З

Быстродействующий двухканальный анализатор оптически плотных выбросов аэрозолей на основе диодных оптопар с длиной волны 0.65 и 3.4 микрона

© А.В. Загнитько, В.В. Пименов, С.Е. Сальников, Д.Ю. Федин, В.И. Алексеев, И.Д. Мацуков, С.М. Вельмакин, Н.П. Зарецкий, Е.В. Черненко

Национальный исследовательский центр "Курчатовский институт", 123182 Россия, Москва e-mail: azagnitko@yandex.ru

Поступило в Редакцию 21 октября 2022 г. В окончательной редакции 22 декабря 2022 г. Принято к публикации 22 декабря 2022 г.

Разработан двухканальный анализатор оптически плотных пожароопасных аэрозольных потоков на основе двух параллельных диодных оптопар с длиной волны электромагнитного излучения $\lambda = 0.65$ и 3.4μ m, быстродействием $\tau \leq 0.05$ в и передачей оцифрованных данных на удаленный до 1200 m сервер через интерфейс RS-485. Описаны его конструкция и характеристики в процессе детектирования потоков частиц диаметром от 0.2 до 5000 μ m с оптической плотностью $D \leq 3.5$. Показано, что рассчитанные на основе теории рассеивания излучения Ми величины отношения коэффициентов ослабления волн с $\lambda = 0.65$ и 3.4μ m от размера капель согласуются с экспериментальными. Созданный анализатор аэрозолей может быть использован при экспресс анализе техногенных воздушнокапельных выбросов топливных жидкостей и для разработки крупномасштабных генераторов взрывного типа при создании импульсных барьеров из облаков тонкодисперсного аэрозоля в атмосфере.

Ключевые слова: анализатор аэрозолей, быстродействие, диодные оптопары, инфракрасное и видимое излучение, коэффициент ослабления, оптически плотные выбросы, теория рассеивания Ми, топливные жидкости.

DOI: 10.21883/JTF.2023.02.54494.236-22

Введение

Экспресс анализ оптически плотных аэрозольных выбросов в атмосферу и разработка генераторов взрывного типа для быстрого создания крупномасштабных барьеров из тонкодисперсных капель на пути распространения токсичных и горючих облаков представляет интерес для систем промышленной безопасности объектов, получения и хранения топливных жидкостей (керосин, бензин, мазут, дизельное топливо (ДТ), нефть, гептил, спирт и т.п.). При техногенных выбросах горючего в виде струй и проливах на грунт велика вероятность образования взрывопожароопасных топливовоздушных смесей (TBC) объемом более $10^4 \text{ m}^3 [1-5].$

Закономерности образования ТВС и дальнейшей их трансформации характеризуются большим числом переменных параметров, которые определяются как свойствами газокапельной фазы, так и внешней среды и обладают рядом особенностей, таких как высокая скорость выброса жидкостей, малое время образования крупномасштабных облаков, нестационарность процессов эволюции полидисперсного аэрозоля в условиях аэродинамического дробления, кавитации и испарения капель, турбулентной коагуляции и седиментации [5–8].

Анализ выбросов ТВС достаточно сложен, поскольку необходимо измерять флуктуирующие характеристики

частиц с передачей данных на удаленный сервер, а устройства для их сканирования должны иметь быстродействие $\tau \leq 0.1$ s, функционировать при скорости газокапельных потоков до сотен метров в секунду и обладать устойчивостью к импульсному воздействию избыточного (> $10^5 \Pi a$) давления газа [1–10].

Известно, что для экспресс анализа крупномасштабных ТВС разработаны одноканальные и двухканальные лазерные анализаторы аэрозольных потоков (оптроны) с инерционным сепаратором капель диаметром $d > 15-20\,\mu\text{m}$ и длиной волны излучения $\lambda = 0.6 - 0.7 \,\mu m$ [3,4]. Данные устройства позволяют измерять с $\tau < 0.05$ s динамические значения оптической плотности $D = \lg(I_0/I) \le 3.5$ и удельной поверхностной концентрации капель $S = \pi \langle d^2 \rangle N (m^2/m^3)$, а также величины их среднеквадратичного отклонения при объемной концентрации капель менее 0.1% об. Здесь I₀ и I — интенсивности излучения без присутствия и при наличии TBC соответственно в оптическом канале оптрона; $(d^2)^{0.5}$ — среднеквадратичный диаметр капель с дифференциальным распределением по размерам f(d); счетная концентрация N [1–5]. В случае распространенного логнормального распределения капель по диаметрам величина $\langle d^2 \rangle = \langle d \rangle^2 \exp(\ln^2 \sigma)$, где $\langle d \rangle$ — средний арифметический диаметр капель и σ — стандартное геометрическое отклонение [5].

Рис. 1. Принципиальная схема двухканального лазерного анализатора аэрозолей (пояснения в тексте).

Для произвольного распределения частиц по размерам $\langle d^2 \rangle = \langle d \rangle^2 (1 + q^2)$, где q — параметр вариации. Оцифрованные данные передаются на сервер с интервалом 0.001-0.01 s.

Согласно теории Ми [5–8] изменение потока энергии электромагнитных волн обуславливается их рассеиванием и поглощением незаряженными каплями. Его ослабление в соответствие с законом Бугера можно рассчитывать как

$$\lg(I_0/I) = KL,\tag{1}$$

где K — объемный коэффициент ослабления и L — толщина рассеивающего слоя [5–8]. Формула (1) справедлива при однократном рассеянии излучения каплями и для достаточно большого числа рассеивателей $NS_1L \gg 1$ с расстоянием между ними более (4-5)d, где S_1 — площадь поперечного сечения лазерного луча в зоне анализа частиц [7]. Укажем, что эти условия в проведенных исследованиях выполнялись (см. разд. 1 и 2).

В случае монодисперсного потока частиц $K = N\beta(m)\pi d^2/4$, где $\beta(m)$ — коэффициент ослабления излучения каплей от величины параметра рассеивания Ми $m = \pi d/\lambda$ [5–8]. Обобщение для полидисперсных капель в приближении, что вклад от каждой из групп капель в *K* аддитивен, имеет вид [3–5,7]:

$$K = N\left(\frac{\pi}{4}\right) \int_{d}^{\Box} d^2 f(d)\beta(m)dd.$$
 (2)

Использование закона Бугера предполагает, что вся рассеянная каплями энергия изымается из пучка излучения, а коэффициент K определяется интегрированием рассеянной в различных направлениях энергии, включая и направление вперед. При m > 10 величина $K = F(Z, d/\lambda) \times (S/4)$, где $Z = md_1/2L$, d_1 — диаметр приемного объектива и $F(Z, d/\lambda)$ — корректирующая функция, учитывающая индикатрису рассеивания излучения каплями и размеры оптической зоны оптрона [7]. Значения $F(Z, d/\lambda)$ стремятся к пределу $\alpha = 1, 1.5$ и 2 при $Z \gg 1, \rightarrow 1$ и $\rightarrow 0$ соответственно [7]. При этом величины D и K можно рассчитывать по формулам [5–7]:

$$D = \alpha \pi N \left(\frac{L}{9.2}\right) \int_{d}^{\Box} d^2 f(d) dd$$
$$= \alpha \pi N \langle d^2 \rangle \left(\frac{L}{9.2}\right) = \alpha SL/9.2; \tag{3}$$

$$K = \alpha S/4. \tag{4}$$

Запатентованные лазерные анализаторы ТВС не позволяют осуществлять экспресс анализ флуктуирующих размеров тонкодисперсных капель в оптически плотных аэрозольных выбросах [3,4]. Целью работы являлась разработка быстродействующего с $\tau \leq 0.05 \, \text{s}$ двухканального анализатора аэрозольных потоков на основе двух параллельных диодных оптопар с $\lambda = 0.65 \pm 0.005 \,\mu\text{m}$ и $\lambda = 3.4 \pm 0.2 \,\mu m$ для экспресс анализа флуктуирующих значений D, S и d с передачей данных на удаленный до 1200 m сервер через интерфейс RS-485. Согласно теории Ми рассчитано отношение β коэффициентов ослабления излучений с длинами волн $\lambda = 0.65$ и $3.4\,\mu\text{m}$ от $d = 0.4 - 1000\,\mu\text{m}$ [5-8] и проведено их сравнение с экспериментальными значениями В для частиц диаметром более 0.2 µm и массовой концентрацией $M \approx 0.001 - 4.0 \, \mathrm{kr/m^3}$. Выбор столь большого диапазона изменения параметров частиц был обусловлен тем, что в крупномасштабных выбросах жидкостей в атмосферу наблюдается их быстропротекающее варьирование в широком интервале значений $d \approx 0.5 - 10^4 \, \mu {
m m}$ и $M \approx 0.001 - 5.0$ кг/м³ [3-5].

1. Экспериментальная часть

На рис. 1 приведена принципиальная схема быстродействующего двухканального анализатора выбросов

аэрозолей на основе двух диодных оптопар. Первая оптопара с длиной волны $\lambda = 3.4 \pm 0.2\,\mu{
m m}$ в канале I содержит иммерсионные светодиод 3 (LED34TO8TEC) и фотодиод 8 (PD34TO8TEC) [9,10], связанные гибкой механической связью с корпусом 2 юстировочными элементами 4 и 7 для настройки диодной оптопары на максимальную величину выходного сигнала фотодиода. В результате устраняется несоосность оптической схемы и диаграмм направленности излучения светодиода 3 и чувствительности фотодиода 8. Вторая диодная оптопара в канале II с широкой диаграммой направленности излучения и $\lambda = 0.65 \pm 0.005 \,\mu\text{m}$ выполнена с жесткой фиксацией полупроводникового лазера 9 (ADL-65055TA2) и фотодиода 11 (BPW24R) внутри корпуса 12. Параллельные металлические корпуса 2 и 12 изготовлены с прямоугольными окнами для конвективного газокапельного потока Q через каналы I и II. Внешний электронный блок 1 закреплен в корпусе 2 и предназначен для питания, управления, стабилизации температуры и синхронной передачи оцифрованных сигналов от двух оптопар каждые 0.02 s по витой паре с использованием интерфейса RS-485 на удаленный до 1200 m безопасный сервер для их последующей обработки и анализа. Выбор длин волн оптопар был обусловлен несущественным поглощением излучения парами атмосферной воды.

Оба иммерсионных полупроводниковых прибора 3 и 8 оснащены системой стабилизации температуры излучателя 3 и фотоприемника 8 (с использованием элементов Пельтье) на уровне, установленном при их настройке (от 285 до 300 К) [3,9,10]. Значения температур непрерывно считываются микропроцессором для контроля и совместно с величинами рабочего и фонового сигналов фотодиодов 8 и 11 передаются по интерфейсу RS-485 на удаленный сервер (на рис. 1 не показан).

Исследование характеристик двухканального оптрона проводилось на стенде анализа частиц и парогазовых смесей углеводородов [3-4,11]. Аэрозольные потоки умеренно полидисперсных капель воды, глицерина, керосина, ДТ, уайт-спирита, мазута флотского Ф5 и масла турбинного ТП22 с диаметром капель менее 15 µm и $\sigma \leq 1.7$ получали с помощью генератора тумана "ТО-52" (РФ) при температуре 293-380 К и холодного ультразвукового туманообразователя с 12-ю пьезокерамическими мембранами "МНВ12-UH" (Китай). При получении более крупных капель с $d = 20-5000 \, \mu {\rm m}$ и $\sigma \approx 2-3$ использовались электрические пневмораспылители жидкостей типа "ЭКРП-600/0.8, Калибр" (РФ), "Karcher K3" и "W590 Flexio, Wagner" (ФРГ). При генерации смеси субмикронных твердых и жидких частиц осуществлялось свободное горение, дистилляция и пиросинтез соединений сигаретного табака в потоке воздуха. Кроме того, исследовались локальные импульсные выбросы жидкостей в виде затопленных струй со скоростью до 50 m/с и длиной 5-10 m при числах Рейнольдса $Re = U_1 d\rho / \eta < 10^4$ с их аэродинамическим дроблением при числах Вебера We = $\rho (U_1 - U)^2 d/\delta < 10^5$ [3–5]. Здесь ρ, η и U — плотность, динамическая вязкость

и скорость воздуха, соответственно, δ — коэффициент поверхностного натяжения жидкости, d — диаметр капель и жидких фрагментов, U_1 — их скорость. Капли и жидкие фрагменты создавались с помощью импульсного аэрозольного генератора с источником сжатого до 8 МПа воздуха объемом 0.2 m³ в нормальных условиях. Газокапельный поток формировался при пузырьковом течении сжатого воздуха через слой распыляемой жидкости с первоначальной скоростью около 250 m/s за время редуцирования давления воздуха электромагнитным клапаном не более 0.3 s.

Анализ крупномасштабных ТВС объемом до 10^7 m^3 осуществлялся в процессе импульсного распыления топлив при инициировании высокоэнергетических материалов (ВЭМ). В данных экспериментах числа Рейнольдса в потоке не превышали 10^6 , а аэродинамическое дробление капель происходило при числах Вебера менее 10^5 [3–5].

Размер и концентрация частиц определялись ультрамикроскопическим методом в кювете, с помощью шестикаскадного импактора с круглыми соплами и микроскопа, весовым способом, а также путем отбора частиц на аналитические стекловолокнистые фильтры. Обработка изображений с отпечатками капель с целью оценки их распределения по размерам производилась с использованием программного комплекса ImageJ с учетом измеренного коэффициента растекания капель на материале фильтра [11,12]. Помимо этого для оценки размеров и концентрации частиц использовалась их униполярная зарядка газовыми ионами коронного разряда с последующим измерением тока переноса заряженных частиц при их осаждении на волокна электропроводящего фильтра, соединенного с электрометрическим усилителем [3-5,11]. Инфракрасная фотометрия осадков топливных капель на фильтрах осуществлялась концентратомером "КН-2м" (РФ). Углеводородные газовые смеси анализировались инфракрасными анализаторами с иммерсионной оптопарой и сенсорами Мірех [3]. Поверхностная концентрация капель в выбросе и его скорость измерялась лазерными оптронами [5].

На рис. 1 представлен: 1 — электронный блок; 2и 12 — металлические корпуса с прямоугольными окнами для аэрозольного потока Q через каналы I и II оптического анализа аэрозолей с длиной рассеивающего слоя $L \approx 0.07-0.1$ m; 3 и 8 — полупроводниковые иммерсионные светодиод и фотодиод ($\lambda = 3.4$ micron) соответственно с их юстировочными элементами 4 и 7; 5 — входной тонкостенный прямоугольный канал, состыкованный с прямоугольными отверстиями для течения потока Q через каналы I и II; 6 — объектив фотодиода диаметром d_1 (отношение $d_1/L \approx 0.06-0.08$); 9 и 11 — полупроводниковые светодиод и фотодиод ($\lambda = 0.65$ micron), соответственно; 10 — крепление подвески анализатора на мачте или тросе.

Рис. 2. Характеристики аэрозоля при импульсном выбросе мазута $\Phi 5$ в атмосферу на высоте 8 m (T = 311 K): a — распределение капель по размерам f(d) (кривая I), b — фотография их черно-коричневых отпечатков на поверхности фильтра; c — зависимость удельной поверхностной концентрации S капель от времени t (кривая I).

2. Результаты и их обсуждение

Быстродействие оптрона τ определялось путем измерения величины напряжения на выходе усилителя сигналов фотодиодов 8 и 11 от времени при более чем 300-кратном обмене объема аэрозолей за секунду фильтрованным воздухом в каналах I и II. Показано, что величина $\tau \leq 0.05$ s при быстродействии электронного блока $\tau_0 \approx 25 \,\mu s$ с передачей данных на удаленный сервер каждые 0.02 s. Методика анализа τ_0 описана в [3].

В процессе выброса различных жидкостей со скоростями до 50 m/s наблюдалась биполярная электризация капель с практически нулевым объемным зарядом. Заряды капель были существенно меньше зарядов при их классической ударной и диффузионной зарядке униполярными ионами коронного разряда [5,11]. При этом удельное электрическое сопротивление *R* и диэлектрическая проницаемость ε жидкостей варьировались в широком диапазоне. Так, если в случае топлив (керосин TC-1, уайт-спирит, ДТ, мазут Ф5, масло ТП22) измеренные значения $R > 10^{10} \Omega \cdot m$ и $\varepsilon \approx 2$, то для воды и глицерина: R = 30 и $610 \Omega \cdot m$ и $\varepsilon = 80$ и 43, соответственно. В результате биполярная электризация капель при анализе рассеивания излучения не учитывалась.

Показано, что с достаточной для практики точностью распределение частиц по размерам, в котором мелких капель гораздо больше, чем крупных, можно аппроксимировать логарифмически нормальной функцией. В качестве примера на рис. 2,а приведено экспериментально полученное и близкое к логнормальному распределение f(d) (кривая I) капель мазута Ф5, отобранных на стекловолокнистый фильтр. Аспирация капель осуществлялась на высоте 8 m. Обработка полученных изображений (черно-коричневые капли на белой поверхности фильтра, см. фотографию 1 на рис. 2, a) и их анализ производились с использованием программного комплекса ImageJ [12], в результате чего получено, что величина d варьируется от 20 до 2000 μ m, $\langle d \rangle = 348 \,\mu$ m и $\sigma = 2.4$. Капли диаметром менее $20\,\mu m$ практически не фиксировались. Это согласуется с расчетами, согласно которым при начальной скорости газокапельного выброса около 100 m/s аэродинамического дробления капель с $d < 20 \,\mu m$ не происходит, поскольку число Вебера для таких капель меньше критического значения (We < 10). Характерное время газокапельного выброса мазута объемом до $10^5 \,\mathrm{m}^3$ составляло менее 2-х секунд, что было зафиксировано путем измерения удельной поверхности капель от времени (см. рис. 2, b). Величина S

Рис. 3. Графики зависимостей оптической плотности D от времени t для стационарного потока капель.

Рис. 4. Графики зависимости расчетного значения β (кривые *I* и *II*) от величины среднего арифметического диаметра $\langle d \rangle$ капель и экспериментально полученные точки (*1*-17). Справочная информация данных значений точек коэффициентов ослабления излучения каплями β на рис. 4 сведены в таблицу.

рассчитывалась по формуле (3) при $\alpha = 1$, так как параметр Ми $m > 10^3$ и значение Z > 50.

Отметим, что аналогичные результаты были получены при взрывном распылении ДТ и нефти из астраханского месторождения с вязкостью $\approx 5-7 \, Pa \cdot s$ при 320 K с объемом TBC около $10^5 \, m^3$.

На рис. 3 приведены экспериментальные зависимости оптической плотности D от времени для капель водного тумана размером $\langle d \rangle = 4 \,\mu$ m и $\sigma = 1.6$ (рис. 3, a) и масляного тумана с $\langle d \rangle = 0.6 \,\mu$ m и $\sigma = 1.6$ (рис. 3, b). Газокапельные потоки получали с помощью ультразвукового туманообразователя "МНВ12-UH" и генератора "TO-52" соответственно. Кривые 1 и 2 — графики зависимостей оптических плотностей туманов синхронизированных по времени в каналах I и II при $\lambda = 3.4$ и 0.65 μ m. При этом фиксировалась существенная зависимость D тонкодисперсных капель от d и λ , что согласуется с расчетами

согласно теории Ми. Поглощение излучения парами воды практически не наблюдалось в обоих каналах.

На рис. 4 приведены зависимости отношения коэффициентов ослабления излучения каплями $\beta = N\beta_{\rm II}(m)/N\beta_{\rm I}(m)$ от размера капель d: кривая I расчет согласно теории Ми, точки (1-17) — экспериментальные значения, $\beta_{I}(m)$ и $\beta_{II}(m)$ — коэффициенты ослабления излучения каплями диаметром d при $\lambda = 3.4$ и 0.65 µm соответственно. Их значения приведены в [5–8]. Экспериментальные величины β определяются отношением объемных коэффициентов поглощения излучения в каналах I и II — $\beta = K_{II}/K_{I}$, измеренных одновременно. Точкам 1-17 соответствуют данные таблицы. Кривая II рассчитана в соответствии с теорией Ми для длин волн $\lambda = 3.4$ и $0.4 \,\mu$ m. Ее сравнение с кривой *I* показывает, что уменьшение в канале II длины волны излучения с 0.65 µm до 0.4 µm при неизменной длине

Вещество (ГОСТ)	N⁰*	M, kg/m ³	σ	$\langle d \rangle$, micron	$\langle d^2 \rangle^{0.5}$, micron
Масло ТП22 (32-74)	1 5 6	0.0025 0.001 0.002	1.6 1.6 1.7	0.25 0.7 1.3	0.28 0.78 1.5
Табак (3935-2000)	2 3	0.04 0.06	2.5 2.5	0.3 0.55	0.46 0.84
Керосин ТС-1 (10227-86)	4 11 12 14	0.01 0.16 0.5 0.35	1.6 2.5 2.5 2.2	0.6 160 600 250	0.67 244 913 341
Вода (Р51232-98)	7 8 9 13 17	0.045 0.055 0.05 0.35 4	1.6 1.6 1.6 2.2 3	4 6 11 150 800	4.47 6.7 12.3 205 1468
Мазут Ф5 (10585-99)	15	0.25	2.4	348	510
Глицерин (6259-75)	16	0.33	2.3	95	134

Значения $M, \sigma, \langle d \rangle$ и $\langle d^2 \rangle^{0.5}$ для капель топливных жидкостей, воды, глицерина, масла ТП22, смеси твердых и жидких частиц сигаретного дыма с ошибкой $\pm 10\%$

Примечание. №* в таблице соответствует номеру точки на рис. 4.

волны инфракрасного излучения (3.4 µm) не приводит к повышению точности экспресс анализа размеров капель. Как видно из рисунка, для размеров капель $d > 5 - 10 \, \mu {
m m}$ отношение коэффициентов ослабления в каналах I и II с достаточной для практики точностью можно считать не зависящим от размера капель и длины волны. Окраска воды, керосина и глицерина метиленовой синью не влияла на экспериментальные значения β в опытах, что согласуется с теорией [5]. Таким образом, получено удовлетворительное соответствие экспериментальных данных расчетным. Их некоторое несовпадение для полидисперсных аэрозолей обусловлено тем, что полный учет размеров оптической зоны оптрона и корректирующей функции $F(Z, d/\lambda)$ при анализе β для аэрозолей с $\sigma > 1.7$ не проводился из-за сложностей расчета влияния широкого спектра размеров капель на величину $F(Z, d/\lambda)$.

Из анализа полученных результатов следует, что детектирование значений $\beta \approx 1$ с $\tau \leq 0.05$ s при анализе эволюции выбросов топливных жидкостей позволяет сделать вывод о том, что основной диапазон размеров капель превышает 5 μ m, а их тонкодисперсная фракция практически отсутствует. Этот результат фиксировался при импульсном с использованием ВЭМ выбросе топлив и малоэффективном аэродинамическом дроблении капель с $d < 5 \mu$ m при числах Вебера We < 5.

Нахождение β в диапазоне значений от 2-х до 100 означает, что в анализируемой ТВС основную концен-

трацию составляют флуктуирующие по размеру тонкодисперсные капли диаметром менее $3 \mu m$. При этом их средний размер определяется по величине β .

Отметим, что при исследовании ТВС оценивалось поглощение излучения парами атмосферной воды и углеводородов, поскольку, согласно аддитивному закону $D = D_A + D_{\Pi}$, где $D_A = \lg(I_o/I_A)$ и $D_{\Pi} = \lg(I_o/I_{\Pi})$ — оптическая плотность аэрозольной и парогазовой компонент, а I_A и I_{Π} — их интенсивности излучения после ТВС, соответственно [5–8].

Показано, что при пропускании через каналы I и II фильтрованного от капель паровоздушного потока с влажностью более 95% при T = 293-300 К практически не наблюдалось ослабления излучения. Их плотность составляла $D_{\Pi} < 0.01$ и не превышала уровень фона. Аналогично, в канале II при $\lambda = 0.65 + / -0.005 \,\mu$ m ослабления интенсивности волн парами углеводородов, также, не фиксировалось. Тот же результат был получен при детектировании метана и регазифицированного сжиженного газа (СПГ) с объемной концентрацией C = 1-99% об. Эти результаты согласуются с данными анализа спектров поглощения излучения парами воды и углеводородов.

Анализ паров ТВС в канале I с $\lambda = 3.4 \pm 0.2 \,\mu$ m при L = 0.1 m показал, что их величина $D_{\Pi} < (0.05 - 0.1) D_A$. Отметим, что в крупномасштабных выбросах топлив с образованием затопленных струй и облаков объемом от 10^4 до 10^7 m³ пары, как правило, были ненасыщенными. По-видимому, это обусловлено их интенсивным разбавлением воздухом и относительно медленной скоростью испарения капель в процессе их распада.

Необходимо отметить, что скорость испарения и эффективность аэродинамического дробления капель легких алканов и СПГ, а также давление их насыщенных паров существенно выше по сравнению с аналогичными параметрами исследованных капель керосина, мазута, ДТ, глицерина, астраханской нефти, этилового спирта, уайт-спирита и гептила. Например, при T = 293 K, согласно модели конвективного обмена энергией между криогенной каплей и окружающей парогазовой средой, время испарения 50% объема кипящих капель метана пропорционально квадрату их диаметра и при d = 1и 10 μ m составляет соответственно 4 · 10⁻⁶ и 4 · 10⁻⁴ s как на воздухе, так и в облаке парообразного метана с давлением 10⁵ Ра [3,4]. Отметим, что использование классической теории диффузионного испарения Максвелла-Ленгмюра, а также Кнудсена и Герца для неподвижных относительно парогазовой среды кипящих капель не корректно, так как их температуры существенно различаются [5].

В результате анализ размера столь быстроиспаряющихся тонкодисперсных капель легких алканов по величине β не представляется возможным. Этот эффект наблюдался при создании газокапельных потоков метана и СПГ. Однако с помощью канала I детектировалась кинетика образования пожароопасных концентраций метана, этана, пропана, бутана и регазифицированного СПГ.

Их оптическая плотность существенно зависела от типа и величины взрывопожароопасной концентрации алканов и варьировалась в диапазоне $D_{\Pi} \approx 0.02-0.4$ при L = 0.1 m [3,4]. Укажем, что значения их нижнего и верхнего концентрационных пределов воспламенения составляют C (% об.) \approx (4.4/17.0, метан); (2.5/15.5, этан); (1.7/10.9, пропан) и (1.4/9.3, бутан) [1,2].

Заключение

Разработан и запатентован двухканальный анализатор оптически плотных аэрозольных потоков и облаков на основе диодных оптопар с $\lambda = 0.65$ и $3.4 \,\mu$ m для измерения флуктуирующих в широком диапазоне значений оптической плотности, концентрации и размеров дисперсных частиц с быстродействием до 0.05 s. Экспериментальные и расчетные, согласно теории Ми, величины отношения коэффициентов ослабления инфракрасных и видимых волн каплями в зависимости от их размера согласуются.

Быстродействующий оптрон может быть использован для анализа оптически плотных газокапельных потоков ТВС при их импульсном истечении в атмосферу, а также при разработке аэрозольных генераторов взрывного типа для получения тонкодисперсных капель с развитой поверхностью с целью мгновенного создания жидкокапельных барьеров на пути распространения выбросов топлив, пламени, токсичных или радиоактивных газов.

Показана возможность интеграции созданной быстродействующей сети двухканальных лазерных анализаторов выбросов аэрозольных потоков с системами контроля промышленной безопасности объектов топливноэнергетического комплекса, а также их использования как для анализа эволюции аварийных выбросов, так и для инженерных расчетов затопленных газокапельных струй.

Технические характеристики созданного двухканального анализатора техногенных выбросов топливных жидкостей с образованием крупномасштабных ТВС превосходят параметры отечественных и зарубежных аналогов.

Финансирование работы

Работа выполнена по теме "Разработка физикотехнических основ методов измерения параметров аэрозольных и парогазовых облаков, возникающих при крупномасштабных авариях на объектах ТЭК и создание экспериментальных образцов систем диагностики аэрозольных облаков" согласно приказу № 2748 от 28.10.2021.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Журнал технической физики, 2023, том 93, вып. 2

Список литературы

- C.J.R. Coronado, J.A. Carvalho, J.C. Andrade, E.V. Cortez, E.S. Carvalho, J.C. Santos, A.Z. Mendiburu. J. Hazardous Materials, 241–242, 32 (2012).
 DOI: org/10.1016/jhazmat.2012.09.035.
- [2] Данные по горючим газам и парам, относящиеся к эксплуатации электрооборудования. (ГОСТ Р 51330.19-99 (МЭК 60079-20-96))
- [3] А.В. Загнитько, И.Д. Мацуков, В.В. Пименов, С.Е. Сальников, Д.Ю. Федин, В.И. Алексеев, С.М. Вельмакин. ЖТФ, 92 (6), 783 (2022). DOI: 10.21883/JTF.2022.06.52505.325-21
- [4] А.В. Загнитько, Н.П. Зарецкий, И.Д. Мацуков, В.И. Алексеев, С.М. Вельмакин, Д.Ю. Федин, В.В. Пименов, С.Е. Сальников. Газовая промышленность, 5, 82 (2021).
- [5] П. Райст. Аэрозоли. Введение в теорию (Мир, М., 1987), 280 с.
- [6] Ван де Хюлст Г. *Рассеивание света малыми частицами* (ИИЛ, М., 1961), 536 с.
- [7] В.Е. Зуев, М.В. Кабанов. Оптика атмосферного аэрозоля (Гидрометеоиздат, Л., 1987), 255 с.
- [8] Г.П. Грудинская. *Распространение радиоволн* (Высш. шк., 1975), 280 с.
- [9] ООО "ИоффеЛед". www.ioffeled.com.
- [10] С.Е. Александров, Г.А. Гаврилов, А.А. Капралов, Б.А. Матвеев, Г.Ю. Сотникова, М.А. Ременный. ЖТФ, 79 (6), 112 (2009).
- [11] А.В. Загнитько, А.А. Кирш, И.Б. Стечкина. ЖФХ, 62 (11), 3058 (1988).
- [12] J. Broeke, J.M. Perez, J. Pascau. *Image Processing with ImageJ. 2-nd edition* (London, Packet Publishing, 2015), 256 p. ISBN 978-1-78588-983-7.
- [13] А.Н. Ишматов. Ползуновский вестник, (3), 175 (2010).
- [14] В.К. Кедринский. Газодинамика взрыва: эксперимент и модели (Новосибирск, СО РАН, 2000), 435 с.
- [15] С.В. Стебновский. Физика горения и взрыва, 44 (2), 117 (2008).