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Two ferroelectric phase transitions are observed in the PbFe0.5Nb0.5O3 crystal. The first is between the cubic

and tetragonal phase, the second is between the tetragonal and monoclinic phases. To describe phase transitions

and emerging phases, a statistical model is proposed, based on the composition of two multi-minimum models — a

six-minima model for the Pb cation and an eight-minima model for the Nb cation. Adjusting the model parameters,

makes it possible to reproduce all the characteristic features of the thermodynamic behavior of the crystal. The most

interesting is the formation of a ferroelectric, complexly ordered monoclinic phase with Cm symmetry. It is shown

that the mentioned monoclinic phase arises due to the fact that the first-order phase transition to the rhombohedral

ferroelectric phase occurs in the presence of an
”
external field“ of tetragonal symmetry. The contribution of the

subsystems of Pb and Nb cations to the features of the dielectric and structural properties of the crystal is estimated.
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1. Introduction

Lead ferroniobate PbFe0.5Nb0.5O3 (PFN) is a triple

perovskite — a multiferroic having both ferroelectric and

magnetic properties [1,2], and its solid solutions are a

promising basis for dielectric, piezoelectric, pyroelectric

and magnetoelectric materials [3–9]. Properties of triple

perovskites PbB ′
0.5B

′′
0.5O3, (B ′ — In, Sc, Yb; B ′′ — Nb,

Ta) to which PFN belongs, very strongly depend on the

degree of ordering of the cations B ′ and B ′′. With a

high degree of ordering, PbB ′
0.5B

′′
0.5O3 have an distinct

ferroelectric or antisegnetoelectric phase transition (PT),
whereas with strong disordering, relaxation properties are

observed: a strongly blurred maximum of dielectric sus-

ceptibility χ, the temperature Tmax of which increases with

the frequency of the measuring field f [10–14]. On PFN

X-ray diffractogramms, superstructural reflections indicating

the presence of a long-range order in the distribution of

Fe3+ and Nb5+ ions along the nodes of the crystal lattice

are absent [15,16]. As a result, PFN in most works is

considered a ferroelectric relaxor [1,4,6,8,17]. However, the
blurring of the maximum χ(T ) in PFN ceramics with low

conductivity is very small, and the dependence of Tmax( f ) is
practically absent. In addition, unlike classical ferroelectric

relaxors, two macroscopic structural PTs are observed in

PFN: the first — between the phases of the paraelectric

cubic (phase C, Pm3̄m, O1
h) and ferroelectric tetragonal

(phase T, P4mm, C1
4v) at T ≈ 376K, and the second —

between ferroelectric phases tetragonal and monoclinic

(phase M, Cm, C3
s ) at T ≈ 356K [15,16]. This data, as

well as the results of the study of the dielectric properties

of single crystals PFN [18], allow us to assume that PFN is

not a relaxor, but an ordinary ferroelectric, and the often

observed relaxor-like dielectric properties are due to the

influence of defects or impurities.

Among the phases realized in PFN, the most interesting

is the appearance of the monoclinic phase of symmetry

Cm (p1 > p2 = p3), where pi (i = 1, 2, 3) — components

of the polarization vector. Such a phase is quite rare, in

terms of theoretical research, it is quite complex, so up to a

certain point, very little attention was paid to it. However,

after detecting this phase in the immediate vicinity of the

morphotropic interphase boundary (∼ 48%) in the PZT

system (PbZr1−xTixO3) between the rhombohedral (R) and
tetragonal (T) ferroelectric (FE) phases [19] interest in it

has increased dramatically.

In the work [20], based on the phenomenological theory

using the decomposition of the thermodynamic potential

(TP) in a series by degrees of a small order parameter

(OP), it was shown that in the vicinity of the N-phase

multicritical point, this phase is unstable, it is
”
covered with“

stable phases: either T and R, or rhombic. In [21,22], also
on the basis of the phenomenological theory, significantly

complicated by taking into account the terms of higher

degrees in the decomposition of TP and restrictions on

the coefficients of decomposition, T − x diagrams were

obtained in which this phase is stable. However, such

complications have led to the fact that it is almost impossible

to give any clear physical interpretation of how and due to

what such diagrams can be implemented. So, the question

of how such a monoclinic phase is formed remains open.

The purpose of this work is to develop a model capable,

within the framework of a single approach, to investigate
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and describe the formation of the entire set of phase states

(PS) observed in PFN, as well as to identify the factors

responsible for the appearance of this complexly ordered

FE-phase. Among other things, this makes it possible to

find out how the structural basis is formed, on which the

magnetic properties are realized in the future.

In PFN, cations that may be responsible for the ap-

pearance of FE-state (i.e. ferroactive cations) — these

are Pb2+ and Nb5+ (ferroactive means cations capable,

under appropriate conditions, of creating acentric anionic

blocks (octahedra, cuboctahedra) by forming asymmetric

cation-anionic bonds inside an anionic polyhedron). The

most important role of the Pb cation in the formation of

the FE-PS, especially the T phase, is confirmed by the

fact that the substitution of Pb for Ca or Ba leads to

a significant decrease in the temperature of PT between

phases C and T [23]. At the same time, the degree of

decrease in the temperature of PT with an increase in their

concentration (at least at low concentrations) is almost the

same for both Ca and Ba. This means that the decrease in

the temperature of the PT is not associated with a change in

particle size, but is due to the replacement of the ferroactive

Pb cation with ferrodeutral cations in this compound Ca

and Ba. In turn, the activity of the Nb cation is manifested

in the fact that it contributes to the appearance of FE-states,

therefore, the temperatures of the PT in PFN are higher than

in the isostructural, close in crystal chemical parameters,

PbFe0.5Ta0.5O3 (PFT), in which the phase transitions with

C−T and T−M are observed at 240−270 and 200−220K

respectively [24]. Also, in the system (1− x)PFN−xPbTiO3

replacement of the cation (Fe/Nb)4+ with the cation Ti4+

in the area of small x is accompanied by a relatively small

increase in the PT temperature of C−T and a sharp decrease

in PT temperature T−M [18,25]. This indicates that it is the
Nb cations that play an important role in the formation of

the M phase.

According to structural studies of PFN [16], the Fe and

Nb cations are located in the nodes B of the perovskite

ABX3 disordered, and the cubic phase is characterized by

a noticeable disorder in the arrangement of the Pb cation

inside the cuboctahedral cavity. It is noted that the potential

relief for Pb inside the cavity is quite complex. According

to [16], the most likely option seems to be with six minima,

but other options — with eight and twelve minima —
according to the authors, it is impossible to exclude.

Certain information about the specifics of the PFN

compound structure can be obtained by estimating the

lattice parameters and the lengths of cation-anion bonds.

In [26] it was shown that in the compounds AB0.5B ′
0.5O3

with a perovskite structure, the cubic lattice constant is

defined as follows:

a = 2
nA

LA√
2

+ 1
2

nBLB + 1
2

nB′LB′

nA + 1
2

nB + 1
2

nB′

where LA, LB , LB ′ — equilibrium (unstressed) distances

A−O, B−O, B ′−O, respectively, nA, nB , nB′ — valence

of cations A, B, B ′. According to [27], LPbO = 2.83 Å,

LTiO = 2 Å, LNbO = 2.01 Å, nPb = 2, nFe = 3, nNb = 5.

In this case a = 4 Å (in experiment [16] — 4.01 Å). From
here it can be seen that the Pb−O, Fe−O, Nb−O bonds

in the crystal are practically not deformed. It should be

noted that this circumstance plays an important role in the

fact that, despite the difference in charges, the Fe and Nb

cations are disordered [28,29]. The presence of disorder

in the arrangement of Fe and Nb cations, the absence of

deformation of Fe−O, Nb−O bonds and the fact that the

lengths of these bonds coincide make it possible to consider

the cation B as a kind of averaged (Fe/Nb)-cation. The

tolerance factor t for PFN can be defined as follows:

t =
LPbO

0.5
√
2(LFeO + LNbO)

= 0.98 ≈ 1.

With t & 1 connection A−O are compressed, and the

bonds B−O — are stretched, at t . 1 the bonds A−O

are stretched, and the links B−O — are compressed. The

stretching of B−O bonds can contribute to the appearance

of FE-states, and their compression — the appearance of

either rotational or (less often) antisegnetoelectric ordering.

In the case of t ≈ 1, in the presence of corresponding

ferroactive cations, complexly ordered FE-states can be

formed, resulting from the competition of ordering subsys-

tems of cations located at the nodes A and B .

As it was shown in [30,31], the FE transitions in PbTiO3

and KNbO3 are mainly of PT type
”
order-disorder“ and are

caused by the redistribution of Pb and Nb cations by six and

eight crystallographically equivalent positions (CEPs), re-

spectively. At the same time, for both PbTiO3 and KNbO3,

the factor t ≈ 1 (LTiO = 1.97 Å, LKO = 2.85 Å [27]) is the

same as for PFN. Accordingly, the situation, i.e. the location

of the nearest particles and the distance between them, for

Pb cations in the cuboctahedral cavity and Nb in the anionic

octahedron PFN is close to the situation for Pb and Nb

cations in PbTiO3 and KNbO3. This suggests that in PFN,

the potential relief for the Pb cation may have six CEPs,

and for the Nb cation — eight CEPs. Such a choice of

composition of multiminimum models, among other things,

is due to the fact that the main ordered FE-phase described

by the 6-minimum model — is the phase T, the main

ordered FE-phase described by 8-minimumthe model —
phase R, and the phase M under consideration can be

obtained by a superposition of phases T and R.

So, a model for the study of statistical and thermody-

namic properties of PFN can be presented in the following

form. Pb cations located in the cuboctahedral cavity have

six CEPs, and (Fe/Nb) cations located in octahedra have

eight CEP. The interaction between subsystems is described

by an expression bilinear in order parameters characterizing

the polarization of each of the subsystems. PT of the type

”
order–disorder“ are associated with the redistribution of

the corresponding particles in six and eight CEPs. A similar

approach using the composition of two 8-minima models to

describe the PT in the cryolite K3WO3F3 was used in [32].
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The scenario of the formation of phase states in PFN

based on the proposed model is as follows. If
”
turns off“

interaction between subsystems with six and eight CEPs,

then when the temperature decreases, first in the subsystem

with six CEPs, the first kind of PT should occur from the

cubic to the tetragonal FE-phase, and then in the subsystem

with eight CEPs, the first kind of FP should also occur from

the cubic to the rhombohedral FE-phase.
”
The inclusion

of“ interaction leads to the fact that when the PT enters the

phase T, along with the OP characterizing polarization in the

subsystem of six CEPs, the OP characterizing polarization

in the subsystem of eight CEPs appears, and the transition

to the rhombohedral phase turns into PT
”
in the external

field of“ tetragonal symmetry, therefore the rhombohedral

the phase becomes monoclinic. The fulfillment of these

conditions is the basis for the selection of model parameters.

The analysis of the statistical properties of the model

is carried out within the framework of the mean field

approximation. As noted in [33], this approach is convenient

to apply to systems with little-studied interaction, while

checking qualitative ideas about the nature of PT.

2. Model description

As an object of research, we consider a perovskite crystal

with the general structural formula ABX3 with a cubic lattice

of symmetry Pm3̄m containing two subsystems of — Pb and

(Fe/Nb) cations. The Pb cation subsystem has six CEPs,

slightly offset in the directions of type [001] from the center

of the cuboctahedral cavity (6-min. model) (Fig. 1, a),
and the subsystem of cations (Fe/Nb) in octahedra has

eight CEPs shifted in the directions of the type [111]
(8-min. model) (fig. 1, b) from the center of the octahedron.

In the symmetric, cubic phase, all six and eight CEPs are

filled with the corresponding particles equally, and FP is

associated with a violation of the equivalence of probability

in their filling, which is accompanied by a change in the

symmetry of the lattice.

The nonequilibrium thermodynamic potential (TP) for

PFN in the Gorsky–Bragg–Williams approximation [34,35]
per one formula unit can be represented as

F0 = F6 + F8 + Hint, (1)

where F6 — TP6-min. models describing the ordering in the

Pb cation subsystem,

F6 =
1

6

[

A6

( 3
∑

i=1

ε2i

)

+ B6

(

6γ2
1 + 2γ2

2

)

]

+ T
6

∑

k=1

nk ln nk,

(2)

n1,2 =
1

6
(1 + 2γ1 ± ε1),

n3,4 =
1

6
(1− γ1 + γ2 ± ε2),

n5,6 =
1

6
(1− γ1 − γ2 ± ε3),

a b
C4z

C4y

1
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3
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6
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6
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B

Figure 1. Location and numbering of CEPs inside anionic:

a) cuboctahedron; b) octahedron.

F8 — TP8-min. models describing the ordering in the

subsystem of cations (Fe/Nb)

F8 =
1

8

[

A8

( 3
∑

i=1

ϕ2
i

)

+ D8

( 3
∑

i=1

e2i

)

+ G8ξ
2

]

+ T
8

∑

i=1

pi ln pi , (3)

p1,2 =
1

8

[

1 + e1 + e2 + e3 ± (ξ + ϕ1 + ϕ2 + ϕ3)
]

,

p3,4 =
1

8

[

1 + e1 − e2 − e3 ± (ξ + ϕ1 − ϕ2 − ϕ3)
]

,

p5,6 =
1

8

[

1− e1 + e2 − e3 ± (ξ − ϕ1 + ϕ2 − ϕ3)
]

,

p7,8 =
1

8

[

1− e1 − e2 + e3 ± (ξ − ϕ1 − ϕ2 + ϕ3)
]

,

Hint = h

( 3
∑

j=1

ε jϕ j

)

,

where A6, A8, B6, D8, G8 — functions of constants charac-

terizing paired interactions as direct, and indirect, through

the subsystem of anions, between the same type, and h —
between different types of particles (all of them, in fact,

are phenomenological parameters of the theory); n, p —
functions characterizing the probabilities of filling the CEP;

the sign
”
+“ refers to odd numbers, and the sign

”
−“ —

to even numbers; the variables ε, γ , ϕ, e, ξ act as order

parameters (OP), ε and ϕ are transformed by the irreducible

representation of T1u in the same way as the polarization

vector, and characterize the polarization in cuboctahedra

and octahedra, respectively, γ ∈ Eg and is transformed as

a uniaxial strain tensor, e ∈ T2g and is transformed as a

shear strain tensor, ξ ∈ A2u and is transformed as a third-

rank tensor of the form xyz . The order parameters ε

and ϕ actually determine the polarization, and OP γ and

e — uniaxial and shear deformations of the crystal. The

equilibrium values of these OPs can be found by solving a

Physics of the Solid State, 2022, Vol. 64, No. 12
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system of equations of state

∂F
∂εi

= 0,
∂F
∂γi

= 0,
∂F
∂ξi

= 0,
∂F
∂ei

= 0,
∂F
∂ϕk

= 0 (4)

and choosing the solution that corresponds to the absolute

minimum F0, given the values A6, A8, B6, D8, G8, h, T .
By selecting the relationships between the model

parameters, a relatively realistic description of the

set of phase transformations in PFN crystals is ob-

tained. When A8 = 3.6A6, D8 = 0.335A8 = 1.206A6,

G8 = 0, B6 = 0.15A6, h = 0.07A6, the sequence of

phases and PT looks like this. Cubic phase Pm3̄m

(|ε| = |ϕ| = |γ| = |e| = ξ = 0) loses stability with respect

to the appearance of OP ε1, ϕ1, at A6/T = −0.925.

The condition G8 = 0 means that the interaction charac-

terized by OP ξ is small compared to others. The conditions

B6 . 0, D8 . 0 mean the presence of a small
”
softness“ in

OP γ and e, symmetry conjugate tensors of uniaxial and

shear deformations.

The tetragonal phase P4mm, characterized by a set

of OPs ε1, ϕ1, γ1, becomes stable at A6/T = −0.905.

The temperature of PT between the cubic and tetragonal

phases C and T is determined by the equality of their

thermodynamic potentials. According to the calculated data,

this is the case at A6/T = −0.91, and in the experiment

such an PT is observed at 376K. Comparing these data,

we can estimate the value of A6, it turns out to be

equal to −342.2K. The phase T loses stability relative

to the appearance ε2 = ε3, ϕ2 = ϕ3, e2 = e3, e1, ξ at

T = 353K (A6/T = −0.969). Monoclinic phase Cm (ε1,
ε2 = ε3, ϕ1, ϕ2 = ϕ3, γ1, e2 = e3, e1, ξ) appears when

T = 359K (A6/T = −0.955), and PT between tetragonal

and monoclinic phases T and M occurs at T = 357K

(A6/T = −0.958).

3. Discussion of results

Phase C is stable at T > 370K, phase T is stable in

the area of 353 < T < 378K, and the phase M is stable

at T < 359K. Phases C and T have a area of coexistence

∼ 8◦, and the phases T and M — ∼ 6◦. PT of the first

order between phases C and T occurs at Ttr = 376K and is

accompanied by
”
jumps“ of OP 1ε1 = 1.67, 1ϕ1 = 0.43,

1γ1 = 0.41. For comparison, the maximum OP values

in a ferroelectrically fully ordered phase T — ε1max = 3,

ϕ1max = 1, γ1max = 1. It follows that 1ε1 ≈ 0.5ε1 max,

1ϕ1 ≈ 0.4ϕ1 max, 1γ1 ≈ 0.4γ1 max. In the tetragonal phase,

the redistribution of the Pb cation by six CEPs, and the

(Fe/Nb) cation — eight CEPs lead to the occurrence of

polarizations, in the cuboctahedron — p16 ≈ (1/3)ε1 and

in the octahedron —p18 ≈ ϕ1. The appearance of OP γ1 is

accompanied by the appearance of uniaxial deformations

η1, while η1 = mγ1, where η1 = (2u11 − u22 − u33)/
√
6,

u22 = u33 (uii — diagonal components of the homogeneous

strain tensor). In the tetragonal phase of PFN uniaxial

deformations are very small, c/a = 1.01 [16]. This means

that the coefficient m is small. The small value of m may

be due to the fact that the octahedral crystal frame remains

rigid relative to η1, despite the presence of eight CEPs for

cations (Fe/Nb). This is mainly due to the absence in the

configuration space of 8-min. of a OP model transformed

by an irreducible representation of Eg. Therefore, the

redistribution of the Pb cation density over the six CEPs

is accompanied by only minor deformations of the anionic

cuboctahedron and small deformations of the octahedron.

Accordingly, tetragonal deformations in the crystal are

relatively weak, and mainly due to deformations of the

octahedra (Fe/Nb)0.5O6, which make up the framework of

the crystal structure.

Phase M occurs due to loss of phase stability T with

respect to the appearance of OP ϕ2 = ϕ3, which

generate a whole set of OP: ε2 = ε3 ∝ ϕ2 = ϕ3,

e2 = e3 ∝ ϕ1ϕ3 = ϕ1ϕ2, e1 ∝ ϕ2ϕ3, ξ ∝ ϕ1ϕ2ϕ3.

In its turn, the appearance of parameters of the order

of e is accompanied by the appearance of homogeneous

shear deformations u12 = u13 ∝ e2, u23 ∝ e1. At the same

time, the
”
rigidity of“ octahedra with respect to shear

deformations is significantly reduced due to the interaction

of ui j with
”
soft“ (i.e., because D8 < 0) subsystem

characterized by OP e. This circumstance leads to the fact

that the appearance of OP ϕ2 is accompanied by noticeable

shear deformations of the octahedral crystal frame.

Transition between phases T and M at T = 357K —
is also a first kind PT, in which OP changes as fol-

lows: the OP values in the phase T —ε1t = 2.22,

ϕ1t = 0.56, γ1t = 0.64, and the OP values in phase

M — ε1m = 2.26, ε2m = 0.06, ϕ1m = 0.7, ϕ2m = 0.53,

γ1m = 0.65, e1m = 0.34, e2m = 0.42, ξm = 0.28. Hysteresis

during the transition between phases With and T will be

less than 8◦, and between phases T and M — less than 6◦.

According to experimental data [18], the temperature

hysteresis at PT with −T is ∼ 6−7◦ .

In the emerging phase M, the polarization

in cuboctahedra is directed near the C4 axis

(ε1m ≫ ε2m = ε3m), and in octahedra — closer to the

axis C3 (ϕ1m > ϕ2m = ϕ3m, but the difference is ϕ1m − ϕ2m

is small). The shear deformations of the octahedra

u12 = u13 ∝ e2, u23 ∝ e1 also differ slightly from each

other. When the temperature decreases, the OP values

change as follows. For T = 271K — ε1m = 2.85,

ε2m = 0.02, ϕ1m = 0.96, ϕ2m = 0.93, γ1m = 0.925,

e1m = 0.88, e2m = 0.9, ξm = 0.85. Hence it can be

seen that in cuboctahedra the polarization became even

closer to the C4 axis, and in octahedra — noticeably

closer to the C3 axis (i.e., to the direction of type [111],
i.e., to ϕ1m ≈ ϕ2m = ϕ3m). The components of the

octahedron shear deformations are also almost equal, since

e2m = e3m ≈ e1m. Considering that the structural motif

of PFN is mainly formed by the subsystem of octahedra

forming the framework of the structure, it can be concluded

that the structure of the monoclinic phase M becomes

very close to rhombohedral — so close that it can be
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characterized as pseudorombohedral. This conclusion is

quite consistent with the results of structural studies of [16].

4. Investigation of dielectric properties

Based on this model, it is possible to estimate the effect

of a subsystem of ferroactive particles with several CEPs

on the dielectric properties of the crystal. This effect will

be most pronounced in the vicinity of the PT between the

cubic and tetragonal phases. In the presence of an external

field directed along the axis C4, the TP of the system can

be represented as

F0(E) = F0 − a1ε1E − a2ϕ1E,

where a1ε1 = ZPb · e(n1 − n2)d6 = 1/3ZPb · ed6 · ε1 — the

dipole moment created by the distribution of the Pb2+

cation over six CEPs; a2ϕ1=1/2ZNb · e · 4(p1 − p2)d8/
√
3

= 1/2ZNb · e(d8/
√
3)ϕ1 — the dipole moment created by

the distribution of the Nb5+ cation over eight CEPs;

d6, d8 — distances from the centers of the cuboctahedron

and octahedron to one of six or eight CEPs, respectively, F0

is defined by the expression (1), n1,2, p1,2 — expressions (2)
and (3).
The average polarization of a volume unit p is equal to

pvc = −∂F0(E)/∂E = a1ε1 + a2ϕ1,

where vc — the volume of the unit cell.

The equilibrium OP values ε1(E), ϕ1(E), γ1(E) are found
when solving a system of equations of state

∂F0(E)/∂ε1 = ∂F0(E)/∂γ1 = ∂F0(E)/∂ϕ1 = 0.

After performing the corresponding calculations, it is

possible to obtain in the cubic phase C

χC(T ) =
G

FεεCFϕϕC − h2T 2

(

FϕϕC + g2FεεC + 2ghT
)

, (5)

FαβK =
∂2F
∂α∂β

∣

∣

∣

K
,

where K — phase designation, α, β — order parameters in

phase K,

G =
a2
1

ε0vckB

, g =
a2

a1

, a1 = ZPbe
d6

3
,

a2 =
1

2
ZNbe

d8√
3

ZPb = 2, ZNb = 5,

e = 1.6 · 10−19 C, vc = 43 · 10−30 m3, kB — Boltzmann

constant (J/K), ε0 = (4π · 9 · 109)−1 (C/V ·m), in this case

G = 1311K, g = 1.375.

In the tetragonal phase T, characterized by OPε1, γ1, ϕS ,

χT(T )=
G
ST

[

FϕϕTFγγT + g2(FεεTFγγT − F2
εγT) + 2ghTFγγT

]

,

(6)
ST = FϕϕTFγγTFεεT − F2

εγTFϕϕT − h2T 2FγγT.
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Figure 2. Dependences of the dielectric susceptibility of PFN

on temperature: a) dependences χC(T ) (solid line) and χT(T )
(dashed), determined by the ratios (5) and (6), marked the

temperature of the first order of PT between phases C and T;

b) dependence χ(T ) measured on a single crystal PFN [18].

Graphs of dependencies χC(T ) and χT(T ), determined by

the relations (5), (6) are shown in Fig 2, a.

At the temperature of the first order of PT between

phases C and T(Ttr = 376K) the value of χC(Ttr) ≈ 1049,

and χT(Ttr) ≈ 235, i.e. when cooling, given the PT,

there should be a decline of χ(T ) from 1049 to 235.

However, given the presence of hysteresis ∼ 7◦, the

picture will be different. When cooled, in the cu-

bic phase χC(T ≈ 371K) ≈ 6800, and in tetragonal —
χT(T ≈ 371K) ≈ 111, i.e. there will be a decline

of χ(T ) from 6800 to 111. When heated, in the

tetragonal phase χT(T ≈ 378K) ≈ 806, and in cubic —
χC(T ≈ 378K) ≈ 812, i.e. at T ≈ 378K there will be a

hardly noticeable
”
jump“ from 806 to 812.

Comparing the results of the calculation of χ(T ) with

the experimental data in Fig. 2 shows that they are quite

comparable at the qualitative level, and differ significantly

from each other in quantitative characteristics. However,

it should be borne in mind that the calculations took into

account the contribution only from the subsystem of fer-

roactive cations responsible for the formation of polarization
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instabilities, and the contributions to χ from subsystems of

anions and Fe cations that make up the background were

not taken into account, and this contribution even far from

the phase transitions of ∼ 3000−4000 (fig. 2, b). Against

such a background, the contribution from the ferroactive

cation subsystem can manifest itself only in the immediate

vicinity of the stability loss temperatures, i.e. at T ≈ 370K

and T ≈ 378K. Therefore, even a very rough, additive

accounting of the contribution from background particles

noticeably brings the calculated and experimental results

closer, and when taking into account the interaction of

background and ferroactive particles, the results will be

quite comparable. In addition, it should be borne in mind

that many estimates — in particular, the magnitude of

the dipole moment — are made very approximately, and

since the susceptibility depends on the square of the dipole

moment, the error in the magnitude of this parameter is

noticeably reflected in the calculation results.

5. Conclusion

The paper considers one of the possible mechanisms for

the formation of phase states in a PbFe0.5Nb0.5O3 crystal.

A statistical model is proposed on the basis of which

the whole set of structural phase transformations in this

crystal is described. By selecting the parameters of the

model, it turned out to be possible to reproduce all the

characteristic features of its thermodynamic behavior at a

qualitative level. Namely: the presence of ferroelectric

and ferroelastic instabilities, as a result of which two

first-order PTs are realized between paraelectric cubic

and FE-tetragonal, between FE-tetragonal and FE-complex

ordered monoclinic phases, as well as the formation of

corresponding condensates of order parameters. The key

point for the formation of such a monoclinic phase is that

the first-order PT into the rhombohedral FE-phase occurs in

the presence of the
”
external field“ tetragonal symmetry.

The calculated values of the temperature intervals be-

tween the PT and the values of the temperature hysteresis

accompanying the PT are close to those observed. In

addition, the features of the dielectric properties at the

PT between phases C and T at the qualitative level also

correspond to what is observed experimentally. Thus,

based on the assumption of the presence of two cationic

subsystems with six and eight CEPs, it turned out to be

possible to reproduce the entire set of features of the

thermodynamic behavior of the PFN crystal.

When studying the thermodynamic properties of the

system at a qualitative level, the interaction between the

cationic and anionic subsystems was not explicitly taken into

account. This is due to the fact that such accounting will

lead to a standard renormalization of the model parameters,

and since these parameters are selected according to certain

criteria, then the renormalized parameters will have to

meet the same criteria, i.e. such accounting will not

bring anything new. However, taking into account the

interaction with the anionic subsystem turns out to be

important for understanding the specifics of the structural

changes observed in the crystal. Thus, the appearance

of OP ε, ϕ, γ , e, ξ is due to the redistribution of

cations over the corresponding sets of CEPs, which is

accompanied by deformation of anionic polyhedra. At the

same time, the main contribution to the formation of the

crystal structure is made by the octahedron subsystem,

which forms the framework of the structure. As it was

shown earlier, in the phase T tetragonal deformations of

octahedra should be small, and in the monoclinic phase,

local deformations of octahedra should be large and close

to rhombohedral. Accordingly, in the T phase Tetragonal

deformations in the crystal structure are relatively weak,

and in the M phase rhombohedral deformations are much

more pronounced, which gives reason to characterize this

phase as pseudorombohedral [16].

In addition, taking into account the interaction with the

anionic subsystem plays an important role in estimating the

friction constants and considering the piezoelectric effect,

as well as for a more correct assessment of the values of

dielectric susceptibility and dipole moment. The latter is

due to the fact that it is necessary to take into account not

only the dipole moment due to the distribution of cations

over the CEPs, but also the dipole moment resulting from a

noticeable distortion of the anionic polyhedra [16].
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