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1. Introduction

The discovery of unique graphene properties has given

rise to two research areas: 1) search for new two-

dimensional (2D) materials and 2) development of methods

for the making of heterojunctions and superlattices (SL)
on their basis [1–3]. This activity turned out to be

quite successful: at present there are atlases containing

many hundreds of theoretically possible 2D-materials [4–7],
and different 2DSL formation schemes have been devel-

oped [8–10]. In the present paper we suggest a model

of the electronic spectrum of vertical 2DSL constructed

on the basis of the epitaxial layer theory [11]. Such a

scheme allows for obtaining the spectrum characteristics in

the analytical form, without implicit consideration of the

geometry of interlayer contacts. The main goal of the paper

is to answer the question: how does interlayer interaction

affect the electronic characteristics of the layers which make

up the SL.

The forming 2DSL-monolayers in the present work, in

addition to graphene, include graphene-like compounds

(GLC) of type A3B5 [11,12]. The basis for this is the

potential possibility of successful use of the GLC lattice in

nanoelectronics similarly to the use of A3B5 3D-compounds

in microelectronics [13–20]. SLs with ferromagnetic metal-

lic layers, which are of interest for spintronics, are also

discussed.

2. Model

Let us begin with the consideration of a set of verti-

cally arranged 2D-sheets. Without considering the sheet

interaction, the sheet Green function is G(κ, ω), where ω

is the energy variable, κ is the wave vector for electron
motion in the sheet (x , y) plane. Let us now go to the SL
constructed of alternating sheets 1 and 2. Using the Dyson
equation [11], for diagonal Green functions G̃11(κ1, kz ;ω)
of layers 1 which interact with neighboring layers 2, let us
write down a chain of equations

G̃11(κ1, kz ;ω) = G11(κ1;ω) + G11(κ1;ω)

×
∑

κ2,κ
′

1

V (κ1, κ2)
[
G>

21(κ2, κ
′
1, kz ;ω)+G<

21(κ2, κ
′
1, kz ;ω)

]
,

G>
21(κ2, κ1, kz ;ω) = G22(κ2;ω)V (κ2, κ1)G̃11(κ1, kz ;ω)

× (1 + e2ikz d),

G<
21(κ2, κ1, kz ;ω) = G22(κ2;ω)V (κ2, κ1)G̃11(κ1, kz ;ω)

× (1 + e−2ikz d), (1)

where V (κ1, κ2) is an off-diagonal matrix element which
links the states |κ1〉 and |κ2〉, kz is the wave vector for
electron motion in the direction of the normal to the (x , y)
plane of the z axis, d is the interplanar distance, designations
> and < refer to the planes lying above and below the
considered plane, respectively. Leaving only the terms with
κ1 = κ

′
1 (diagonal approximation) under the sum sign in

expression (1) for G̃11(κ1, kz ;ω), we have

G̃11(κ1, kz ;ω) = G11(κ1;ω)/D(κ1, kz ;ω),

D(κ1, kz ;ω) = 1− 4 cos2(kz , d)G11(κ1;ω)

×
∑

κ2

G22(κ2, kz ;ω)V (κ1, κ2)V (κ2, κ1). (2)
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Assuming that

∑

κ1(κ2)

G11(22)(κ1,2;ω)V (κ1, κ2)V (κ2, κ1) = 61(2)(ω) (3)

and substituting indices 11 and 22 for the layers’ diagonal

Green functions by indices 1 and 2, we obtain the following

expressions for the Green functions of SL

G̃−1
1,2(κ1,2;ω) = G−1

1,2(κ1,2;ω) − 4 cos2(kz d)62,1(ω), (4)

where k1,2 = (κ1,2, kz ). Let us represent the self-energy

function 61(2)(ω) as the difference 31(2)(ω) − iŴ1(2)(ω),
where Ŵ1(2)(ω) and

31,2(ω) = π−1P

∞∫

−∞

Ŵ1,2(ω
′)(ω − ω′)−1dω′

(P is the symbol of the principal value of the inte-

gral) are respectively half-width and shift functions of

the band states of layer 2 (1) under the action of

layer 1 (2) [11]. Let us assume Ŵ1(2)(ω) = πV 2ρ1,2(ω),
where ρ1,2(ω) are densities of states of free layers 1 and 2,

V 2 = 〈V (κ1, κ2)V (κ2, κ1)〉ZB1,2
and bracket 〈. . .〉ZB1,2

mean

averaging by 2D Brillouin zones of layers 1 and 2.

From now on, we will assume that interlayer interaction V
is weak (see below for more detail). The smooth functions

Ŵ1,2(ω) can be neglected on this ground (i.e. we can ignore

the finit lifetime of electronic states τ1,2 ∼ ~/Ŵ1,2(ω), where

~ is the reduced Planck constant), while functions 31,2(ω),
which have logarithmic divergences at the boundaries of

continuous spectrum regions (see below), cannot a priori

be neglected. Using the made simplification, we get the

Green functions

G̃1,2(κ1,2;ω) = (2d/π)

π/2d∫

0

G̃1,2(κ1,2, kz ;ω)dkz ,

which characterize the SL layers, in the following form

G̃1,2(κ1,2;ω)

=
1 + (2/π)sgn [A1,2(κ1,2;ω)] arcsin |A1,2(κ1,2;ω)|√

1− A2
1,2(κ1,2;ω)

× Ḡ1,2(κ1,2;ω), (5)

where A1,2(κ1,2;ω) = 2Ḡ1,2(κ1,2;ω)32,1(ω),
Ḡ−1

1,2(κ1,2;ω) =

= G−1
1,2(κ1,2;ω) − 232,1(ω). It follows from (4), in

particular, that G̃1,2(κ1,2;ω) = G1,2(κ1,2;ω) at Vαβ = 0.

The electron dispersion laws for SL sheets are determined

from the equations Ḡ−1
1,2(κ1,2;ω) = ±232,1(ω). These

equations provide two groups of bands. We get the

following equation at Ḡ−1
1,2(κ1,2;ω) = −232,1(ω)

G−1
1,2(κ1,2;ω) = 0, (6)

the solutions of which coincide with the bands of free

layers 1 and 2. It follows from (5) that the weighting

coefficient outside the Green function Ḡ1,2(κ1,2;ω) in

this case becomes 0. We get the following equation at

Ḡ−1
1,2(κ1,2;ω) = +232,1(ω)

G−1
1,2(κ1,2;ω) = 432,1(ω), (7)

which determines the renormalized bands which will here-

inafter be called the bands of lattice layers. For subsequent

analysis, we must go to specific structures.

3. Superlattices of graphene-like
compounds

The Green function for a free binary GLC (per one unit

cell atom) is as follows [11]:

GGLC(κ;ω) = �/(�− R(κ))
(
� + R(κ)

)
. (8)

Here �=ω − ε̄, R(κ)=
√

12+t2 f 2
GLC(κ), ε̄=(εa + εb)/2,

1 = |εa − εb|/2, εa and εb are energies of p-orbitals of

atoms A and B which make up the GLC, t is energy of

electron transition between neighboring atoms A and B

located at distance a from each other,

f GLC(κ)

=

√
3 + 2 cos(κx a

√
3) + 4 cos(κx a

√
3/2) cos(3κy a/2).

(9)

Function (9) in the low-energy approximation

becomes f GLC(q) = 3a |q|/2, where q = K− κ and

K = a−1(2π/3
√
3, 2π/3) is the Dirac point wave vector.

Density of states of GLC is as follows

ρGLC(�) =

{
2|�|/ξ2, 1 ≤ |�| ≤ R̄,

0, |�| < 1, |�| > R̄,
(10)

where ξ =
√
2π

√
3t and R̄ =

√
ξ2 + 12 [11], while the

corresponding shift function, according to [21], is equal to

3GLC(�) =
2V 2

ξ2
� ln

∣∣∣∣
�2 − 12

�2 − R̄2

∣∣∣∣. (11)

We must assume that 1 = 0 in order to go to graphene in

formulas (8), (10) and (11).
The above-mentioned weakness of the interlayer coupling

is determined by condition (V/ξ)2 ≪ 1. From here, at

V = t we have (V/ξ)2 = 1/2π
√
3 ∼ 0.1 (covalent bond).

Thus, the used approximation by no means reduces to a

van der Waals interlayer interaction, for which V/t ∼ 0.1

and (V/ξ)2 ∼ 0.01. Hereinafter the values of energies

of transitions between the nearest neighbors for all GLC

were determined using the Harrison formulas for the

π-bond [22]; for estimates of parameter V , see [23]. It

should be noted, however, that the real value of V is to
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a large extent determined by the superlattice manufacture

technology. Indeed, in case of the absence and presence of

misorientation of the lattices of contacting layers, efficient

interaction between them, described in our model by the

parameter V , differs significantly. Thus, for instance, any

misorientation in case of a heterojunction between single-

layer graphene (Gr) and hexagonal boron nitride (h-BN)
leads to virtually complete disappearance of the gap in the

graphene spectrum [24].
Let us begin a consideration of superlattices of graphene-

like compounds (SL GLC) with a structure which consists

of Gr sheets (hereinafter sheet 1) and h-BN sheets (here-
inafter sheet 2). If graphene is considered as gaples [24], we
can assume that ε̄ = ε̄1 = ε̄2 = 0 and 12 = t [25], where,

ignoring the insignificant different of values a1 and a2, we

have adopted t = t1 = t2 . From (7) we obtain

ω

(
1− 8V 2

ξ2
ln

∣∣∣∣
ω2 − t2

ω2 − t2 − ξ2

∣∣∣∣
)
∓−3taq

2
= 0, (12)

ω2

(
1− 8V 2

ξ2
ln

∣∣∣∣
ω2

ω2 − ξ2

∣∣∣∣
)
− 9t2(aq)2

4
− t2 = 0, (13)

where equations (12) and (13) refer to the layers of gapless

Gr and h-BN, respectively. At V = 0 and q = 0, we

obtain the solution ω0 = 0 from (12), solutions ω±
0 = ±t —

from (13). Then we have the following dispersions in the

vicinity of the Dirac point K

ω±
1 (q) ≈ ±3η2taq/2,

ω±
2 (q) ≈ ±ηt

√
1 + (3aq/2)2,] (14)

where

η =
[
1 + 8V 2/ξ2) ln(2π

√
3− 1)

]−1/2

≈ 1/

√
1 + 20(V/ξ)2.

It follows from (14) that, firstly, the Fermi velocity of elec-

trons in the SL graphene layers is equal to ν̃F = η2νF < νF ,

where νF = 3at/2~ is the Fermi velocity in free Gr.

Secondly, the effective mass of electrons in h-BN lattice

layers is equal to m̃∗ = m∗/η > m∗, where m∗ = 4~
2/9a2t

is the effective mass in free h-BN (m∗/me ≈ 0.80 [11], me

is free electron mass). Thereat, the band gap of the h-BN

lattice layer is equal to Ẽg = ηEg < Eg , where Eg = 2t is the
band gap in a free h-BN sheet. It should be noted that there

is no charge transition between the Gr and h-BN layers in

SL due to the symmetric location of bands in relation ε̄ = 0.

It is interesting to compare our results with ab initio

calculations of other authors. For instance, the authors

of [26] demonstrated that mutual influence of graphene and

h-BN layers can be considered as a perturbation, i.e,. it

can be considered weak. (This assertion is not given in the

text of [26], but it follows from the comparison between

Fig. 6, a, d and e). It has been shown in [27] that h-BN

layers induce a gap in graphene in the vicinity of the Dirac

point equal to about 0.1 eV. There is no gap in our approach,

since the geometric structure of the Gr/h-BN contact is not

taken into account and the shift function (11) is identical

for both graphene sublattices. It should be noted that much

attention is being paid in recent years to moire effects in

Gr/h-BN superlattices [28,29].
Let us now consider a SL formed by 2D-layers of AlN

(sheet 1) and GaN (sheet 2). Using the results of paper [30]
which describes the free layers of these compounds, we

assume that ε̄ = ε̄1 = ε̄2 = 0, 11 = 2.5 eV, 12 = 2.0 eV.

Thus, the contact of AlN and GaN layers is a straddling

heterojunction [31]. Then the spectra of the AlN and GaN

lattice layers in the vicinity of Dirac point K are as follows

ω±
1,2(q1,2) ≈ ±η1,2

√
12
1,2 + (3t1,2a1,2q1,2/2)2, (15)

where

η1,2 =
{
1+(8V 2/ξ22,1) ln

[
(ξ22,1− 12

1 − 12
2)/(1

2
1 − 12

2)
]}−1/2

.

The corresponding effective masses are equal to

m̃∗
1,2 = m∗

1,2/η1,2 > m∗
1,2, (16)

where m∗
1,2 = 4~

211,2/9a2
1,2t

2
12,2. Since a1 = 1.80 Å,

a2 = 1.88 Å, t1 = 1.48 eV, t2 = 1.36 eV [30], we

have m∗
1/me = 1.19 (AlN) and m∗

2/me = 1.04

(GaN) [31]. We obtain the following for the coefficients

η1 ≈ 1/
√
1 + 12(V/ξ2)2, η2 ≈ 1/

√
1 + 14(V/ξ1)2, where

ξ1 ≈ 4.9 eV, ξ2 ≈ 4.5 eV. Ẽg1,2 = Eg1,2/η1,2 < Eg1,2, where

Eg1,2 = 211,2. As an example, we give the effective

electron masses for 3D-compounds of BN, AlN, GaN

with the wurtzite structure, which are correspondingly

equal to m∗
‖/me = 0.35 and m∗

⊥ = 0.24, m∗/me = 0.4,

m∗/me = 0.2 [32]. Thus, effective electron masses in the

lattice layers of h-BN, AlN and GaN compounds under an

interlayer van der Waals interaction increase by ∼ 5−10%,

and their band gaps narrow in the same percentage

ratio. Graphene layers upon contact with h-BN layers

are considered gapless, but the electron Fermi velocity

decreases by ∼ 20%. It should be noted that SL where one

of the components is gapped Gr, the electronic spectrum

and density of states of which are described by the same

expressions as GLC (h-BN, AlN, GaN), can be considered

in a similar way.

4. Superlattices with metallic
ferromagnetic layers

A strong interest in magnetic SL (MSL) has arisen due

to spintronics problems, and even a new term
”
spinterface“

was introduced to designate a contact of ferromagnetic and

non-magnetic layers (see [23,34] and references therein).
Here we will consider MSL formed by graphene or h-BN

with 2D ferromagnetic nickel.

The properties of monoatomic 2D-metals are described

in [35], where it is shown, in particular, that a stable

Physics of the Solid State, 2022, Vol. 64, No. 11
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structure in this case is a triangular lattice. Then the

Green function of a 2D-ferromagnetic (2DFM) for the spin

projection σ can be presented as

Gσ 1
FM(κm;ω) = (ω − εσFM(κm) + i0+)−1,

where

εσFM(κm) = εσ0 − tm f FM(κm),

f (κm) = 2 cos(κmx am) + 4 cos(κmx am/2) cos(
√
3κmy am/2),

(17)

where tm is the energy of electron hopping between the

nearest atoms located at distance am [36]. Near the bottom

of the σ -subband

εσFM(q) ≈ ε0σ − 6tm + 3tmq2
ma2

m/2,

where qm = Km − κm and Km = a−1
m (2π/2, 2π/

√
3), so

that the effective mass of an electron of free 2DFM is equal

to mFM = ~
2/6tma2

m. Though an analytical expression for

the density of states is known [36,37], we will here opt for

an approximation already used in our paper [38] dedicated
to the epitaxial Gr formed on an FM metal substrate.

Let us represent the 2DFM density of states as

ρσ
FM(ω) =

{
5/Wd, |ω − ε0σ | ≤ Wd/2,

0, |ω − ε0σ | > Wd/2,
(18)

where Wd is width of the d-band, ω)σ is the energy of

the σ -subband center. Such a density of states corresponds

to the Stoner magnetism [39] in the Friedel model [40].
Assuming that Ŵ = 5πV 2/Wd , we can easily demonstrate

that

3σ
FM(ω) = (Ŵ/π) ln

∣∣∣∣
ω − ε0σ + Wd/2

ω − ε0σ −Wd/2

∣∣∣∣. (19)

The number of electrons in the dσ -state is equal to

Nσ
FM = 5(EF − ε0σ + Wd/2)/Wd , (20)

where EF is the Fermi level. Hereinafter Ni will be consid-

ered as 2DFM. Rounding off the data of [40] according

to occupation numbers of massive nickel (see Table 2.1

in [40]), i.e. assuming that N↑
met(Ni) = 5, N↓

met(Ni) = 4,

we obtain EF − ε0↑ = 0.5Wd and EF − ε0↓ = 0.3Wd . Since

the experimental value is Wd(Ni) = 5.4 eV [36] and

Wd = 9tm [36], we obtain Tm = 0.6 eV. Two circumstances

should be noted here. Firstly, as demonstrated in [35], the
characteristics of 2D- and 3D-metals are close. Secondly, it

was shown in [41] that magnetizations on the surface and in

the bulk of massive nickel samples are virtually the same. It

is this that gives us the ground to use the results of [39,40]
for 3DFM to describe 2DFM.

As an example of MSL, we will consider a structure

consisting of gapless Gr (sheet 1) and 2D-nickel layers

(sheet 2). Such a structure has been formed [42] and

has been rather well studied by now [43–45]. As in [35],
we will assume that the Gr and 2D Ni work functions

are equal, thus the interlayer charge transition is excluded.

Equation (7) is now transformed into

[
Gσ

Gr(κ1,2;ω)
]−1

= 43σ
FM(ω),

[
Gσ

FM(κ1,2;ω)
]−1

= 43Gr(ω), (21)

from which we obtain the following for the Gr and Ni lattice

layers respectively

ω − 8Ŵ

π
ln

∣∣∣∣
ω − ε0σ + Wd/2

ω − ε0σ −Wd/2

∣∣∣∣ ∓
3ta1q1

2
= 0, (22)

ω

(
1− 8V 2

ξ2
ln

∣∣∣∣
ω2

ω2 − ξ2

∣∣∣∣
)
− ε0σ + 6tm − 3tm(amqm)2

2
= 0.

(23)
It follows from (22) that Gr bands depend on the spin

induced by 2D Ni layers. This is a manifestation of the

so-called proximity effect. The electron Fermi velocity does

not change and remains equal to νF = 3at/2~. The spin-

dependent effective mass for 2D Ni lattice layers is equal

to

m̃σ
FM ≈ mFM/ηnσ > mFM, (24)

where ηmσ =
[
1 + (8V 2/ξ2) ln(ξ2 − ω2

0σ )/ω2
σ 0

]−1
, ω0σ =

= ε0σ − 6tm . Since ε0↑ = −2.70 eV, ω0↑ = −6.30 eV

and ε0↓ = −1.62 eV, ω0↑ = −5.22 eV, we have

ηm↑ ≈ [1 + 0.1(V/ξ)2]−1 and ηm↓ ≈ [1 + 3(V/ξ)2]−1.

Thus, the electron effective mass in nickel lattice layers

in case of a van der Waals bond with graphene layers is

almost the same as in isolated layers. It should be noted

that the notion of dependence of effective carrier mass on

its spin is used rather for a long time and widely (see, for
instance, [46–50]). An energy-dependent effective mass can

be also introduced [51].

Now let h-BN act as sheets 1 (see [45]). Then we have

the following equations

ω2 − 8ωŴ

π
ln

∣∣∣∣
ω − ε0σ + Wd/2

ω − ε0σ −Wd/2

∣∣∣∣ −
9t2(aq)2

4
− t2 = 0,

(25)

ω

(
1− 8V 2

ξ2
ln

∣∣∣∣
ω2 − t2

ω2 − t2 − ξ2

∣∣∣∣
)
− ε0σ + 6tm

− 3tM(amqm)2

2
= 0. (26)

It follows from (25) that the bands of the h-BN layers

under the impact of the Ni layers are split into σ -subbands

(proximity effect). Substituting the logarithm in (25) by

Lσ
±(ε0σ ) = ln

∣∣(±t − ε0σ + Wd/2)/(±t − ε0σ −Wd/2)
∣∣, we

will obtain the following solution

ωσ
±(q) =

(
4ŴLσ

±(ε0σ )/π
)
± Rσ

±(q), (27)

where Rσ
±(q) =

[(
4ŴLσ

±(ε0σ )/π
)2

+ t2 + (3taq/2)2
]1/2

,

the subscripts of function Lσ
±(ε0σ ) correspond to the signs

14∗ Physics of the Solid State, 2022, Vol. 64, No. 11
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before t and summands Rσ
±(q). Effective electron masses

in h-BN and Ni layers are respectively equal to

m̃σ
GLC = m∗/ησGLC > m∗, m̃σ

FM = mFM/η
σ
m > mFM, (28)

where

ησGLC = [1 + (4ŴLσ
+/t)2]−1.2, m∗ = 4~

2/9a2t,

ησm = [1 + (8V 2/ξ2)Lσ
m(ω0σ )]−1, m∗ = 4~

2/9a2t,

Lσ
m = ln[(ξ2 − ω2

0σ − t2)/(ω2
0σ − t2)]−1.

Since L↑
+ = 1.1 and L↓

+ = 1.4, estimates for lat-

tice layers of h-BN give η
↑
GLC ∼ 1/

√
1 + 2V 2/tmt and

η
↓
GLC ∼ 1/

√
1 + 3V 2/tmt . It should be noted that at tm ∼ t

the V 2/tmt ∼ ratiois2π
√
3(V/ξ)2. V 2/tmt ∼ 0.1 under a

van der Waals interlayer interaction, so that the effective

masses increase by 20−30%. Then, as distinct from

graphene-like SL, we have Ẽσ
g = Eg/η

σ
GLC > Eg , i.e. there

is a considerable increase of the band gap. For Ni lattice

layers we have L↑
m = 0.15 and L↓

m = 0.80, from which

we obtain η↑m ∼ [1 + (V/ξ)2]−1 and η↓m ∼ [1 + 6(V/ξ)2]−1,

which corresponds to a slight increase of the effective mass.

An SL formed by gap Gr and 2DNi can be considered in a

similar way.

5. Conclusion

In the present paper we have considered 2DSL

graphene — h-BN, AlN — GaN, Gr — Ni and h-BN —
Ni. Effective masses of electrons in h-BN, AlN and GaN

layers increase in all the considered cases; the electron

Fermi velocity for gapless graphene decreases. An interlayer

interaction in the first two cases leads to a narrowing of the

GLC band gaps. The electron Fermi velocity in graphene

layers in Gr — Ni and h-BN — Ni lattices is the same as in

free graphene. The effective electron mass in nickel layers in

the Gr — Ni lattice increases, but very slightly. The effective

electron mass and band gap of the h-BN layer considerably

increase in case of the h-BN — Ni lattice.

Unfortunately, we did not find any data in the literature

to compare with the obtained results. The fact is that all the

papers available to us considered the vertical transport only.

We have estimated the characteristics of an electron moving

in the constituent 2DSL-layers.

So, we have suggested a relative simple scheme (ignoring
the contact geometry) for estimating the mutual influence

of 2DSL components on the electronic spectrum of the

layers which make up the given lattice. In a similar way,

graphane [52], fluorographene [53] or, broader, compounds

of type h-AB — C [54] can be considered as 2DSL

components. Moreover, the suggested scheme allows for

a rather easy description of 2DSL composed of three, four

etc. types of 2D-compounds.
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[48] J. Spałek, M.M. Maśka, M. Mierzejewski, J. Kaczmarczyk.

arXiv: 2008.3542.

[49] V.F. Los, V.N. Saltanov. J. Magn. Magn. Mater. 242−245, 495

(2002).
[50] L.M. Wei, K.H. Gao, X.Z. Liu, W.Z. Zhou, L.J. Cui, Y.P. Zeng,

G. Yu, R. Yang, T. Lin, L.Y. Shang, S.L. Guo, N. Dai, J.H. Chu,

D.G. Austing. J. Appl. Phys. 110, 063707 (2011).
[51] N. Kotera. J. Appl. Phys. 113, 234314 (2013).
[52] S.Yu. Davydov. FTT 62, 2151 (2020) (in Russian).
[53] S.Yu. Davydov. FTT 63, 158 (2021) (in Russian).
[54] S.Yu. Davydov. FTT 63, 413 (2021) (in Russian).

Physics of the Solid State, 2022, Vol. 64, No. 11


