07.3;13.1 Фоточувствительность полевого транзистора металл—диэлектрик—полупроводник на основе пленки PbSnTe:In с составом вблизи инверсии зон

© А.Э. Климов^{1,2}, И.О. Ахундов¹, В.А. Голяшов^{1,3}, Д.В. Горшков¹, Д.В. Ищенко¹, Г.Ю. Сидоров¹, Н.С. Пащин¹, С.П. Супрун¹, А.С. Тарасов¹, Е.В. Федосенко¹, О.Е. Терещенко^{1,3}

¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия
 ² Новосибирский государственный технический университет, Новосибирск, Россия
 ³ Новосибирский государственный университет, Новосибирск, Россия
 E-mail: klimov@isp.nsc.ru

Поступило в Редакцию 14 ноября 2022 г. В окончательной редакции 14 ноября 2022 г. Принято к публикации 30 ноября 2022 г.

На основе пленки PbSnTe:In/(111)ВаF₂ впервые создан макет полевого транзистора со структурой металл-диэлектрик-полупроводник (МДП-транзистора) с подзатворным диэлектриком Al₂O₃. При T = 4.2 К под действием затворного напряжения $-7.7 < U_{gate} < +7.7$ V относительное изменение тока сток-исток $\Delta I_{ds}/I_{ds}$ достигало ~ 5 раз. При освещении малыми (~ 100 photon/s) потоками обнаружена отрицательная фотопроводимость с уменьшением I_{ds} до ~ 10^4 раз с одновременным уменьшением ΔI_{ds} до ~ 10^3 раз и более. Оценка обнаружительной способности дала ~ $7 \cdot 10^{16}$ сm · Hz^{0.5} · W⁻¹ на длине волны $\lambda \sim 25 \,\mu$ m при времени накопления ~ 0.5 s. Обсуждается качественная модель, предполагающая существование глубоких уровней ловушек и фотоемкостного эффекта.

Ключевые слова: эпитаксиальные пленки, PbSnTe:In, МДП-транзистор, отрицательная фотопроводимость, приемник излучения.

С начала 60-х годов прошлого века детально изучены оптические, гальваномагнитные, диэлектрические свойства $Pb_{1-x}Sn_xTe$ (x = 0-1), а также проведены исследования в таких областях, как зонная структура, фазовые переходы, термоэлектрические явления и многих других. На основе PbSnTe разработаны термопреобразователи, фотодиоды и лазеры на длины волн вплоть до сверхдальнего ИК-диапазона. Результаты исследований обобщены не в одном десятке книг и обзорных работ (см., например, [1-4]). На этом фоне необычно выглядит немногочисленность и фрагментарность исследований структур металл-диэлектрик-полупроводник (МДП), ограниченных измерениями емкости (С-V) и проводимости (G-V) только образцов на основе PbTe (x = 0)(см., например, [5,6]). Результаты исследований МДПтранзисторов (МДПТ) на основе PbSnTe в литературе отсутствуют. Одной из причин этого может быть большая статическая диэлектрическая проницаемость $(\varepsilon > 400$ для x = 0 и до $\varepsilon \sim 10^4$ и более при x > 0) и высокая концентрация носителей заряда $n_0(p_0)$. В конце 70-х годов прошлого века обнаружено, что в определенном диапазоне *x* при легировании индием $n_0(p_0)$ снижается концентрация носителей заряда на порядки, вплоть до собственной [4,7], что упрощает создание МДПТ на основе PbSnTe. Примерно с 2010 г. исследуются свойства PbSnTe как топологического кристаллического изолятора с поверхностными дираковскими состояниями, образующимися в области х с инверсией зон (см., например, [2], с. 233-236). Это делает

технологию МДПТ на основе PbSnTe привлекательной еще и потому, что свойства МДПТ также напрямую связаны с состоянием поверхности. Тем не менее вплоть до настоящего времени исследования МДПТ на основе PbSnTe не получили заметного развития.

Нами впервые созданы и исследованы МДПТ на основе трех пленок PbSnTe:In с различной проводимостью, полученных методом молекулярно-лучевой эпитаксии на подложках (111)BaF₂. Методика создания МДПТ описана в работе [8], в которой исследован МДПТ на основе пленки PbSnTe:In с наибольшей проводимостью и относительным изменением тока в канале МДПТ под действием U_{gate} около 0.07–0.08. Это примерно в 10² раз меньше, чем в настоящей работе, а в МДПТ на основе пленки PbSnTe:In с наименьшей проводимостью изменение сопротивления канала под действием U_{gate} достигало ~ 10⁵ раз [9].

При измерениях образцы размещались в металлической камере, экранировавшей их от фонового излучения и располагавшейся либо в жидком гелии, либо в его парах. Источник излучения также размещался внутри камеры и был откалиброван при T = 4.2 К с использованием бескорпусного CdHgTe-фотодиода. На вставке к рис. 1 приведены принципиальная схема и фотография исследованного МДПТ. На основной части этого рисунка показаны зависимости от 1/T "холловских" концентрации n_0 и подвижности μ_n исходной пленки Pb_{0.72}Sn_{0.28}Te:In толщиной 1.35 μ m с концентрацией индия ~ 0.6 at.%. Для сравнения приведены данные

Рис. 1. Зависимости от 1/T "холловских" концентрации $n_0 = -1/qR_H$ (*I*) и подвижности $\mu_n = -R_H\sigma$ (*2*) для использованной в настоящей работе пленки PbSnTe:In (q — заряд электрона, R_H и σ — коэффициент Холла в поле B = 0.2 T и удельная проводимость соответственно). *3* — данные по зависимости $\mu_n(1/T)$ из одной из первых работ по свойствам PbSnTe:In с низкой проводимостью [7]. На вставке — принципиальная схема и фотография МДПТ вблизи канала.

 $\mu_n(1/T)$ для объемного монокристалла [7]. Большая максимальная подвижность $\mu_n \sim 3.8 \cdot 10^4 \text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$ (кривая 2), схожее поведение кривых 2,3 и данные дифракции быстрых электронов на отражение при росте PbSnTe:In подтверждают хорошее кристаллическое качество исходной пленки.

На рис. 2 при $U_{gate} = 0$ приведены $I_{ds}(1/T)$ при охлаждении (кривые 1, 3) и нагреве (кривая 2). Зависимости 1, 3 измерены при напряжении сток-исток $U_{ds}^{(1,3)} = 0.02$ V, зависимость 2 — при $U_{ds}^{(2)} = 1.56$ V. Значения измеренного I_{ds} (кривая 2) умножены на отношение $U_{ds}^{(1,3)}/U_{ds}^{(2)} \cong 0.0128$. Кривая 3 рассчитана по зависимости $\sigma(T)$ исходной пленки с учетом геометрии канала МДПТ. Все кривые различаются не более чем на $\pm 10\%$ при T > 60 К. Существенное различие кривых 1 и 3 в области T < 60 К связано, очевидно, с разным состоянием поверхности PbSnTe:In. Для кривой 3 это

свободная поверхность, а для кривой 1 она закрыта Al_2O_3 . Вблизи $T \sim 4.2$ К кривые 1 и 2 различаются до 10^6 раз. Это связано с тем, что перед нагревом были проведены измерения при освещении, результаты которых отражены на рис. 3. Отличия кривых на рис. 2 друг от друга связаны, очевидно, с наличием уровней ловушек и их перезарядкой при освещении и изменении температуры. Представляется, что по крайней мере у части ловушек энергия ионизации ΔE_t сопоставима с (1-3)kT при T = 60 К, т.е. $\Delta E_t \sim 0.005 - 0.015$ eV.

На рис. 3, *а* приведены $I_{ds}(t)$ при T = 4.2 К и $U_{gate} = 0$, на верхнем фрагменте рис. 3, $b - I_{ds}(t)$ при ступенчатом изменении $U_{gate}(t)$, которое показано на нижнем фрагменте рис. 3, *b*. Участки кривых с включенным освещением выделены красным цветом (в электронной версии статьи), моменты включения и выключения освещения обозначены как \uparrow и \downarrow соответственно. На

Рис. 2. Зависимости тока канала МДПТ $I_{ds}(1/T)$ без освещения при охлаждении (I, 3) и нагреве (2). Направление изменения температуры указано стрелками около кривых. Пояснения даны в тексте. Штриховая кривая схематично показывает переход из "проводящего" (кружок на кривой I) в "высокоомное" (кружок на кривой 2) состояние после освещения.

рис. 3, *а* при $t \sim 1630$ s величина $U_{ds} = 0.02$ V изменена на $U_{ds} = 1.56$ V. На вставке к этому рисунку в линейном масштабе показана часть зависимости с отрицательной фотопроводимостью (ОФП). Главным на рис. 3, *а* является гигантская ОФП с уменьшением I_{ds} при освещении до $\sim 10^4$ раз. На вставке видны особенности $I_{ds}(t)$, связанные с включением и выключением освещения. При $U_{ds} = 1.56$ V (рис. 3, *a*) серия локальных особенностей на участке ОФП наблюдалась при постоянно включенном освещении.

Схожий эффект ОФП наблюдался на близких по свойствам пленках PbSnTe:In [10], хотя относительное изменение тока при ОФП было меньше в 10-100 раз. Для объяснения ОФП была привлечена качественная модель, близкая к использованной в [11]. Она предполагает наличие в PbSnTe:In сравнительно широкозонных включений с глубокими уровнями ловушек, захват на которые неравновесных электронов ведет к уменьшению проводимости в более узкозонной "матрице". Комплекс результатов настоящей работы однозначно указывает на важную и даже определяющую роль ловушек в наблюдаемых эффектах, которые даже на качественном уровне объясняются лишь в предположении наличия ловушек разного типа. Так, на рис. 3, b постоянная времени переходного процесса снижается примерно в 25 раз от области I к области IV, что возможно при заполнении неких глубоких уровней. Это же может быть причиной отсутствия на рис. 3, b долговременных (с постоянной времени $\tau > 0.5 \, {
m s})$ переходных процессов в области *t* > 1100 s. Наиболее неожиданным результатом является то, что одновременно со снижением $I_{ds}(t)$ в области ОФП уменьшается и влияние ΔU_{gate} на ΔI_{ds} . Упрощенно, в эффекте поля $\Delta U_{gate} \sim \Delta \sigma_s$, где $\Delta \sigma_s$ изменение плотности поверхностного заряда вблизи интерфейса полупроводник-диэлектрик. В свою очередь $\Delta \sigma_s = \Delta \sigma_{st} + \Delta \sigma_{sf}$, где $\Delta \sigma_{sf}$ и $\Delta \sigma_{sf}$ — изменение плотности локализованного и свободного поверхностных зарядов соответственно, а $\Delta I_{ds} \sim \Delta \sigma_{sf}$. Есть два предельных подхода для объяснения на качественном уровне

Рис. 3. Временные зависимости $I_{ds}(t)$ при T = 4.2 К. a — напряжение $U_{gate} = 0$, b (верхний фрагмент) — ступенчатое изменение $U_{gate}(t)$ (показано на нижнем фрагменте части b). Красным цветом (в электронной версии статьи) выделены участки кривых с включенным освещением. Отрезки вблизи кривых $I_{ds}(t)$ соответствуют зависимостям вида $I \sim \exp(-t/\tau)$, рядом с которыми приведены значения τ . На части b кривые I и 2 представлены в линейном и полулогарифмическом масштабе соответственно, а горизонтальные стрелки около кривых указывают на соответствующие им шкалы на осях ординат. Цифрами I–IV обозначены области релаксации $I_{ds}(t)$ после одинакового переключения U_{gate} . Дополнительные пояснения даны в тексте.

снижения ΔI_{ds} при неизменном ΔU_{gate} . Первый сильное (до двух порядков и более) снижение $\Delta \sigma_{sf}$ при неизменном $\Delta \sigma_s$ на участках с ОФП. Это означает, что одновременно с ОФП сильно возрастает концентрация и (или) меняются свойства (заселенность) ловушек, определяющих величину $\Delta \sigma_{st}$. Второй — уменьшение в 100 и более раз собственно $\Delta \sigma_s$, что возможно, если под действием освещения в PbSnTe:In возрастает *є*. Это должно проявляться в виде фотоемкостного эффекта (ФЕЭ), который наблюдался в [12] на пленках, а позже на объемном монокристалле PbSnTe:In [13] с изменением емкости образцов до 100 и более раз. Авторы [13] считают, что причиной гигантского ФЕЭ является образование при освещении специфических состояний с неясной природой, а не увеличение є, как считается в [12]. В любом случае сам факт ФЕЭ представляется неоспоримым, и, возможно, именно он является причиной наблюдаемого в настоящей работе эффекта.

В заключение отметим, что анализ $I_{ds}(t)$ вблизи моментов включения освещения позволил оценить обнаружительную способность МДПТ как прототипа приемника излучения (ПИ): $D_{\lambda=25\,\mu\text{m}}^* \sim 7 \cdot 10^{16} \text{ сm} \cdot \text{Hz}^{0.5} \cdot \text{W}^{-1}$ в бесфоновых условиях при времени накопления $\tau \sim 0.5$ s. Для ПИ размером $\sim 100 \times 100\,\mu\text{m}$ это соответствует пороговому потоку $P_{\lambda=25\,\mu\text{m}}^1 \sim 1.5 \cdot 10^{-19} \text{ W} \cdot \text{Hz}^{-0.5}$, что сравнимо с таковым для лучших ПИ сверхдальнего ИКи субмиллиметрового диапазонов в условиях низких фоновых потоков (см. [3], с. 936, 981, 999). Возможно, что дальнейшее развитие технологии МДПТ на основе PbSnTe:In позволит решить такую важную проблему, как "задержанная фотопроводимость" в ПИ на основе PbSnTe:In [14].

Финансирование работы

Исследование поддержано грантами РФФИ № 20-02-00324 (электрофизические измерения) и № 19-29-12061 (создание образцов).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Ю.И. Равич, Б.А. Ефимова, И.А. Смирнов, Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe и PbS (Наука, М., 1968).
- G. Springholz, Molecular beam epitaxy. From research to mass production, 2nd ed. (Elsevier, Netherlands, 2018), p. 211–276, 233–236.
- [3] A. Rogalski, *Infrared and terahertz detectors*, 3rd ed. (CRC Press, Boca Raton, 2019), p. 527–578, 936, 981, 999.
- [4] Б.А. Волков, Л.И. Рябова, Д.Р. Хохлов, УФН, 172 (8), 875 (2002). DOI: 10.3367/UFNr.0172.200208b.0875 [B.A. Volkov, L.I. Ryabova, D.R. Khokhlov, Phys. Usp., 45 (8), 819 (2002). DOI: 10.1070/PU2002v045n08ABEH001146].

- [6] P.H. Zimmermann, M.E. Mathews, D.E. Joslin, J. Appl. Phys., 50, 5815 (1979). DOI: 10.1063/1.326725
- [7] Б.М. Вул, И.Д. Воронова, Г.А. Калюжная, Т.С. Мамедов, Т.Ш. Рагимова, Письма в ЖЭТФ, **29** (1), 21 (1979).
 [В.М. Vul, I.D. Voronova, G.A. Kalyuzhnaya, T.S. Mamedov, T.Sh. Ragimova, JETP Lett., **29** (1), 18 (1979).].
- [8] А.Э. Климов, В.А. Голяшов, Д.В. Горшков, Е.В. Матюшенко, И.Г. Неизвестный, Г.Ю. Сидоров, Н.С. Пащин, С.П. Супрун, О.Е. Терещенко, ФТП, 56 (2), 243 (2022). DOI: 10.21883/FTP.2022.02.51969.30 [А.Е. Klimov, V.A. Golyashov, D.V. Gorshkov, E.V. Matyushenko, I.G. Neizvestny, G.Yu. Sidorov, N.S. Paschin, S.P. Suprun, O.E. Tereshchenko, Semiconductors, 56 (2), 182 (2022). DOI: 10.21883/SC.2022.02.53273.30].
- [9] А.Э. Климов, А.Ю. Миронов, И.О. Ахундов, В.А. Голяшов, Д.В. Горшков, Д.В. Ищенко, Н.С. Пащин, Г.Ю. Сидоров, С.П. Супрун, А.С. Тарасов, Е.В. Федосенко, О.Е. Терещенко, в сб. тез. докл. XV Рос. конф. по физике полупроводников (Нижний Новгород, 2022), с. 67. https://semicond2022.ru/file/29/b86bdcf0/abstracts.pdf
- [10] А.Н. Акимов, А.Э. Климов, С.В. Морозов, С.П. Супрун, В.С. Эпов, А.В. Иконников, М.А. Фадеев, В.В. Румянцев, ФТП, **50** (12), 1713 (2016). [А.N. Акітоv, А.Е. Кlimov, S.V. Morozov, S.P. Suprun, V.S. Epov, A.V. Ikonnikov, M.A. Fadeev, V.V. Rumyantsev, Semiconductors, **50** (12), 1684 (2016). DOI: 10.1134/S1063782616120022].
- [11] R.A. Hopfel, Appl. Phys. Lett., 52 (10), 801 (1988).
 DOI: 10.1063/1.99288
- [12] А.Э. Климов, В.Н. Шумский, Прикладная физика, № 3, 74 (2004).
- [13] А.Е. Кожанов, А.В. Никорич, Л.И. Рябова, Д.Р. Хохлов, ФТП, **40** (9), 1047 (2006). [А.Е. Kozhanov, A.V. Nikorich, L.I. Ryabova, D.R. Khokhlov, Semiconductors, **40** (9), 1021 (2006). DOI: 10.1134/S1063782606090053].
- [14] A.G. Klimenko, A.E. Klimov, I.G. Neizvestny, A.A. Fratsuzov, V.N. Shumsky, in *Narrow gap semiconductors*, ed. by S.C. Shen, D.V. Tang, G.V. Zheng, G. Bauer (World Scientific, 1997), p. 164.