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In the frame of the random matrix theory, it was shown, that the relaxation of the projection of the initial plane

wave with the wave vector q is described by the equation of motion with the memory function which corresponds

to the complex dynamical Young modulus E(ω). In the harmonic scalar model of displacements with the absence

of energy dissipation, the Ioffe−Regel crossover arises universally in amorphous systems with the dimension d ≥ 3.

Vibrations above the Ioffe−Regel crossover are related to the diffusive nature and can be described by the diffusion

equation with the damping Ŵ(q) ∝ q2 .
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1. Introduction

Amorphous dielectrics have a number of vibrational

properties that fundamentally distinguish such disordered

systems from crystalline ones. Vibration relaxation pro-

cesses that affect these properties play an important role

in the study of amorphous systems [1]. The low-frequency

region of vibrations of amorphous media is expressed by

phonons with a large mean free path. However, in a wide

range of frequencies below the localization limit, vibrations

propagate through diffusional energy transfer from atom

to atom [2,3]. These vibrations are responsible for the

secondary increase in the thermal conductivity of amor-

phous dielectrics at temperatures from 20 to 1000K [1].
The crossover between low-frequency phonons and higher-

frequency diffuse vibrations is known as the Ioffe–Regel
crossover, in which the mean free path of a phonon becomes

comparable to its wavelength [3].

Practically in all glasses, regardless of their chemical

composition, there are universal vibrational features near

the Ioffe–Regel crossover [4,5]. This is a bosonic peak

that characterizes the excess density of vibrational states

g(ω) compared to Debye law, according to which the low-

frequency density of states is proportional to ωd−1, where

d is the dimension of the space [6]. The peak observed

in the reduced density of states g(ω)/ωd−1 in many experi-

ments [7–10] is called the bosonic peak. In addition, data on

inelastic X-ray scattering in glasses show a diffusion feature

of Ŵ(q) ∝ q2 damping above the Ioffe–Regel crossover

compared to the Rayleigh dependence Ŵ(q) ∝ qd+1 below

the crossover [11–13]. A linear correlation of the Ioffe–
Regel crossover frequency ωIR with the elastic moduli of

the amorphous medium [14,15] is also noted. In a number

of experimental works devoted to the study of vibrations

in two-dimensional systems, all of the above features are

observed [16–19]. Therefore, the description of the Ioffe–
Regel crossover provides the key to understanding the

processes of vibrations in disordered media.

There are different theoretical approaches used to de-

scribe these phenomena of amorphous media [20–25]. One
of such approaches is the application of the theory of

random matrices [26–29]. It can be assumed that in

amorphous bodies, due to local disorder, the elements of

the dynamic matrix of the system are random to some

extent [30]. At the same time, the short-range order in

glasses resembles the short-range order in the corresponding

crystals, but there is no long-range order. This allows us to

consider only the short-range interaction of the atoms of

the system located at the lattice sites of the corresponding

crystal [30]. Such a consideration of a highly sparse random

dynamic matrix allows us to study the above features of

vibrations in some two-dimensional and three-dimensional

disordered systems, both from the numerical and analytical

points of view [29,31–33].

The aim of this work is an analytical description of

the diffusion of vibrations and the Ioffe–Regel crossover

using the theory of random matrices. At the same time,

the found expressions and conclusions are not tied to any

particular disordered system (amorphous body), but are

general in nature for amorphous media with an arbitrary

local arrangement of atoms and dimension. In particular,

the study of the oscillatory properties of disordered systems

with different dimensions is of interest in the study of

quasi-local vibrations. The contribution of quasi-local

vibrations to the density of states gqlv ∝ ωβ , β ≈ 4 for

most glasses [34,35] does not depend on the dimension

of the system. The study of systems with dimensions

d > 3 allows to distinguish the modes of these vibrations
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from the Rayleigh scattering of phonons by disorder, which

contributes g ∝ ωd+1 .

2. Representation of the dynamic
matrix M̂ as a correlated Wishart
ensemble

The dynamic matrix M̂ is constructed taking into account

the main symmetry properties of a mechanical disordered

system. The model under consideration describes the

harmonic vibrations of a system consisting of a large number

of N particles near their equilibrium position without energy

dissipation. For simplicity, it is assumed that atoms have unit

masses, and atomic displacements are scalar values [29].
In this case, the number of degrees of freedom of the

system coincides with the number of atoms N. The dynamic

matrix M̂ is related to the total interaction energy of particles

of such a system U as follows [36]:

M i j =
∂2U

∂ui∂u j
, (1)

where the indices i and j number the atoms (degrees of

freedom), ui is the scalar displacement of the i-th atom

from the equilibrium position.

The presence of the system near a stable equilibrium

means that the dynamic matrix M̂ [30] is positive definite,

so it can be represented in the following form:

M̂ = ÂÂT , (2)

where Â is an N by K matrix. Each row of the matrix Â
corresponds to the degree of freedom of the system, and

each of its columns corresponds to the relation of a certain

number of degrees of freedom to each other [31]. Due

to the local fluctuation of the connections of the system,

we can assume that the elements of the matrix Â are

random numbers with a Gaussian distribution [30]. Then (2)
corresponds to the representation of the dynamic matrix M̂
as a Wishart ensemble of random matrices. Such a model

describes many universal oscillatory properties of disordered

systems [29,33]. In this case, the mechanical stability of

the system does not impose restrictions on the form of the

matrix Â.
The ratio of the number of bonds K and the number

of degrees of freedom N plays an important role in the

study of vibrations of mechanical systems [37,38]. In this

model, the parameter ̹ = K/N−1 is considered, which

shows a relative increase in the number of bonds over the

number of degrees of freedom of the system. For ̹ ≤ 0,

the system does not have macroscopic rigidity in accordance

with Maxwell’s rule [39]. For ̹ > 0, the system has a finite

macroscopic rigidity, as a result of which the low-frequency

vibrations of the system exist in the form of plane waves and

obey the Debye law [29]. The case ̹ = 0 corresponds to

an extremely soft system in which all vibrations propagate

through some diffusional transfer of energy from atom to

atom [29]. Let us vary the system parameter ̹ within a

wide range 0 ≤ ̹ < ∞.

Vibrations of a mechanical system do not depend on its

shift as a whole, as a result of which a symmetric dynamic

matrix must obey the sum rule:
∑

i M i j =
∑

j M i j = 0 [36].
This leads to the rule

∑

i Ai j = 0, as a result of which the

elements of the matrix Â are correlated. The statistical prop-

erties of the uncorrelated Wishart ensemble are well studied

in the framework of the theory of random matrices [40,41].
However, the sum rule leads to a more difficult problem

of finding the spectral properties of a correlated Wishart

ensemble. Nevertheless, taking into account the sum rule

is important, since it ensures the presence of low-frequency

vibrations in the form of plane waves, obeying the Debye

law [29].
To take into account these correlations, we will assume

that all connections are statistically identical and indepen-

dent, that is, individual columns of the matrix Â do not

correlate with each other. Then pair correlations between

matrix elements Ai j have the form

〈AikA jl〉 =
1

N
C i jδkl, (3)

where Ĉ is the correlation matrix, the brackets 〈·〉 mean

averaging over different realizations of the dynamic ma-

trix M̂ . The ensemble-averaged dynamic matrix is related

to the correlation matrix

〈M i j〉 = 〈6kAikA jk〉 = K〈AikA jk〉 =
K
N

C i j . (4)

If the number of bonds K significantly exceeds the num-

ber of degrees of freedom N, then the dynamic matrix M̂
differs slightly from the averaged matrix 〈M̂〉 = (̹ + 1)Ĉ .

Therefore, the case of a small difference K and N seems to

be of interest, i.e., the case of ̹ ≪ 1.

The statistical properties of the random matrix M̂ are

related to the statistical properties of the correlation ma-

trix Ĉ [42]. It can be expected that the elements of the

dynamic matrix averaged over different implementations

have the same values, as a result of which the correlation

matrix describes a regular system [42]. Then the wave

vector of the system |q〉 is an eigenvector of the matrix Ĉ,

and its eigenvalues correspond to the squared vibration

frequencies of the regular system ω2
cor(q). In works [32,33]

regular systems were considered corresponding to two-

dimensional and three-dimensional cubic lattices, for which

the dispersion dependence ωcor(q) is known. In this work, it

is assumed that in the general case, for small wave vectors,

ωcor(q) ∝ q, regardless of the particular type of correlation

matrix and system dimension.

3. Dynamical Young’s modulus

Let us show that the motion of the atomic displacement

profile uq(t) can be described using the equation of motion

with a retarded part. The constructed dynamic matrix M̂ (2)
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describes small harmonic vibrations in a disordered system

in the form of an equation of motion

|ü(t)〉 = −M̂ |u(t)〉, (5)

where N-dimensional vector |u(t)〉 describes the deviation

of atoms from their equilibrium position at time t . The

equation of motion (5) can be solved by setting the initial

conditions |u(0)〉 = 0, |u̇(0)〉 = v0|q〉.
At the same time, due to the redistribution of energy

between the internal degrees of freedom of the system, the

projection 〈u(t)|q〉 of a plane wave with a wave vector q

can experience relaxation. To study this process, consider

the average plane wave projection uq(t) = 〈u(t)|q〉, which

is related to the Green’s function Gq(z ) of a dynamic matrix

in the form of a Fourier transform

uq(t) = − v0

2π

∞
∫

−∞

Gq

(

(ω − i0)2
)

eiωtdω, (6)

Gq(z ) =
∑

n

|〈n|q〉|2
z − ω2

n
. (7)

The frequency ωn corresponds to the eigenstate |n〉, z is

a complex variable.

In works [33,43] it is shown that in the thermodynamic

limit N → ∞ the Green’s function Gq(z ) has the following

form:

Gq(z ) =
1

z − ω2
cor(q)E(z )

, (8)

where the complex function E(z ) = z/Z(z ) in the scalar

displacement model plays the role of the dynamic complex

Young’s modulus, the real part of which ReE(z ) describes

elasticity, and the imaginary part ImE(z ) — viscosity. The

complex parameters z and Z are related by a conformal

transformation Z(z ) of the following form [44]:

̹Z +
Z2

N
Tr R̂cor(Z) = z , (9)

where the resolution R̂cor(Z) corresponds to the resolution

of the correlation matrix

R̂cor(Z) =
∑

q

|q〉〈q|
Z − ω2

cor(q)
. (10)

This form of the Green’s function (8) corresponds to the

equation of motion of the average projection of a plane

wave uq(t) with a retarded part

üq(t) + ω2
cor(q)

t
∫

−∞

K (t − τ )uq(τ )dτ = 0, (11)

in which the retarded kernel is the Fourier transform of the

dynamic Young’s modulus

K (t − τ ) =
1

2π

∞
∫

−∞

E
(

(ω − i0)2
)

eiω(t−τ )dω. (12)

The complex dynamic Young’s modulus E(z ) can be

found from the conformal transformation (9) when the

dependence Z(z ) is found explicitly. This dependence,

generally speaking, is special for a particular regular

system described by the correlation matrix Ĉ , with the

corresponding variance ω2
cor(q). In the next section, based

on fairly general assumptions about the properties of most

of these systems, an approximate general form E(z ) is

derived.

4. Low frequency approximation

With the help of a series of approximations, in a universal

way, it is possible to obtain the retarded part and the

equation of motion of the displacement profile in an explicit

analytical form. The normalized trace of the resolution (10)
of the correlation matrix can depend on the complex

parameter Z in a complicated way. This dependence is

determined by the specific type of auxiliary regular system

described by the correlation matrix. However, we will

assume that the low-frequency region of vibrations of such

a system, regardless of its specific form and dimension, is

due to phonons with a linear dispersion law ωcor(q) = �q
at q → 0. The constant � determines the characteristic

vibration frequency of the system.

In two-dimensional systems d = 2 with a low-frequency

linear dispersion law, there is a logarithmic divergence

N−1 Tr R̂cor(Z) ≃ ln(−Z) + O(Z) for small Z → 0. This

feature of two-dimensional systems is associated with

their constant density of distribution of squared frequen-

cies near zero. However, in systems with dimension

d ≥ 3, the resolution expansion has the general form

N−1 Tr R̂cor(Z) = −a2 + f (Z), where the constant a does

not depend on Z. For example, for a simple three-

dimensional cubic lattice, the constant a ≈ 0.505462 (Wat-

son’s constant) [45], and the function f (Z) ≃
√
−Z + O(Z)

has root singularity for small Z [46]. Therefore, in the

first approximation, for Z → 0, we restrict ourselves to a

constant: N−1 Tr R̂cor(Z) ≃ −a2. Such an approximation is

valid for ̹ ≪ 1 and is generally suitable for a qualitative

analysis of systems with dimensions d ≥ 3, in which

phonons with a linear dispersion law propagate at low

frequencies. However, to reveal the features of specific

systems, it is necessary to look for the form f (Z).

Taking into account the described low-frequency approxi-

mations, the conformal transformation (9) is rewritten in the

form

̹− a2 z 2

E(z )
= E(z ). (13)

In view of the dependence (6), for each complex

z = (ω−i0)2 from equation (13) one can find the explicit

form of the dynamic Young’s modulus E
(

(ω−i0)2
)

. For

simplicity, we omit −i0 in the following equations and

choose a complex solution that corresponds to a positive
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density of vibrational states g(ω) > 0:

E(ω) =
κ

2
+

√

κ2

4
− a2ω2. (14)

The static Young’s modulus E(0) = ̹ determines the

macroscopic rigidity of the medium. Then the equation of

motion (11) takes the following form:

üq(t) +
�2κ

2
1uq(t) + �2a1u̇q(t)

+

t
∫

−∞

F(τ )1uq(t − τ )dτ = 0, (15)

F(τ ) =
κ�2

2τ
J1

(

κτ

2a

)

, (16)

where 1 is a discrete Laplace operator acting on the

projection of the original plane wave with the wave vector q.

This form of the retarded part (16) manifests itself in

processes characterized by the behavior of a damped

harmonic oscillator [47,48].

5. Ioffe–Regel crossover

The sign of the radical expression in (14) determines the

behavior of the complex Young’s modulus E(ω) and the

relationship between elasticity and damping in the system.

Frequency

ωc =
̹

2a
(17)

divides vibrations into two regions: ω < ωc and ω > ωc.

Let us analyze the characteristic features of vibrations in

these frequency ranges.

In the ω ≪ ωc region, the dynamic Young’s modulus (14)
E(ω) ≃ ̹, and the equation of motion (15) describes

vibrations of elastic perturbation waves

üq(t) + k1uq(t) = 0 (18)

with stiffness coefficient k = �2̹. Such vibrations are

phonons with the linear dispersion law ω(q) = q
√

k .
To find the dispersion law in the frequency range ω < ωc,

let us assume that the phase velocity of phonons in this

frequency range is determined by the dynamic Young’s

modulus (14): vph = ω/q =
√

�2E(ω). From this relation

follows the relation between the frequency ω and the wave

vector q:

ω(q) = �2aq
√

2q2
c − q2, (19)

where the wave vector qc =
√

̹/2�2a2 corresponds to the

frequency ωc . This law of dispersion, obtained in a higher

approximation, describes elastic vibrations (phonons) well

over the entire frequency range ω < ωc .

In the ω ≫ ωc region, the dynamic Young’s modulus

E(ω) ≃ iaω, and the equation of motion (15) describes

the diffusion of the atomic velocity profile

üq(t) + D1u̇q(t) = 0 (20)

with diffusion coefficient D = �2a . At ̹ ≪ 11, this

diffusion feature of the vibrations is preserved in almost

the entire frequency range ω > ωc.

Thus, in the vibration region ω < ωc, well-defined sound

vibrations, phonons having a linear law of dispersion in the

low-frequency region ω ≪ ωc, propagate. In the frequency

range ω > ωc, vibrations propagate due to some diffusional

transfer of energy from atom to atom in the absence of an

explicit mass transfer. The frequency ωc separates these two

fundamentally different regions of vibrations. This allows us

to assume that ωc corresponds to the Ioffe–Regel crossover
frequency ωIR in the transition from long free path phonons

to diffusion vibrations [2,3].

6. Density of vibrational states

To find an analytical expression for the density of

vibrational states d-dimensional system gph(ω) in the

phonon frequency range ω < ωc, we use the approximation

ω/q =
√

�2E(ω), in which the dynamic Young’s modulus

is determined by relation (14):

gph(ω) =
sd

(2π)d
qd−1 ∂q

∂ω

=
sdω

d−1

(2π�
√

a)d
√

(ω2
c − ω2

(

ωc +
√

ω2
c − ω2

)
d
2
−1

,

(21)

where the coefficient sd = d(
√
π)d/[(d/2)!] is equal to the

area of the d-dimensional hypersphere of unit radius.

In the low-frequency region ω ≪ ωc, the density of

vibrational states (21) has the Debye form

gD(ω) =
sdω

d−1

(2π�
√
̹)d

. (22)

In the higher-frequency region ω . ωc there is an excess

over the Debye gD(ω) ∝ ωd−1 contribution to the density

states

gph(ω) − gD(ω) ∼ ωd+1. (23)

Such an increase in the density of vibrational states near

the ωc Ioffe–Regel crossover is universal for systems with

the dimension d ≥ 3.

In the diffusion region of vibrations ω > ωc, the de-

pendence of the frequency on the wave vector is not a

functional dependence similar to the dispersion relation

for phonons (19). However, it follows from the statistical

properties of the dynamic matrix and the correlation matrix

that the density of vibrational states is determined by the

imaginary part of the dynamic Young’s modulus [33]. Tak-
ing into account expression (14), the density of vibrational
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gph(ω)/gD(ω) and the diffusion vibration region gdif(ω)/gD(ω)
for different values of the ̹ parameter. The vertical dotted

lines represent the crossover frequency ωc . Dimension of the

system d = 4.

states in the region of diffusion of vibrations takes the

following form:

gdif(ω) =
2

πω
ImE(ω) =

2a
πω

√

ω2 − ω2
c . (24)

This equation corresponds to the Marchenko–Pastur
law [41] for the classical uncorrelated Wishart ensemble.

The sum rule is a necessary requirement for the existence

of plane-wave phonons, so the density of vibrational states

gdif unconditionally describes diffusion vibrations.

The figure shows the density of vibrational states norma-

lized to the Debye for the case d = 4. The resulting peak

in the density of states is called the bosonic peak. As can

be seen, with a decrease in the ̹ parameter, i.e., with an

increase in disorder in the system, the height of the bosonic

peak increases, and the crossover between the two vibration

regions becomes sharper. There is a narrow smooth

transition region between gph(ω) and gdif(ω), however it

is small compared to ωc at ̹ ≪ 1. For critical values

of ω = ωc, expressions (21) and (24) have asymptotic

divergence.

The density of vibrational states determines, in particular,

the damping Ŵ, in the following possible form [46]:

Ŵ(q, ω) =
π

2
ω2
cor(q)g(ω). (25)

In the phonon region of vibrations, despite the absence of

the imaginary part of the dynamic Young’s modulus (14),
damping Ŵ exists. Taking into account the expression for

the density of states (21) and the dispersion relation (19),
we can obtain the dependence of the vibration damping on

the wave vector q in the phonon region q < qc:

Ŵ(q) =
π

2
�2q2gph =

πsd

4a(2π)d
qd+1

√

2q2
c − q2

q2
c − q2

. (26)

It follows that in a wide range q ≪ qc the damping

is determined by the Rayleigh scattering of phonons on

disorder and contributes Ŵ ∝ qd+1. For critical values q = qc

there is an asymptotic divergence.

In the diffusion high-frequency vibration region q ≫ qc

one can also find damping Ŵ depending on the wave

vector q:

Ŵ(q) =
π

2
�2q2gdif ≃ Dq2, (27)

where the diffusion coefficient is D = �2a . The obtained

dependence Ŵ ∝ q2 for diffusion vibrations is universal and

does not depend on the dimension of the system. This

diffusion feature is consistent with the results of experiments

on inelastic X-ray scattering in glasses [11,12] and with the

results of the molecular dynamics method for amorphous

silicon [13].

7. Conclusion

By considering the statistical properties of a correlated

Wishart ensemble of random matrices, which describes the

vibrational properties of amorphous solids, taking into ac-

count their mechanical stability and translational invariance,

in this work universal analytical expressions are obtained

that describe the vibrational features of such systems,

regardless of their dimension and the local arrangement of

nearby atoms in them. Vibrations of disordered systems can

be described using the equation of motion of the average

projection of a plane wave uq(t) with a retarded part in the

form of a dynamic complex Young’s modulus E(ω) (11).
With this consideration, an important approximation is

that the low-frequency vibrations of the medium under

consideration are due to phonons with a linear dispersion

law.

The work demonstrates the occurrence of the Ioffe–
Regel crossover in amorphous systems with the dimension

d ≥ 3 as a crossover between phonons described by a

simple elasticity equation for the projection of atomic

displacements (18) and diffusion vibrations described by

the diffusion equation for the projection of velocities (20).
The resulting crossover frequency ωc

∼= ωIR (17) correlates

linearly with the system parameter ̹, which characterizes

the macroscopic rigidity of the disordered system.

In the case of small values of ̹ ≪ 1, the system has

significant disorder and demonstrates an excess density of

vibrational states g(ω) compared to the Debye density

of states gD(ω). This leads to the universal appearance

of a bosonic peak in the reduced density of vibrational

states g(ω)/gD(ω). To illustrate the obtained formulas, a

system with dimension d = 4 was considered. The obtained

oscillatory properties of a system with such a dimension

are important for further research, for example, quasi-local

vibrations. Within the framework of the random matrix

approach, when considering the non-Gaussian statistics of

the distribution of the elements of the matrix Â, quasi-local
fluctuations can be obtained and studied [43].
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The damping in the region of phonons demonstrates their

Rayleigh scattering on disorder and contributes Ŵ ∝ qd+1.

However, in the higher frequency region above the Ioffe–
Regel crossover, the damping is Ŵ ∝ q2. Such a dependence

is typical for diffusion hydrodynamic damping and has

a universal character, regardless of the dimension of the

system.
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