Влияние примесей на излучательную рекомбинацию через центры *EL*2 в монокристаллах арсенида галлия

© М.Б. Литвинова¶

Институт физики полупроводников Национальной академии наук Украины, 03028 Киев, Украина

(Поступила 24 сентября 2002 г. Принята к печати 29 апреля 2003 г.)

Изучена природа влияния атомов кадмия и селена на изменение квантовой эффективности излучения, индуцируемого дефектами *EL2* в монокристаллах арсенида галлия. Использовалась сравнительная методика диффузии примеси в условиях вакуума и атмосферы мышьяка. Установлено, что характер и степень изменения квантовой эффективности излучения определяются вакансионным составом кристаллов и обусловлены вероятностью формирования комплексов *EL2*–примесь.

1. Введение

Антиструктурные дефекты *EL2* играют основную роль в определении полуизолирующих свойств монокристаллов нелегированного арсенида галлия — подложечного материала, который широко используется в современной микроэлектронике. Данные о структурных и рекомбинационных характеристиках этих центров способствуют получению качественных кристаллов с заданными свойствами.

Рекобинационные процессы с участием центров EL2 индуцируют появление в спектрах низкотемпературной $(T = 77 \, \text{K})$ фотолюминесценции (ФЛ) полосы излучения с энергией максимума $hv_{\rm m} \approx 0.65$ эВ, которая является суперпозицией полос с $hv_{\rm m} \approx 0.63$ и $hv_{\rm m} = 0.68\,{
m sB}$ (рис. 1, a) [1]. Первая из них вызвана излучательным захватом свободных электронов е заряженными дефектами $EL2^+$ (переход $e \rightarrow EL2^+$), вторая — свободных дырок h нейтральными дефектами $EL2^0$ (переход $h \rightarrow EL2^0$) (см. вставку на рис. 1, *a*). На эффективность рекомбинации через рассматриваемые центры оказывают влияние ряд факторов. Прежде всего это процессы самодиффузии в GaAs. Диффузия от поверхности кристаллов вакансий мышьяка при высокотемпературной термообработке (ТО) материала в условиях вакуума вызывает уменьшение концентрации центров EL2 (N_{EL2}) вследствие реакции

$$As_{Ga} + V_{As} \Leftrightarrow V_{Ga} + As_{As} \tag{1}$$

и снижение интенсивности излучения с $hv_{\rm m} = 0.65$ эВ ($I_{0.65}$). Напротив, формирование новых центров *EL*2 при ТО в условиях избыточного давления паров As ($p_{\rm As} > 9.8 \cdot 10^4$ Па) ведет к увеличению $I_{0.65}$ [2].

Также известно, что снижение интенсивности излучения с $hv_{\rm m} \approx 0.65$ эВ имеет место при введении в кристаллы GaAs атомов меди, что обусловлено пассивацией дефектов *EL2* в результате формирования комплексов *EL2*–Си [3]. Однако влияние других донорных и акцепторных примесей на эффективность рекобинации через рассматриваемые центры практически не изучено.

В настоящей работе будет показано, что медь является не единственной примесью, вызывающей изменение квантовой эффективности излучения через дефекты *EL2*. Рассмотрена природа такого изменения с использованием сравнительной методики введения примеси в условиях вакуума и атмосферы мышьяка. Сделан анализ полученных данных с позиции структуры центров *EL2*.

2. Методика эксперимента

Исходными при исследовании являлись кристаллы полуизолирующего нелегированного (ПИН) GaAs n типа проводимости, выращенные методом Чохральского с ориентацией (100) и удельным сопротивлением $\rho = 7 \cdot 10^7 - 2 \cdot 10^8$ Ом · см. Концентрация центров EL2, найденная по оптическому поглощению квантов света с энергией hv = 1.04 эВ [1], составляла $N = (1.2 - 1.8) \cdot 10^{16} \, \text{см}^{-3}$. Исходная разность интенсивностей полос $\Phi\Pi$ с $h\nu_{\rm m} \approx 0.63$ и $h\nu_{\rm m} \approx 0.68$ эВ при 77 К не превышала 6%. Поскольку в изучаемой спектральной области также могут присутствовать полосы, индуцируемые атомами кислорода [4,5] ($h\nu_{\rm m} \approx 0.63$ эВ), было проведено исследование спектров селективного возбуждения ФЛ. Результаты по фототушению излучательной рекомбинации через дефекты EL2 до и после введения примеси в образцы (см. Приложение) позволили связать все обнаруженные в настоящей работе эффекты с центрами EL2.

Введение примеси (селена или кадмия) осуществлялось в образцы толщиной ~ 2 mm при температуре 800°С в течение 4-8 ч с последующей их закалкой. Поступление примеси происходило из термически напыленного слоя Cd (Se) толщиной 1 мкм, обеспечивающего условия диффузии из постоянного источника. Образовавшийся поверхностный слой Ga₂Se₃ после диффузии Se удаляли в кислотном травителе.

Диффузия примесей проводилась в вакууме и при избыточном давлении паров мышьяка. При термообработке образцы помещались в кварцевые ампулы с рабочим объемом ~ 4 см⁻³, предварительно обезжиренные и протравленные в "царской водке", что снижало неконтролируемое загрязнение кристаллов

[¶] E-mail: lmb@ist.com.ua

Рис. 1. Полоса излучения с $hv_m \approx 0.65$ эВ при T = 77 К в спектре ФЛ кристаллов арсенида галлия: a — разложение на составляющие с максимумами излучения на 0.63 и 0.68 эВ. На вставке — соответствующие оптические переходы; b — изменение $I_{0.65}$ в результате введения кадмия $(N_{\rm Cd} = 8 \cdot 10^{17} \, {\rm cm}^{-3})$; c — изменение $I_{0.65}$ в результате введения селена $(N_{\rm Se} = 3 \cdot 10^{18} \, {\rm cm}^{-3})$. 1 — исходные ПИН кристаллы, 2 — ТО в вакууме без примеси, 3 — ТО в атмосфере As без примеси, 4 — примесь введена в вакууме, 5 — примесь введена в атмосфере As.

медью. Ампулы откачивались до давления < 10⁻³ Па. Для создания избыточного давления паров As в них помещалась навеска мышьяка массой 20 мг. Поскольку значения коэффициента диффузии для примесей при $T = 800^{\circ}$ К $(D_{Cd} \cong 3 \cdot 10^{-16} \text{ см}^2 \cdot \text{c}^{-1}, D_{Se} \cong 7 \cdot 10^{17} \text{ см}^2 \cdot \text{c}^{-1}$ [6]) существенно ниже, чем для вакансий мышьяка $(D_{VAs} \cong 1 \cdot 10^{-15} \text{ см}^2 \cdot \text{c}^{-1})$ [7], диффузия в вакууме обеспечивала поступление примеси в кристаллы с дефицитом мышьяка, а при избыточном давлении паров As — в кристаллы с его избытком [2].

Также проводился контрольный отжиг образцов без напыления примеси. Он происходил в вакууме и при избыточном давлении паров мышьяка в тех же условиях, что и при диффузии селена и кадмия. Концентрацию носителей заряда при $n > 10^{16}$ см⁻³ определяли по полуширине краевой полосы ФЛ при 300 К [8].

Изучение спектров ФЛ и селективного возбуждения люминесценции (СВЛ) проводилось по стандартным методикам [8]. Источником возбуждения ФЛ служил гелийнеоновый лазер с длиной волны излучения 0.63 мкм. Для получения спектров СВЛ использовалась лампа КГМ мощностью 60 Вт. Селективное выделение полос возбуждения полушириной $w_{ex} \leq 0.8$ мэВ мощностью 4–6 мВт в области $hv_{ex} = 1.0-1.52$ эВ производилось монохроматором МДР-2. Интенсивность излучения (I_m) при 77 К в области значений $hv_m > 1$ эВ регистрировалась ФЭУ-68, а при $hv_m < 1$ эВ — охлаждаемым германиевым фотодиодом ФД-9Г с последующим автоматическим перерасчетом значений относительной интенсивности излучения $I_{arb} = I_m/I_{ex}$ (I_{ex} — соответствующая интенсивность возбуждения ФЛ).

При изучении фотогашения излучения через центры EL2 образец первоначально нагревался до $T = 155 \pm 5$ К и выдерживался при такой температуре 10–11 мин. Затем он резко охлаждался до T = 77 К. Измерение интенсивности $I_{\rm m}$ проводилось после полной стабилизации ее величины. Процедура повторялась перед определением каждого нового значения $I_{\rm m}(hv_{ex})$, шаг измерений составлял $\Delta hv_{ex} = 2$ мэВ.

3. Теоретические соотношения для интенсивности излучения через центры *EL*2

3.1. ПИН GaAs (*n*-тип проводимости)

При собственном возбуждении ФЛ в стационарном случае интенсивности обусловленных дефектами $EL2^+$ ($I_{0.63}$) и $EL2^0$ ($I_{0.68}$) полос люминесценции (рис. 1, *a*) одинаковы [1,3]:

$$I_{0.68} = I_{0.63}.$$
 (2)

Тогда в высокоомном нелегированном материале

$$I_{0.68} = c_p^0 \cdot N_{EL2}^0 \cdot \delta p,$$
 (3)

$$I_{0.63} = c_n^+ \cdot N_{EL2}^+ \cdot \delta n = c_n^+ \cdot (N_{EL2} - N_{EL2}^0) \cdot \delta n, \qquad (4)$$

где δn и δp — неравновесные концентрации электронов и дырок (δn , $\delta p \gg n_0$, p_0 ; n_0 , p_0 — их равновесные концентрации); c_n^+ и c_p^0 — коэффициенты излучательного захвата электронов дефектами $EL2^+$ и дырок дефектами $EL2^0$ соответственно; N_{EL2}^+ и N_{EL2}^0 — концентрации этих дефектов; N_{EL2} — их суммарная концентрация. Из (2), (3) и (4) следует, что

$$c_{p}^{0} \cdot N_{EL2}^{0} \cdot \delta p = c_{n}^{+} (N_{EL2} - N_{EL2}^{0}) \delta n,$$
 (5)

$$N_{EL2}^{0} = (c_n^+ \cdot N_{EL2} \cdot \delta n) / (c_p^0 \cdot \delta p + c_n^+ \cdot \delta n).$$
 (6)

Поскольку $c_p^0 \ll c_n^+$, то $N_{EL2}^0 \cong N_{EL2}$ и

$$I_{0.65} = c_p^0 \cdot N_{EL2} \cdot \delta p. \tag{7}$$

3.2. GaAs(Cd)

В низкоомном материале с *p*-типом проводимости $(p_0 \gg \delta n, \delta p)$ в равновесии все центры заполнены дырками и равновесная концентрация $N_{EL2}^0 = 0$, а неравновесная — $\delta N_{EL2}^0 \ll N_{EL2}$. Поэтому в условиях линейной рекомбинации носителей заряда интенсивность излучения через центры *EL2* составляет

$$I_{0.65} = c_n^+ (N_{EL2} - \delta N_{EL2}^0) \delta n \approx c_n^+ \cdot N_{EL2} \cdot \delta n.$$
 (8)

3.3. GaAs(Se)

В низкоомном материале *n*-типа проводимости $(n_0 \gg \delta n, \delta p)$ все центры заполнены электронами, равновесная концентрация $N_{EL2}^+ = 0$ и $N_{EL2}^0 = N_{EL2}$. Тогда из (2) следует, что

$$c_n^+ \cdot \delta N_{EL2}^+ \cdot \delta n = c_p^0 (N_{EL2}^0 + \delta N_{EL2}^0) \delta p.$$
(9)

Поскольку $N_{EL2}^0 \gg \delta N_{EL2}^0$, то в условиях линейной рекомбинации носителей заряда

$$I_{0.65} = c_p^0 \cdot N_{EL2} \cdot \delta p. \tag{10}$$

Экспериментальные результаты и их обсуждение

4.1. Введение кадмия

После диффузии атомов кадмия поверхность кристаллов характеризовалась *p*-типом проводимости. Легирование в условиях вакуума вызывало снижение $I_{0.65}$ в той же мере, что и ТО без примеси (рис. 1, *b*, кривые 2, 4). При избыточном давлении паров As диффузия Cd приводила к уменьшению интенсивности излучения через центры *EL*2, а отжиг контрольных образцов без примеси — к его увеличению (см. Введение). Значения $I_{0.65}$ на поверхности легированных кристаллов были на 2–3 порядка ниже значений, характерных для отжига без примеси (рис. 1, *b*, кривые 3, 5).

Зависимость $I_{0.65}$ от концентрации примеси показала (рис. 2, кривая 4), что происходит снижение $I_{0.65}(N_{Cd})$ по мере увеличения содержания атомов кадмия в кристалле.

Поскольку на поверхности легированных кристаллов наблюдается линейная рекомбинация носителей заряда,

Рис. 2. Изменение $I_{0.65}$ в зависимости от концентрации примеси: 4 - Cd; 5, 6 - Se; 4, 5 — атмосфера As; 6 — вакуум. Разрывные линии графика соответствуют $I_{0.65}$: 1 — в исходном кристалле, 2 — после TO в атмосфере As без примеси, 3 — после TO в вакууме без примеси.

а время их жизни ($\tau_n = (2-3) \cdot 10^{-10}$ с) мало изменялось по сравнению с ПИН GaAs (это свидетельствует об отсутствии новых, более эффективных каналов излучательной и безызлучательной рекомбинации), то из соотношений (10) и (11) следует, что $I_{0.65} \propto N_{EL2}$. Поэтому снижение $I_{0.65}$ после TO в атмосфере As, как и при легировании Cu [3], вызвано понижением концентрации изолированных центров *EL2* вследствие образования комплексов *EL2*–Cd.

Действительно, поскольку атомы Cd в GaAs занимают вакансии Ga, то в состав комплексов они могут входить как EL2–Cd_{Ga}.¹ Как уже отмечалось, значения коэффициента диффузии для Cd существенно ниже, чем для вакансий мышьяка. Поэтому можно считать, что кадмий диффундирует в область кристалла, где при избыточном давлении паров As снижается $[V_{As}]$ и, в соответствии с выражением [2].

$$[V_{\rm As}][V_{\rm Ga}] = k \cdot p_{\rm As}^{1/2} \tag{11}$$

 $([V_{As}]$ и $[V_{Ga}]$ — концентрация вакансий As и Ga), растет $[V_{Ga}]$ (дефицит галлия) [6]. Увеличение числа V_{Ga} вблизи антиструктурных дефектов As_{Ga} способствует образованию комплексов *EL2*–Cd_{Ga}. В то же время диффузия в вакууме происходит в приповерхностную область кристалла с высокой $[V_{As}]$ и, соответственно, низкой $[V_{Ga}]$. Это определяет малую вероятность формирования комлексов As_{Ga}–Cd_{Ga} и введение Cd не влияет на $I_{0.65}$.

¹ Диффузия Cd и Se происходит по диссоциативному механизму, и вероятность формирования комплексов с межузельными атомами примеси является низкой [7].

После введения атомов селена поверхность кристаллов характеризовалась *n*-типом проводимости. Диффузия в условиях вакуума приводила к снижению $I_{0.65}$ в большей степени, чем отжиг образцов без примеси (рис. 1, *c*, кривые 2, 4). В то же время диффузия Se в атмосфере As вызывала увеличение $I_{0.65}$, относительно значений беспримесного отжига (рис. 1, *c*, кривые 3, 5). Оба эффекта усиливались с ростом концентрации примеси (N_{Se}) (рис. 2, кривые 5, 6).

В условиях линейной рекомбинации носителей заряда, когда время жизни τ_n в области легирования Se соответствовало значениям в ПИН GaAs, из (8) и (11) следует, что $I_{0.65} \propto N_{EL2}$ и изменение $I_{0.65}$ определяется изменение N_{EL2} .

Увеличение интенсивности излучения через центры EL2 после диффузии Se в атмосфере мышьяка, наиболее вероятно, вызвано частичным вытеснением атомов As примесью, внедряющейся в подрешетку мышьяка [9]. При этом вытесненные атомы могут занимать вакансии галлия, образуя антиструктурные дефекты (как уже отмечалось, $[V_{Ga}]$ увеличивается у поверхности кристаллов при TO в атмосфере As).

Уменьшение $I_{0.65}$ в результате диффузии селена при ТО в вакууме можно, как в случае с кадмием и медью, связать со снижением эффективности излучения через дефекты *EL*2 в результате образования комплексов *EL2*–Se. Действительно, селен диффундирует по узлам подрешетки As [7] и может образовывать комплексы *EL2*–Se_{As} (см. сноску 1). При ТО в вакууме, в результате вылета мышьяка, примесь попадает в область кристалла с высокой [V_{As}] (дефицитом As), и комплексообразование обусловлено тем, что вакансии As присутствуют вблизи антиструктурных дефектов As_{Ga}. Последнее возможно, если вероятность рекомбинации между As_{Ga} и V_{As} (выражение (1)) меньше единицы, т.е. существует потенциальный барьер для такой рекомбинации.²

4.3. Замечания о структуре дефектов EL2

Несмотря на продолжительное изучение центра *EL2*, открытого еще в 1963 г. [11] и идентифицированного как глубокий донор в 1976 г. [12], до сих пор не существует единого мнения о его структуре [13–18]. Начиная с 1982 г., основой разных моделей этого центра является антиструктурный дефект As_{Ga} [19–21]. Однако до настоящего времени одни авторы считают, что *EL2* — это изолированные дефекты As_{Ga} [15], другие полагают их комплексами As_{Ga} с межузельными атомами мышьяка As_i (As_{Ga}As_i) [16] и вакансиями галлия V_{Ga} (As_{Ga} V_{Ga}) [17] либо вакансионным ассоциатом $V_{As}V_{Ga}$ (As_{Ga} $V_{As}V_{Ga}$) [18]. Существуют также данные, позволяющие говорить о центрах *EL2* как о семье дефектов

 $As_{Ga} + X$ [22,23], которые в процессе термообработки могут менять свой состав по элементу X [23].

Результаты настоящей работы показывают, что в кристаллах с дефицитом по галлию вакансии Ga находятся вблизи As_{Ga} . В то же время увеличение концентрации вакансий мышьяка определяет локализацию последних вблизи антиструктурных дефектов. Следовательно, возможным решением вопроса о составе комплексов с дефектом As_{Ga} является то, что вероятность их образования определяется концентрацией тех или иных точечных дефектов (ТД) в кристалле. Изменение концентрации ТД обусловливает изменение в структуре комплекса As_{Ga} –ТД в пользу доминирующего дефекта или отсутствие ТД вблизи As_{Ga} .

5. Заключение

1. Медь является не единственной примесью, вызывающей изменение квантовой эффективности излучения через дефекты *EL2* в кристаллах GaAs. Введение акцепторной примеси кадмия приводит к ее снижению в кристаллах с дефицитом галлия и не меняет ее величины в кристаллах с дефицитом мышьяка. Эффект вызван понижением концентрации изолированных центров *EL2* вследствие образования комплексов *EL2*–Cd_{Ga}.

2. Введение донорной примеси селена увеличивает квантовый выход излучения через дефекты *EL*2 в кристаллах с дефицитом галлия и снижает его в кристаллах с дефицитом мышьяка. Первый эффект наиболее вероятно обусловлен увеличением концентрации центров *EL*2 в результате вытеснения примесью атомов As из подрешетки мышьяка; второй — образованием комплексов *EL*2–Se_{As}.

3. Возможным решением вопроса о составе комплексов As_{Ga}-ТД является то, что изменение концентрации ТД (вакансий и межузельных атомов) в кристалле обусловливает соответствующее изменение в структуре комплексов в пользу доминирующего дефекта или отсутствие ТД вблизи As_{Ga}.

Приложение

Фотогашение излучения через дефекты *EL*2

Как отмечалось в разд. 2, определенный вклад в излучение с $hv_{\rm m} \approx 0.63$ эВ, наряду с дефектами *EL2*, могут вносить атомы кислорода. Для выяснения степени влияния этой примеси (или каких-либо других дефектов, обусловливающих излучение с $hv_{\rm m} \approx 0.63-0.68$ эВ [18]) на полученные в настоящей работе результаты были исследованы спектры селективного возбуждения полос люминесценции (СВЛ) с $hv_{\rm m} = 0.63$ ($I_{0.63}$) и $hv_{\rm m} = 0.68$ эВ³

² О существовании барьера для рекомбинации As_i и V_{As} в объеме кристалла (при температуре кристаллизации GaAs он превышает 5 эВ) свидетельствуют данные работ [9,10].

³ Как отмечалось во Введении, полоса с $hv_m \approx 0.65$ эВ является суперпозицией полос с $hv_m \approx 0.63$ и $hv_m \approx 0.68$ эВ.

Рис. 3. Спектр СВЛ при T = 77 К полосы с $hv_{\rm m} = 0.68$ эВ (a) и полосы с $hv_{\rm m} = 0.63$ эВ (b). 1 — исходный кристалл ПИН GaAs, 2 — после диффузии кадмия в атмосфере As $(N_{\rm Cd} = 1.12 \cdot 10^{18} \, {\rm cm}^{-3})$, 3 — после диффузии селена $(N_{\rm Se} = 2 \cdot 10^{18} \, {\rm cm}^{-3})$ в атмосфере As.

 $(I_{0.68})$ в нескольких контрольных кристаллах GaAs до и после введения в них примеси. На спектре СВЛ ПИН GaAs при T = 77 К (рис. 3, *a*, *b*, кривая 1) видно, что в области $hv_{ex} \approx 1.102 - 1.458$ эВ имеет место практически полное тушение $I_{0.68}$ и неполное тушение $I_{0.63}$. После введения атомов Se и Cd с максимальной для настоящей работы концентрацией N_{Se} (N_{Cd}) величины $I_{0.68}$ и $I_{0.63}$ (рис. 3, кривые 2, 3) в области фототушения не отличались от соответствующих значений в исходных кристаллах.

Известно, что эффект тушения излучения с $hv_{\rm m} = 0.63$ и $hv_{\rm m} = 0.68$ эВ при $hv_{\rm ex} \approx 1.1 - 1.45$ эВ определяется переходом дефектов *EL2* в оптически неактивное метастабильное состояние [24]. Остаточное (после фототушения) излучение с $hv_{\rm m} = 0.63$ эВ, наиболее вероятно, определяется атомами кислорода [5] (эффект фототушения кислородо-обусловленной полосы $hv_{\rm m} = 0.63$ эВ очень мал по сравнению с такой полосой дефекта *EL2* [24]). Существование фототушения и тот факт, что введение как кадмия, так и селена не меняет величины остаточной интенсивности $I_{0.63}$ и $I_{0.68}$, свидетельствуют о том, что наблюдаемые в настоящей работе изменения $I_{0.65}$ в примесной диффузионной зоне обусловлены дефектами *EL2*.

Список литературы

- К.Д. Глинчук, В.И. Горошев, А.В. Прохорович. Оптоэлектрон. и полупроводн. техн., вып. 24, 66 (1992).
- [2] И.И. Показной, Ф.С. Шишияну, И.М. Тигиняну, В.П. Никифоров, В.П. Шонтя. ФТП, 22, 1108 (1988).
- [3] K.D. Glinchuk, A.V. Prokhorovich, F.M. Vorobkalo. Cryst. Res. Technol., 31, 1045 (1996).
- [4] P.W. Yu, D.S. Wallers. Appl. Phys. Lett., 41, 863 (1982).
- [5] T. Kazuno, Y. Sawada, T.Y. Yokoyama. Jap. J. Appl. Phys., 25, L878 (1986).
- [6] М.Г. Мильвидский, О.В. Пелевин, Б.А. Сахаров. Физикохимические основы получения разлагающихся полупроводниковых соединений (М., Металлургия, 1974).
- [7] Ф.С. Шишияну. Диффузия и деградация в полупроводниковых материалах и приборах (Кишенев, Штиинца, 1978).
- [8] Г.П. Пека, В.Ф. Коваленко, В.Н. Куценко. Люминесцентные методы контроля параметров полупроводниковых материалов и приборов (Киев, Техника, 1986).
- [9] В.В. Воронков, А.Ю. Большева, Р.И. Глориозова, Л.И. Колесник, О.Г. Столяров. Кристаллография, 32, 208 (1987).
- [10] K.M. Luken, R.A. Morrow. J. Appl. Phys., 79, 1388 (1996).
- [11] N.G. Ainsle, J.F. Woods. J. Appl. Phys., 35, 1469 (1963).
- [12] A. Mircea, A. Mitonneay, L. Mollan, A. Briere. Appl. Phys., 11, 153 (1976).
- [13] K.-H. Wietzke, F.K. Koschnick, J.-M. Spaeth. Mater. Sci. Forum Vols. Switherland, 1061 (1995).
- [14] S.A. Goodman, F.K. Koschnick, C. Weber, J.-M. Spaeth, F.D. Auret. Sol. St. Commun., **110**, 593 (1999).
- [15] Q.M. Zhang, J. Bernholc. Phys. Rev. B, 47, 1667 (1993).
- [16] H.E. Ruda, Q. Liu, M. Ozawa, S. Zukotynski, J.M. Parsey, T.J.O'Neill, D.J. Lockwood, B. Lent. J. Phys. D: Appl. Phys., 25, 1538 (1992).
- [17] R.A. Morrow. J. Appl. Phys., 78, 5166 (1995).
- [18] Чао Чень, М.А. Быковский, М.И. Тарасик. ФТП, **28**, 35 (1994).
- [19] E.R. Weber, H. Ennet, V. Kaufmann, J. Windscheif, J. Schneider, T. Wosinski, J. Appl. Phys., 53, 6140 (1982).
- [20] D.E. Holmes, R.T. Chen, K.R. Elliott, G. Kirkparrick. Appl. Phys. Lett., 40, 46 (1982).
- [21] J. Lagowski, H.C. Gatos, J.M. Parsey, K. Wada, M. Kaminska, W. Walakiewcz. Appl. Phys. Lett., 40, 342 (1982).
- [22] D.W. Fischer. Phys. Rev. B, 37, 2968 (1988).
- [23] Hoon Young Cho, Eun Kyu Kim, Suk-Ki Min. Phys. Rev. B, 39, 10 376 (1989).
- [24] M. Tajima. Jap. J. Appl. Phys., 26, L885 (1987).

Редактор Л.В. Беляков

Impurity influence on the emission through the *EL*2 centres into the gallium arsenide monocrystals

M.B. Litvinova

Institute of Semiconductor Physics Ukrainian Academy of Sciences, 03028 Kiev, Ukraine