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1. Introduction

The time-dependent and time-independent Schrödinger

equations [1] have always been a particular focus of

theoretical and computational physics and chemistry, and

many efficient methods, algorithms, and computer programs

for solving these have been developed. However, since they

form the basis of non-relativistic quantum mechanics and

can pave the way for quantitatively accurate descriptions

and prognoses of the most promising modern experiments,

numerical solutions to these equations are of great interest,

and this is expected to be the case for the foreseeable future.

New experimental targets and techniques have given rise

to new requirements for these methods and programs. For

example, in recent years, spectroscopy of the photoassoci-

ation (PA) of ultracold atoms (e. g., [2–4] and references

therein) have drawn substantial attention, since these ex-

periments are expected to be able to produce molecular

ensembles in exotic states (and to some extent have already

done so), such as molecules in their absolute (i. e., in all

degrees of freedom) ground states [5,6], quantum gases

and liquids of these molecules [7–9], and so on. Besides

the obvious interest in these systems from a fundamental

physics standpoint, they appear to be very prospective

in applications in fields such as fully controlled quantum

chemical reactions [10], highly precise measurements [11–
13], and the development of quantum computers and

quantum information systems [14,15].

Probably the most efficient way to enhance the PA

process, and hence to increase the production of such

ensembles, is by using magnetically tuned near-dissociation

Feshbach resonances [16–19].

The Feshbach resonances belong to the continuous spec-

trum, and those of interest here lie within a range of

very low energies (the typical temperatures of ultracold

gases of atoms can be ∼ 1µK and lower). A wavepacket

on the continuous spectrum evolves within an infinite

range of spatial coordinates, which of course cannot be

strictly represented numerically. One way to overcome

this difficulty is by the introduction of artificial absorbing

boundary conditions or optical potentials [20], in order

to damp the wavepacket amplitudes at the boundaries of

the physically important spatial interval. The efficacy of

this damping depends on the type of absorbing function

and the length of its action: this length must not be

much less than the length of the oscillation of the plane

wave (de Broglie wavelength) with the energy of interest.

Low-energy Feshbach resonance states have exceptionally

long wave oscillations (hundreds of Bohr radii or more),
which requires the use of very long damping zones. An

examination of the various types of absorbing functions and

ways of applying them can help to reduce the volume of

these zones, or at least to estimate the expectation values of

the computational errors of such reductions.

In the whole, the resonance phenomena, including the

Feshbach resonances, are among the most exciting topics

in various fields of quantum physics and chemistry, such as

the scattering theory, spectroscopy, and so on, in which the

absorbing functions are highly-demanded.see the literature

referred to in the following section (Sec. 2.1 —
”
Basic

physics and algorithms“).
The principal aims of the present work were as follows:

− To describe a trigonometric (cosine)-type absorbing

function, which to the best of our knowledge has never

before been used in this type of problem.
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− To introduce and briefly describe our computer pro-

gram for solving the 1-D multichannel Schrödinger equa-

tions using the (Mapped) Fourier Grid method, which

is adapted for use with our Optimizer package (in Mat-

lab), [21].
To carry out a numerical investigation of the properties

and capabilities of the cosinetype absorbing function, with

the help of our Fourier Grid program. In part, we explore an

ability of our new absorbing function to provide reasonable

description of quantum dynamics employing short-range

absorption zones (comparable or shorter than the de Broglie

wavelength), with the prospect of simulating Feshbach

resonances of atomic pairs with reasonable computational

expanses but without a crucial loss of the accuracy.

All the computer programs used in our work are

described and made available for a free download (see
Ref. [21] and Sec. 4 below).
In the course of our investigation, we found a relatively

recent work [22], which also dealt with an absorbing

function constructed from cosines and applied it in optimal

control theory calculations. Although the authors of [22]
did not provide all the details on this function promising to

give them in a separate publication later, it is clear from the

context that it strongly differs from the one described in the

present paper. Contrary to our approach, they constructed

its imaginary part as a negative square of finite cosine series

and its real part as other finite cosine series, and optimized

the coefficients to minimize the transmission and reflection;

no smoothness conditions at the joint points, which are

essential in our work, were analyzed. We hope that both

approaches will find their use without contradicting each

other. On the other hand, the very fact of publishing

the cited paper testifies the regrown current interest to

the absorbing functions and optical potentials (despite a

long history of the question) thanks to new developments

in many fields, including the optimal control theory as in

Ref. [22] and the spectroscopy of ultracold ensembles as in

the present paper.

We understand that, although for the present results

on the cosine-type absorbing function the use of our

programs on the Fourier Grid method was essential, there

may be readers interested in only physical aspects and

those interested in only software. The former ones can

ignore Sec. 4
”
Software implementation“ without lacking the

physical picture, while the latter ones can concentrate their

attention on this Sec. 4 along with the program manuals

referred to from there, ignoring other materials.

2. Methods

2.1. Basic physics and algorithms

As is well known [1], all the principal properties of a

quantum system are determined by the time-independent

(stationary) and time-dependent Schrödinger equations.

Many efficient algorithms for solving the Schrödinger

equations have previously been proposed (e. g., see [23–
25] and references therein). In the present work, we

employ one of these, which is known as the Fourier

Grid method [26–32]. Our realization of this method

as a software program is described in Sec. 4
”
Software

Implementation“ below. These programs can be freely

downloaded from [21]. Along with the programs, the

English- and Russian-language manuals are provided, where

the algorithm and the underlying physics are detailed.

When the (presumably oscillatory) dynamics of the

wavepacket occur entirely within the field of a bound

potential in a closed domain, no substantial extra difficulties

arise; however, problems emerge when computation of

a free (decaying, dissociating) state dynamics is needed,

such as when modeling molecular predissociation spectra

or Feshbach resonances in scattering theory. In this case,

the wavepacket reaches the rightmost boundary of the

computational grid within a limited time, and due to the

periodic character of the Fourier transform, intrudes into

(or is reflected from) the spatial domain at the opposite

leftmost boundary, producing non-physical features in the

computational results. In Fourier transform theory, this

effect is known as
”
aliasin“. A straightforward method of ex-

panding the computational grid so that the wavepacket does

not reach the boundary within the necessary computational

time (which would also ensure a satisfactory density of the

computed pseudo-bound states) has the obvious drawback

of an unreasonable increase in the necessary computational

resources (although this is possible to some extent in the

framework of the Mapped Fourier Grid algorithm).
Possible solutions to this problem include the introduction

of absorbing boundary conditions or the so-called optical

potential. In the first approach, the wavefunction (packet) at
each subsequent time step is multiplied by a function, which

is actualized within a certain vicinity of the boundary and

decreased towards it.the absorbing function.thus preventing

the packet from reaching this boundary. In the second

approach, a negative imaginary-type summand (or a more

general complex-type one.see below) is added to the

potential function U itself, ensuring that exp{−(i /~)Uδt}
(where δt is the elementary time step in the step-by-step

scheme) behaves analogously, i. e., it is actualized within

a certain vicinity of the boundary and decreases towards

it. These approaches are practically equivalent up to the

logarithm or exponent operations; however, the optical

potential method is somewhat more general, since the

absorbing function can be only applied when the dynamics

are computed in a step-by-step way, which is not always the

case. Physically, the absorbing barrier retains the ability to

transmit and reflect some part of the wavepacket, and the

parameters of this barrier should be adjusted so that the

transmission and reflection coefficients are minimal.

Various forms of the absorbing functions or optical poten-

tials have been proposed and analyzed. A comprehensive

review of the relevant works published before 2004 is

presented in [20], some of which [33–39] are mostly relevant

to our investigation (notice that Ref. [39] was missed in

Ref. [20]). A few examples of more recent works on the

subject can be found in [22,40–44]. We would also like
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to mention the works [45–48] exploring the subject of the

artificial boundary conditions but from somewhat different

points of view (the complex scaling technique, the Green

functions technique).
It was discovered [20,33,34] that the properties of the

absorbing function are controlled by the single master

parameter of the length λ = 2π~/
√
2mE of the oscillation

of a plane wave (de Broglie wavelength) with energy E. In
other words, they are universally expressed in dimensionless

relative units of E and λ. This observation has been used in

many works (e. g., [33,34]), where the results of numerical

tests with some optical potentials for a particular model

brought forth a kind of general multipurpose recommenda-

tions.

An interesting practical generalization of the concept

of the optical potential has been considered in several

works [20,36,37]. If the efficiency of an optical potential

is optimized for a certain specific energy E0, it loses

efficiency for other energies, and especially those that are

noticeably lower than E0. The reason for this behavior is

rather obvious: the spatial range of an efficiently absorbing

optical potential must be no noticeably less than the

oscillation length of the wavefunction, since otherwise the

wavefunction would not register the existence of this barrier.

On the other hand, the part of the wavefunction in the

absorbing zone has nothing to do with the actual physics of

the process, and we are able to warp this in any way that

is convenient for us. The effective oscillation length of a

low-energy wavefunction can be decreased by introducing,

along with the absorbing imaginary-type potential, a real-

type summand to reduce the potential function in this region

to an appropriate value, to form a complex-type optical

potential.

2.2. Trigonometric (cosine-type) absorbing
function and optical potential

In our programs, we use absorbing boundary conditions

and an optical potential, as described below. It is clear

that any alternative or additional optical potential can be

introduced in any coordinate region at the construction stage

of the potential function.

We attempted to fulfill the requirement that the function

should be as smooth as possible, meaning that the maxi-

mum possible number of several lower-order derivatives at

the points of joining should be continuous. The evolution

operator is in fact a complex differentiation operator; it

was shown in Ref. [34] that the semiclassical reflection

coefficient remains zero up to the order of the WKB

approximation that is equal to the order of the maximal

continuous derivative at the front of the optical potential.

Trigonometric functions have well-understood smoothness

properties and their combinations look prospective to ensure

this requirement.

In our work, we chose an absorbing function in the form:

f kβ(z(r )) =

[

1

2
+

k
∑

n=1

cn cos ((2n− 1)πz(r ))

]β

, (1)

Table 1. Coefficients cn in combinations Eq. (1) of k cosines,

ensuring the continuity of the derivatives of orders up to 2k − 1

k c1 c2 c3 c4

1 1/2 − − −

2 9/16 −1/16 − −

3 75/128 −25/256 3/256 −

4 1225/2048 −245/2048 49/2048 −5/2048

where r is the spatial coordinate and

z(r ) =
r −min(r )

max(r ) −min(r )
,

if a decrease in the function is desired towards the right

boundary, or

z(r ) =
max(r ) − r

max(r ) −min(r )
,

if a decrease in the function is desired towards the left

boundary; min(r ) and max(r ) designate the left and right

points in the r -scale, where the lower-order derivatives of

the function Eq. 1 should turn to zero (see below).
It is obvious that, at least for β = 1, this function

automatically ensures that all the derivatives of odd orders

are zero at the ends of the region, z ∈ [0, 1]. The derivatives
of the even orders are:

d2q f k1(z)

dz2q
=

1

2
δq0

+ (−1)q
k
∑

n=1

cn ((2n− 1)π)
2q
cos ((2n− 1)πz(r )) . (2)

Hence, all the derivatives of orders up to 2k − 1 are zero at

both ends of the interval when the following equations are

satisfied:

k
∑

n=1

cn = 1/2,

k
∑

n=1

cn(2n− 1)2q = 0, (3)

where q = 1, 2, . . . , k − 1.

The coefficients cn that are important in practice were

found from the solutions of these equations, as listed in

Table 1. Based on our experience, cases with k > 4 do

not need to be considered, due to the limited accuracy of

digital computations; however, they can be computed in our

programs.

For β 6= 1:

f kβ(δz) ∼
[

1− (δz)2k
]β ∼ 1− β(δz)2k,

f kβ(1− δz) ∼
[

(δz)2k
]β

= (δz)2kβ ,

and consequently the derivatives of the same order of up to

2k − 1 remain zero at the leading edge, while at the falling
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edge the derivatives are zero up to the order of 2kβ − 1;

for β > 1, this increases the degree of smoothness of the

function at the falling edge. The use of the function

f̃ kβ(z) = (1− f kβ(1− z)) (4)

means that this property is fulfilled at the leading edge.

To ensure the consistent transformation of the absorbing

function to the optical potential and vice versa, the parame-

ter β should be expressed in the form

β = αE0

δt
~
, (5)

where E0 is some reference energy, and α is an adjustable,

dimensionless, linear factor in the optical potential with the

form:

VOi
kα (r ) = iαE0 ln ( f k1(z(r ))) . (6)

The same mathematics is very suitable for the real-type

(lowering) part of the complex-type optical potential. We

use:

VOr
kγ (r ) = γE0 ( f k1(z(r ) − 1)) , (7)

(where γ is an adjustable dimensionless parameter) with

the total optical potential

VO
kαγ(r ) = VOi

kα (r ) + VOr
kγ (r ). (8)

In terms of the optical potential, the smoothness proper-

ties at the leading edge, which are most interesting to us,

are the same as for the absorbing function itself.

We notice in passing that the Eqs. (1) and (4) can be used

for many other purposes, e. g., in numerical differentiation

using the Fourier transform method or for the smooth

connection of dependencies in a way that is similar to but

in some sense more general than the spline method.

3. Results

Below, we present numerical tests of the properties of

the absorbing functions (optical potentials) of the form

described in Section 2.2 .Trigonometric (cosine-type) ab-

sorbing function and optical potential., using our Fourier

Grid programs (see Ref. [21] and Sec. 4 below). We simu-

late computations of a straightforward quantum dynamics

(which would be a freely evolving case if no absorbing

function were included) using the model of Vibók and

Balint–Kurti [33] and a modified (and in our opinion, more

practical) similar model.

In [33], Vibók and Balint–Kurti proposed a convenient

computational model for exploring the properties of various

optical potentials, and applied it to a set of such potentials

(powers and exponents of 1/r ). The recommendations set

out in Ref. [33] have been adopted by many researchers

since then.

In their model, a Gaussian wavepacket with mean energy

E was evolved in the field of a constant (conventionally
zero) potential, until it reached the absorbing barrier formed

by an optical potential located within a limited range of the

spatial coordinates of length lλ0 around the center of the

overall range (λ0 is the de Broglie wavelength, l is the user-

defined dimensionless length of the absorbing zone). It was
partly reflected from the region in front of the barrier and

partly transmitted to the region behind it. After sufficient

time t for both parts of the wavepacket ψ(r, t) to reach

regions far from both the barrier and the computational grid

boundaries, the reflection R =
∫

{r
−
} |ψ(r, t)|2 dr and trans-

mission T =
∫

{r +}
|ψ(r, t)|2 dr , coefficients were estimated,

where {r−} and {r +} denote the spatial regions in front

of and behind the barrier. Most of the test computations

were done for an evolving Gaussian wavepacket with mean

energy E = E0 = 0.1 au and mass m = 1836.18 au (where

the atomic Hartree units (au) were used). The spatial

span lλ0 of the absorbing zone was varied from l = 1

to l = 15, and the
”
optimal“ parameters of the optical

potentials were determined in order to minimize the sum

(R + T) for this reference energy E0 = 0.1 au with the de

Broglie wavelength λ0.

Some of our test computations were done using the

exact model of Vibók and Balint–Kurti but with our

optical potential, as described in Section 2.2
”
Trigonometric

(cosine)-type absorbing function and optical potential“.

Fig. 1 illustrates the evolution of the wavepacket in this

model, computed with our Fourier Grid package (notice the

logarithmic scale for the amplitudes of the wavepacket). The
reflected and transmitted parts of the wavepacket are clearly

distinguishable.

We also considered another model (in our opinion a

more practical one), in which we placed an absorbing

region near the rightmost boundary, and added a wall

near the leftmost boundary with the maximum amplitude

of 100E, decreasing linearly on a logarithmic scale to

value of zero within the range of the first four nodes

of the computational grid. The left wall simulates a

typical short-range wall of physical interaction potentials,

and is intended to prevent the remnants of the wavepacket

from intruding into the coordinate grid diapason from the

left, and instead causing it to be reflected back from the

right. As a quantitative characteristic of the absorbing

efficiency in this model, we used the distortion coefficient

D =
∫

{r} |ψ(r, t)|2 dr where the integral spanned the entire

range {r} of the computational grid (equal to (R + T), and
in practice indistinguishable from the reflection coefficient R
within the computational accuracy, thanks to the very short

range of r and the very small amplitudes of the wavepacket

behind the absorbing barrier). Fig. 2 illustrates the evolution

of the wavepacket in this model, computed with our Fourier

Grid package, in a similar way to Fig. 1.

Attention should be drawn to the fact that many of the

values of R, T , D estimated in this way are so small that they

are at the limits of computational accuracy. Consequently,

they are very sensitive to computational details (grid
characteristics, parameters of the initial Gaussian, etc.). We

discovered that any change in these details could change

these values as much as twice, or even more; this forced
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Figure 1. Decimal logarithms of wavepacket amplitudes at

time instants t = 0 and tfin, evolved using the model of Vibók

and Balint–Kurti [33] with the cosine-type optical potential

(Section 2.2) and k = 2, l = 4, and α = 0.853 for a wavepacket

with energy E = E0 = 0.1 au. The absorbing region spans a length

∼ 1.3a0 (where a0 is the Bohr radius) to the right of r = 0. The

inset shows the imaginary part of the optical potential.
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Figure 2. Decimal logarithms of wavepacket amplitudes at time

instants t = 0 and tfin, evolved in a model with an absorbing barrier

to the right and a wall to the left, with a cosine-type optical

potential (Section 2.2) for k = 2, l = 4, and α = 0.853, for a

wavepacket with energy E = E0 = 0.1 au. The absorbing region

spans a length ∼ 1.3a0 (where a0 is the Bohr radius) to the right

of r = 0.

us to choose a rather wasteful set of parameters to ensure

the relative stability of our estimates. More specifically, for

each wavepacket with mean energy E, we chose a grid with

eight nodes per oscillation. The half-width of the Gaussian

was equal to seven wavelengths of this oscillation. The

center of the Gaussian at t = 0 was located in the center

of the diapason, to the left of r = 0, spanning 26 Gaussian

half-widths. In the model of Vibók and Balint–Kurti, the
length of the grid to the right of r = 0 was also equal to 26

Gaussian half-widths, while in the model with an absorbing

barrier to the right and a wall to the left, it was limited

by the value of (l + l+)λ0 (the user-defined dimensionless

length l spans the region where z(r ) ∈ [0, 1] and l+ is the

length of an extra absorbing zone behind it — see details

in Sec. 4 below). The absorbing barrier was placed to the

right of r = 0, and spanned a range of (l + l+)λ0 in both

cases. The evolution time tfin was precomputed as the time

required for the center of the freely evolved Gaussian to

move twice through the distance from its initial location to

r = 0. We would like to emphasize once again that the

numerical estimates obtained in this manner should be not

considered exact quantitative results but rather tendencies,

which are primarily seen on a logarithmic scale.

Using the model of Vibók and Balint–Kurti, we per-

formed a series of computations emulating those in [33],
with the aim of determining the

”
optimal“ parameters of

the optical potentials to ensure minimal values of (R + T)
for a particular energy E = E0. These computations were

done for the optical potential in Eq. (6), with k = 1, 2, 3, 4

and l = 1 through l = 15, l+ = 0. The results are presented

in the first four columns (l , α,R, T) of Table 2. The fifth

column D is the distortion coefficient, which was computed

using the same parameters, in the model with an absorbing

barrier to the right and a wall to the left. The last two

columns are the results of a similar optimization to ensure

minimal values of the distortion coefficient D in the latter

model. It can be seen from this table that in comparison

with the analogous tables in [33], the efficiency of our

cosine-type optical potential is generally close to that in [33],
and is somewhat better at longer l . The results for k = 3

almost totally surpass the results for the quartic optical

potential recommended in [33], although in our opinion, all

of the other results are also appropriate for most practical

needs.

Fig. 3 illustrates the typical distortion properties of the

optical potential in Eq. (6) for the models of Vibók and

Balint–Kurti and our other model, and their dependence

on the parameter α. It can be seen that in the region of

relatively large α, both curves are similar to each other,

although they diverge in the region of small α. As a

consequence, the D-curve (in the second model) has two

minima, the second of which is very close to the minimum

of the (R + T)-curve (in the first model); however, the

global minimum is located in the region of smaller α.

Usually, a range of energies E is of interest rather than a

single value E = E0, and it is desirable that the absorbing

efficiency should remain high over this entire range. Figs. 4

and 5 show the distortion coefficient D (in the second

model) computed for k = 2, l = 4, and values of α from

Table 2, D-optimized (first minimum in Fig. 3) and (R + T)-
optimized (second minimum in Fig. 3) for E0 = 0.1 au in a

range of energies E = 0.01 au to E = 1 au (indicated by

circles connected by black solid lines). The D-optimized

curve in Fig. 4 exhibits better efficiency at energies equal

to or less than E0, while the (R + T)-optimized curve in

Fig. 5 is better at higher energies. This observation suggests

a choice between these values of α depending on the energy

range of interest.

The two other curves in Figs. 4 and 5 illustrate the effects

of extending the absorbing range by a value l+ = 1, as

mentioned above and described in more detail in Sec. 4

below, and of including the real-type summand in Eq. (7)
with γ = 1. As expected, the l+-extension mechanism is

able to reduce the distortion by several orders of magnitude

at higher energies, while the real-type summand reduces

Optics and Spectroscopy, 2022, Vol. 130, No. 5



518 Vladimir B. Sovkov, Jizhou Wu, and Jie Ma

Table 2. Parameters of the cosine-type absorbing function/optical potential (Section 2.2) optimized for the minimal value of (R + T)
(where R is the reflection coefficient, and T is the transmission coefficient) using the model of Vibók and Balint–Kurti [33]kd , and

parameters optimized for the minimal value of the distortion coefficient D in the model with an absorbing barrier to the right and a wall

to the left. The character
”
e“ represents the decimal order

(R + T)-optimized D-optimized (R + T)-optimized D-optimized

l α R T D α D α R T D α D

k = 1 k = 2

1 1.17 5.4e-04 7.1e-04 7.3e-04 0.682 3.9e-06 0.697 1.2e-03 2.7e-03 2.6e-03 0.422 9.3e-04

2 2.10 5.6e-10 2.1e-06 2.1e-06 0.552 1.4e-06 0.691 2.6e-06 6.3e-06 6.3e-06 0.376 3.7e-07

3 0.805 7.7e-08 4.6e-07 4.6e-07 0.377 1.4e-07 0.708 4.5e-09 1.9e-08 1.9e-08 0.372 2.8e-10

4 0.638 1.3e-08 9.2e-08 9.2e-08 0.297 2.6e-08 0.853 3.6e-13 7.4e-11 7.4e-11 0.339 4.3e-11

5 0.531 3.3e-09 2.6e-08 2.6e-08 0.250 7.3e-09 0.567 2.0e-12 1.8e-11 1.8e-11 0.299 5.5e-12

6 0.456 1.1e-09 9.3e-09 9.3e-09 0.218 2.6e-09 0.488 2.8e-13 2.9e-12 2.9e-12 0.271 1.0e-12

7 0.401 4.3e-10 3.9e-09 3.9e-09 0.197 1.1e-09 0.427 5.8e-14 6.4e-13 6.4e-13 0.248 2.4e-13

8 0.358 1.9e-10 1.8e-09 1.8e-09 0.180 5.4e-10 0.381 1.4e-14 1.7e-13 1.7e-13 0.228 6.9e-14

9 0.324 9.7e-11 9.3e-10 9.3e-10 0.167 2.9e-10 0.343 4.4e-15 5.4e-14 5.4e-14 0.211 2.3e-14

10 0.297 5.0e-11 5.1e-10 5.1e-10 0.156 1.6e-10 0.313 1.5e-15 1.9e-14 1.9e-14 0.197 8.5e-15

11 0.274 2.8e-11 3.0e-10 3.0e-10 0.147 9.9e-11 0.288 5.6e-16 7.6e-15 7.6e-15 0.185 3.5e-15

12 0.255 1.6e-11 1.8e-10 1.8e-10 0.139 6.2e-11 0.267 2.3e-16 3.3e-15 3.3e-15 0.174 1.5e-15

13 0.238 1.1e-11 1.1e-10 1.1e-10 0.132 4.0e-11 0.249 9.9e-17 1.5e-15 1.5e-15 0.164 7.1e-16

14 0.224 6.6e-12 7.6e-11 7.6e-11 0.126 2.7e-11 0.233 4.9e-17 7.2e-16 7.2e-16 0.156 3.5e-16

15 0.211 4.5e-12 5.1e-11 5.1e-11 0.121 1.9e-11 0.220 2.2e-17 3.7e-16 3.7e-16 0.148 1.8e-16

k = 3 k = 4

1 0.483 2.0e-03 5.0e-03 4.8e-03 0.298 2.8e-03 0.249 3.7e-03 3.2e-03 4.9e-03 0.101 2.0e-03

2 0.468 8.0e-06 1.8e-05 1.8e-05 0.193 2.1e-06 0.325 1.3e-05 2.7e-05 2.6e-05 0.146 1.9e-06

3 0.465 3.5e-08 7.6e-08 7.6e-08 0.215 2.2e-09 0.333 8.8e-08 1.7e-07 1.7e-07 0.164 1.8e-09

4 0.465 1.5e-10 3.3e-10 3.3e-10 0.266 8.4e-12 0.338 5.6e-10 1.1e-09 1.1e-09 0.186 2.7e-11

5 0.468 5.9e-13 1.6e-12 1.6e-12 0.295 5.0e-14 0.341 3.5e-12 7.1e-12 7.1e-12 0.218 2.2e-13

6 0.489 9.4e-16 1.2e-14 1.2e-14 0.306 2.3e-15 0.343 2.2e-14 4.6e-14 4.6e-14 0.237 1.6e-15

7 0.528 4.3e-19 8.0e-16 8.0e-16 0.279 3.3e-16 0.344 1.4e-16 3.0e-16 3.0e-16 0.250 1.2e-17

8 0.391 9.0e-18 1.2e-16 1.2e-16 0.255 5.4e-17 0.346 8.4e-19 2.4e-18 2.4e-18 0.258 1.9e-19

9 0.353 1.6e-18 2.3e-17 2.3e-17 0.236 1.1e-17 0.347 5.2e-21 5.5e-20 5.5e-20 0.254 1.9e-20

10 0.322 3.4e-19 5.3e-18 5.3e-18 0.219 2.7e-18 0.323 4.0e-22 5.6e-21 5.6e-21 0.234 3.1e-21

11 0.296 8.7e-20 1.4e-18 1.4e-18 0.205 7.3e-19 0.300 5.7e-23 9.9e-22 9.9e-22 0.219 5.6e-22

12 0.274 2.5e-20 4.2e-19 4.2e-19 0.192 2.2e-19 0.279 9.9e-24 2.1e-22 2.1e-22 0.204 1.2e-22

13 0.255 7.9e-21 1.4e-19 1.4e-19 0.181 7.6e-20 0.258 2.6e-24 5.0e-23 5.0e-23 0.193 2.9e-23

14 0.238 2.6e-21 5.0e-20 5.0e-20 0.171 2.8e-20 0.240 4.4e-25 1.4e-23 1.3e-23 0.182 7.8e-24

15 0.225 1.1e-21 1.9e-20 1.9e-20 0.163 1.1e-20 0.228 2.7e-25 3.8e-24 3.8e-24 0.171 2.3e-24

the distortion by about one order of magnitude at lower

energies.

Modern spectroscopic experiments on the PA of ultracold

atoms via magnetically tuned near-dissociation Feshbach

resonances (see [18] and references therein) require a

description of the Feshbach resonances at very low energies,

corresponding to very long oscillation lengths (several
hundreds of Bohr radii or even more). The numerical

tests presented in Table 2 were done with lengths of the

absorption zone of no less than the oscillation length,

which required dealing with very long zones to simulate

these near-dissociation features. It can be observed that

the efficiency of the short (l = 1) absorption zones is

higher for smaller k, meaning that they are more promising

for these types of problem. In order to explore how

short the absorption zone can be, we carried out the

following computation. For k = 1 and l = 1, with the

same reference energy E0 = 0.1 au, we computed the

distortion coefficients for wavepackets with 10 equally

spanned energies, E = 0.01 au through E = 0.1 au, and

optimized the parameters α and γ to obtain the least

possible distortion in all 10 cases using the least squares

fit (LSF). The final LSF-optimized values were α = 0.311

and γ = 0.432. This result was compared with the results of

computations with the D-optimized α = 0.682 from Table 2

and γ = 0, γ = 1 in Fig. 6. The LSF-optimization made the

distortion coefficients more uniform, somewhat improving

the region of smaller energies but worsening the region of

higher energies. For energies noticeably lower than the ones

shown in Fig. 6, we were unable to get reasonably small
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Figure 3. Decimal logarithms of the sum (R + T) of the reflection
R and transmission T coefficients in the model of Vibók and

Balint–Kurti [33], and of the distortion coefficient D in the model

with an absorbing barrier to the right and a wall to the left vs. the
parameter α of the cosine-type optical potential (Section 2.2), for
k = 2, l = 4 for a wavepacket with the energy E = E0 = 0.1 au.
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Figure 4. Decimal logarithms of the distortion coefficients D
in the model with an absorbing barrier to the right and a wall

to the left vs. the energy of the wavepacket computed with the

cosine-type optical potential (Section 2.2), for k = 2, l = 4, and

α = 0.399 optimized for minimal D with energy E0 = 0.1 au: the

pure optical potential and the potential corrected by extending the

absorbing region to the right by a length l+ = 1 and by including

the real-type summand with depth γ = 1. The inset shows a

magnified view of the leftmost part of the graph.

distortion coefficients, and the values remained D ∼ 1. For

the smallest E = 0.01 au, the length of the absorption zone

was
√
10 ≈ 3.2 times shorter than the oscillation length.

Hence, we can conclude that an appropriate choice for

the absorbing function parameters can enable us to use

the absorption zone with length as short as ∼ 1/3 of the

oscillation length with a characteristic accuracy of several

percent.

4. Software Implementation

Briefly, the Fourier Grid method involves the obvious,

simple forms of the differentiation operators p (momentum)
and K (kinetic energy) in the momentum representation.

Fourier-based estimates of differentiation operators have

much a higher accuracy than finite-difference approxima-

tions, and this allows us to employ much smaller compu-

tational grids. The inverse Fourier transforms of K and p
from the momentum to the coordinate representation can be

expressed as matrices with compact analytical forms [21,30].
By summing K with the matrix U of the potential

energy (not excluding the case of several interacting

channels), we obtain a coordinate grid representation of

the Hamiltonian matrix H , which can then be diagonalized

with standard methods of computational mathematics or

exponentiated (in the matrix sense) to get the evolution

operator T(t) = exp(−iHt/~), thus enabling the evolution

of the wavepacket ψ(t) to be computed in a single time

step t .
One of the strongest advantages of the Fourier Grid

method is its ability to work with non-equidistant grids (the
Mapped Fourier Grid method [21,30,49]), which can be

constructed (
”
optimized“) to give fewer nodes in ranges

of coordinates where the momenta of the wavepackets are

small, thus making the overall grids much more compact. In

constructing of either the equidistant or mapped grids, an

existence of an upper boundary energy E is implied, so that

the wavefunctions of the states below E are to be correctly

represented on those grids.

For the most part, our realization of the Fourier Grid

method as a software program follows this ideas and

implements most of the features described in the original

articles [26–32]. The most significant difference is that its

interface is adapted for use with our Optimizer package.

The Optimizer package was presented for the first time

at the conference in Ref. [50] (even though we had used

earlier versions for at least two decades beforehand, see the

terminal paragraph of this section). The open-source Matlab

codes and all the application programs (including those

described in the present article) are available from [21].
This package provides elaborate tools for the block-by-block

construction and optimization of general mathematical and

physical models. The main method of (generally nonlinear)
optimization is the Levenberg. Marquardt method [51,52],
which is based on Singular Value Decomposition (SVD) [53]
of the local design (Jacobi) matrix. Many regularization

tools are included, such as robust estimators that can

be used instead of the default Least Squares Fit (LSF)
approach, truncated SVD (Principal Component Regression,

PCR), Tikhonov regularization (Ridge Regression, RR), etc.
Parallel computations are supported. Other features and

regulations are detailed in the manuals, which are also

available from [21].
The (Mapped) Fourier Grid program is written entirely

in Matlab. It is capable of constructing the Hamiltonian

matrix, and diagonalizing it (i. e., finding eigenenergies

and eigenfunctions) using the Matlab functions
”
eig“ (a

traditional diagonalization method) or .eigs. (the Lanczos

method [54,55]). Further details of these are available

from the Matlab help system and the program manuals.

It can also compute the rotational constants and the

multichannel component fractions (fractional partitions) for

each eigenstate. The potential U(r ) is provided as a vector

(in the one-channel case) or a matrix (in the multi-channel

case) in a diabatic representation on a spatial grid.
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Figure 5. Decimal logarithms of the distortion coefficients

D in the model with an absorbing barrier to the right and a

wall to the left vs. the energy of the wavepacket computed

with the cosine-type optical potential (Section 2.2), for k = 2,

l = 4, and α = 0.853 optimized for the minimal sum (R + T)
of the reflection R and transmission T coefficients with energy

E0 = 0.1 au: the pure optical potential and the potential corrected

by extending the absorbing region to the right by a length l+ = 1

and by including the real-type summand with depth γ = 1. The

inset shows a magnified view of the leftmost part of the graph.
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Figure 6. Decimal logarithms of the distortion coefficients D
in the model with an absorbing barrier to the right and a wall

to the left vs. the energy of the wavepacket computed with the

cosine-type optical potential (Section 2.2), for k = 1, l = 1, and α

optimized for minimal D with energy E0 = 0.1 au (circles indicate
γ = 0 and squares γ = 1) and a set of α and γ LSF-optimized for

minimal values of equally weighted D over the entire range shown.

The main program does not include any damping tool,

so the optical potential (if needed) must be included in the

potential U(r ) before being passed to the main program. An

extra Matlab function is provided to enable the inclusion of

the optical potential in the form of Eq. 8, with the user-

defined parameters k, α, γ , and the boundaries of the range

of action of the optical potential. In addition to considering

the absorption region within the range of the length lλ0
(where l is a user-defined dimensionless length in units of

the oscillation length λ0 = 2π~/
√
2mE0 for some reference

energy E0) corresponding to z ∈ [0, 1] (i. e., the r -scale
interval with the boundaries corresponding to min(r ) and

max(r ) of Sec. 2.2), we consider a possible change in this

range to a length (l + l+)λ0; for l+ > 0, this implies the

inclusion of a region with z > 1, where in the step-by-step

scheme, the wavefunction is multiplied by zero.

An optimal mapped grid (if needed) is also constructed

using a separate Matlab function with any predefined

envelope potential [21,30,49] V(r ) (generally, can differ

from the physical potential U(r )).
Other novelties distinguishing our realization of the Forier

Grid method from the earlier ones are outlined below.

In the mapped-coordinate representation, the Hamiltonian

H = K + U is transformed to: [21,30,49]

H̃ = K̃ + U = − ~
2

2m

(

√

dx
dr

[

d
dx

]

√

dx
dr

)2

+ U, (9)

where r is the physical spatial coordinate and x is the

mapped coordinate.

In other implementations of the Mapped Fourier Grid

method (e.g., [30,32]), the commutations of the differenti-

ation operator [d/dx] and the square root
√

dx/dr of the

Jacobi matrix are done explicitly in a form of analytical

equations, in order to get the operator [d2/dx2], which

results in arising of the second derivatives d2x/dr2. We

do not see a need to do this, since Eq. (9) can easily be

computed directly as a matrix expression, especially with

the highly efficient matrix algebra of Matlab. Besides, when

carrying out the iterative optimizing computations, there is

no need to recompute the matrix K̃ of the kinetic energy (as
well as the mapped coordinate) at each subsequent iteration,

and in the multichannel case, this matrix remains the same

for every channel.

A further novel aspect is the use of the r -dependent
upper-boundary energy E to construct the

”
optimal“

grid [21,30,49]. Indeed, there is no formal reason for

keeping its value constant over the entire region, and an

appropriate dependence on r can noticeably reduce the

number of the spatial grid nodes without inflicting the

physical mechanisms. We chose a dependence in the form

E(r ) = [V(r r ) + dEr ] + [(V(r l ) + dEl)

− (V(r r ) + dEr )] exp

[

−ǫ r − r l

r r − r l

]

, (10)

where r l and r r are the left and the right boundaries

of the coordinate grid, implying V(r l ) > V(r r ) (or, more

exactly, V(r l ) + dEl > V(r r ) + dEr — see below). The

parameter ǫ determines the rate of decrease of this function

from left to right; in many of the test computations, the

value ǫ = 25 was shown to be reasonable. The quantities

dEl and dEr are needed to exclude artificial features at

the boundaries. [For dEl = 0 and dEr = 0, all the off-

diagonal boundary elements of the Hamiltonian matrix H̃
in the mapped-coordinate representation Eq. 9 are zero

with V(r ) = E, and the formal non-physical solution of

the eigenvalue problem would be one where the boundary

element of the eigenvector is the only nonzero element and

the eigenvalue is equal to the value of the potential at this

boundary point — see details in‘[21].] Small values of these
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quantities (relative to the characteristic energy scale of the

problem) do not increase the computational grid noticeably.

In the case where V(r l ) + dEl ≤ V(r r ) + dEr , the constant

value V(r r ) + dEr is taken as E.

In a technical implementation of the optical potential

method, a difficulty emerges from Eq. 6 for points with

very small (close to zero) values of the function f k1(z(r )),
whose natural logarithms tend to minus infinity. Although

Matlab allows us to work with the object Inf, some

operations are unavailable and some are not quite correct

with this object. For example, the eigenvalues and

eigenvectors of a matrix containing elements of the Inf type

cannot be computed. These values turn to minus infinity

rather abruptly, so that the finite values before this occurs

have quite reasonable magnitudes, although with very small

magnitudes of their exponents. To overcome this drawback,

we used a straightforward linear approximation from the

last finite values of the optical potential in Eq. 6; in the case

where this linear approximation also turns computationally

to −Inf (although we did not encounter this situation in

practice), it is set to the last finite value computed. This

should clarify how the extension of the absorption region to

l + l+ is realized in practice, in terms of the optical potential.

When the Hamiltonian matrix has been computed in

the main (Mapped) Fourier Grid program, the evolution

operator can be computed with the help of the inbuilt

Matlab function
”
expm“ for matrix exponentiation, and the

evolution of the wavepacket ψ(t) can be found. A separate

Matlab program to calculate this is also provided.

In [30], an algorithm was proposed to interpolate the

computed wavefunction from a relatively thin grid to any

desired point in the coordinate space. This algorithm was

based on the general properties of the Fourier transform,

and can be applied with the utmost possible efficiency.

However, we would like to emphasize that in most cases,

this interpolation is not needed, since all the quantum-

mechanical matrix elements can be computed within the

accuracy of the entire algorithm as sums (approximating

the theoretically ideal integrals) over the grid. This is clear

from the reformulation of the infinite-dimensional quantum-

mechanical perturbation theory in terms of the finite-

dimensional Hamiltonian matrix used in the computations.

In particular, the values of the rotational constants and the

multichannel component fractions (fractional partitions) are

computed this way in our programs.

We have extensively used earlier versions of the programs

described here in our research. Some examples of the

applications of our Fourier Grid programs to problems in

molecular spectroscopy can be found in, e.g., [2,56,57].
The downloadable package (see Ref. [21]) contains a repro-

ducible sample model able to adequately calculate the rovi-

brational structure in the blended complex A16+
u ∼ b35u of

the rubidium dimer within a rather complicated 3-channel

model of Ref. [58]. The Optimizer package has been used

more widely in numerous applications (see [3,59–90] and

the references therein).

5. Conclusions

Summing up, we propose the use of an absorbing func-

tion/optical potential formed from a combination of cosines

in quantum-mechanical calculations of the spectroscopic and

scattering properties of a two-body (e. g., diatomic) system.

This type of function is able to ensure a high degree of

smoothness of the joints with the physically substantive

region. We present a software implementation of the

(Mapped) Fourier Grid method, and describe its particular

qualities. Tests of the cosine-type optical potential were

done using our Fourier Grid program, and the good efficacy

of this optical potential was demonstrated. These numerical

tests showed that reducing the length of the absorbing zone

to ∼ 1/3 of the wavefunction oscillation length (de Broglie

wavelength) with the appropriate set of optical potential

parameters leads to a characteristic inaccuracy of several

percent.
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