 1.3$.

половина, и соответственно уменьшением размерности всех матриц вдвое.

4. Заключение

В рамках метода, основанного на разложении полей по сфероидальным функциям при использовании оригинальных скалярных потенциалов из [27], предложен новый подход к решению проблемы рассеяния света сфероидами. Подход основан на оригинальных преобразованиях *T*-матриц при переходах от сфероидального базиса к сферическому и от неортогонального сферического базиса к ортогональному.

Численные расчеты показали, что предложенный подход всегда сокращает время точного решения проблемы, причем сокращение значительно во всех случаях, кроме больших частиц (дифракционный параметр x_v больше ~30). С другой стороны, новый подход позволяет на несколько порядков уточнить результаты, причем впервые дает высокоточное решение для сильно вытянутых/сплюснутых сфероидов.

Описанный подход будет также эффективно применим при решении проблемы рассеяния света слоистыми сфероидами с софокусными и несофокусными границами слоев, разрабатываемом в [38], поскольку учет слоистости меняет лишь вычисление сфероидальной *Т*-матрицы в формуле (8).

Благодарности

Авторы благодарны A.L. van Buren за созданные программы расчета сфероидальных функций, свободно доступные по сети Интернет.

Финансирование работы

Работа В.Ф. по теоретическому изучению *Т*-матриц была поддержана субсидией Санкт-Петербургского государственного университета аэрокосмического приборостроения FSRF-2020-0004, работа В.И. и Д.Т. по расчетам

Т-матриц — грантом Российского научного фонда 20-72-10052.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A. Sihvola. J. Nanomater., 2007, 45090 (2007). DOI: 10.1155/2007/45090
- [2] *Thermo Fisher Scientific* [Электронный ресурс]. URL: https://www.thermofisher.com /ru/ru/home/life-science/cellculture/organoids-spheroids-3d-cell-culture.html
- [3] R. Hogg. KONA Powder Part. J., **32**, 227 (2015). DOI: 10.14356/kona.2015014
- [4] M.M. Bukharin, V.Ya. Pecherkin, A.K. Ospanova et al. Sci. Rep., 12, 7997 (2022). DOI: 10.1038/s41598-022-11733-4
- [5] O. Dubovik, A. Sinyuk, T. Lapyonok et al. J. Geophys. Res. Atmos., 111, D11208 (2006). DOI: 10.1029/2005JD006619
- [6] S. Merikallio, H. Lindqvist, T. Nousiainen, M. Kahnert. Atmos. Chem. Phys., 11, 5347 (2011). DOI: 10.5194/acp-11-5347-2011
- [7] H. Tang, X.-X. Li. Int. J. Num. Meth. Heat Fluid Flow., 24, 1762 (2014). DOI: 10.1108/HFF-04-2013-0105
- [8] L. Mukherjee, P.-W. Zhai, Y. Hu, D.M. Winker. Opt. Expr., 26, A124 (2018). DOI: 10.1364/OE.26.00A124
- [9] B. Vandenbroucke, M. Baes, P. Camps et al. Astron. Astrophys., 653, A34 (2021).
 DOI: 10.1051/0004-6361/202141333
- [10] H. Chen-Chen, S. Pérez-Hoyos, A. Sánchez-Lavega. Icarus, 354, 114021 (2021). DOI: 10.1051/0004-6361/202141333
- [11] S. Höfer, H. Mutschke, Th.G. Mayerhöfer. Astron. Astrophys., 646, A87 (2021). DOI: 10.1051/0004-6361/202038931
- B.T. Draine. Astrophys. J., 926, 90 (2022).
 DOI: 10.3847/1538-4357/ac3977
- [13] B.S. Hensley, B.T. Draine. Astrophys. J., in press (2022) (arXiv-препринт 2208.12365).
 DOI: 10.48550/arXiv.2208.12365
- [14] M. Min, J.W. Hovenier, A. de Koter. Astron. Astrophys., 404, 35–46 (2003). DOI: 10.1051/0004-6361:20030456
- [15] В.Г. Фарафонов, В.Б. Ильин, М.С. Прокопьева, А.Р. Тулегенов, В.И. Устимов. Опт. и спектр., **126**, 443 (2019). DOI: 10.21883/OS.2019.04.47514.345-18
 [V.G. Farafonov, V.B. Il'in, M.S. Prokopjeva, A.R. Tulegenov, V.I. Ustimov. Opt. Spectrosc., **126**, 360 (2019). DOI: 10.1134/S0030400X19040076].
- [16] M.I. Mishchenko, J.W. Hovenier, L.D. Travis. *Light scattering by nonspherical particles* (Academic Press, San Diego, 2000).
- [17] B. Sun, G.W. Kattawar, P.Yang, X. Zhang. Appl. Sci., 8, 2686 (2018). DOI: 10.3390/app8122686
- [18] F.M. Kahnert. J. Quant. Spectrosc. Rad. Transf., **79-80**, 775 (2003). DOI: 10.1016/S0022-4073(02)00321-7
- [19] V.G. Farafonov, V.B. Il'in. Light Scatt. Rev., 1, 125 (2006). DOI: 10.1007/3-540-37672-0_4
- [20] P.C. Waterman. Proc. IEEE, 53, 805 (1965).DOI: 10.1109/PROC.1965.4058
- [21] M.I. Mishchenko. J. Quant. Spectrosc. Rad. Transf., 242, 106692 (2020). DOI: 10.1016/j.jqsrt.2019.106692

- [22] M.I. Mishchenko, L.D. Travis. Opt. Commun., 109, 16 (1994).
 DOI: 10.1016/0030-4018(94)90731-5
- [23] W.R.C. Somerville, B. Auguié, E.C. Le Ru. J. Quant. Spectrosc. Rad. Transf., 160, 29 (2015). DOI: 10.1016/j.jqsrt.2015.03.020
- [24] S. Asano, G. Yamamoto. Appl. Opt., **14**, 29 (1975). DOI: 10.1364/AO.14.000029
- [25] N.V. Voshchinnikov, V.G. Farafonov. Astrophys. & Space Sci., 204, 19 (1993). DOI: 10.1007/BF00658095
- [26] V.G. Farafonov, N.V. Voshchinnikov. Appl. Opt., 51, 1586 (2012). DOI: 10.1364/AO.51.001586
- [27] V.G. Farafonov. Diff. Equat., 19, 1765 (1983).
- [28] V.G. Farafonov. Light Scatt. Rev., **8**, 189 (2013). DOI: 10.1007/978-3-642-32106-1_5
- [29] A.L. van Buren. arXiv-preprints, math/2009.01618 (2020).
- [30] A.L. van Buren. *Mathieu and spheroidal wave functions*. [Электронный ресурс].
 - URL: http://www.mathieuandspheroidalwavefunctions.com
- [31] В.Г. Фарафонов, В.Б. Ильин, Д.Г. Туричина. Опт. и спектр., 130, 273 (2022). DOI: 10.21883/OS.2022.02.51995.2893-21
 [V.G. Farafonov, V.B. Il'in, D.G. Turichina. Opt. Spectrosc., 130, 259 (2022). DOI: 10.21883/EOS.2022.02.53686.2893-21].
- [32] К. Борен, Д. Хафмен. Поглощение и рассеяние света малыми частицами (Мир, М., 1986). [С. Bohren, D. Huffman. Absorption and scattering of light by small particles (John Wiley & Sons, New York, 1983). DOI: 10.1002/9783527618156].
- [33] G. Mie. Ann. Phys., 330, 377 (1908).DOI: 10.1002/andp.19083300302
- [34] P.W. Barber, S.C. Hill. Light scattering by particles: computational methods (World Scientific, Singapore, 1990). DOI: 10.1142/0784
- [35] M.I. Mishchenko, L.D. Travis, A.A. Lacis. Scattering, absorption and emission of light by small particles (Cambridge Univ. Press, Cambridge, 2002).
- [36] В.Г. Фарафонов, А.А. Винокуров, В.Б. Ильин. Опт. и спектр., 102, 1006 (2007). [V.G. Farafonov, А.А. Vinokurov, V.B. Il'in. Opt. Spectrosc., 102, 927 (2007). DOI: 10.1134/S0030400X07060203].
- [37] C. Flammer. Spheroidal wave functions (Stanford Univ. Press, 1957).
- [38] D.G. Turichina, V.G. Farafonov, V.B. Il'in. In: 2022 Days on Diffraction, ed. by O.V. Motygin (IEEE, Danvers, 2022), p. 130. DOI: 10.1109/DD55230.2022.9960958