Самосогласованная трехмерная модель усиления ультракороткого терагерцового импульса в лазерноиндуцированном неравновесном плазменном канале в ксеноне

© А.В. Богацкая^{1,2}, Е.А. Волкова³, А.М. Попов^{1,2}

¹ Московский государственный университет имени М.В. Ломоносова, физический факультет,

119991 Москва, Россия

² Физический институт им. П.Н. Лебедева РАН,

119991 Москва, Россия

³ Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына МГУ имени М.В. Ломоносова, 119991 Москва, Россия

e-mail: annabogatskaya@gmail.com

Поступила в редакцию 14.09.2022 г. В окончательной редакции 14.09.2022 г. Принята к публикации 28.09.2022 г.

В трехмерной геометрии численно исследовано распространение и усиление ультракоротких терагерцовых импульсов в неравновесном фотоионизационном плазменном канале, формируемом в ксеноне мощным фемтосекундным импульсом УФ лазера. Проведенные исследования основаны на самосогласованном численном интегрировании волнового уравнения второго порядка в рамках цилиндрической геометрии и кинетического уравнения Больцмана в двухчленном приближении для описания функции распределения электронов по скоростям в пространственно-неоднородной неравновесной плазме канала.

Ключевые слова: нелинейная оптика, терагерцовое излучение, неравновесный плазменный канал, численное моделирование.

DOI: 10.21883/OS.2022.12.54093.48-22

Введение

Широкий спектр возможных применений излучения терагерцового диапазона привлекает огромное внимание специалистов в различных областях, таких как молекулярная физика и физика твердого тела, спектроскопия, неинвазивная диагностика в медицинских целях и системах безопасности, контроль качества, беспроводная связь, дистанционное зондирование атмосфера и т.д. [1–4].

В настоящей работе проведено комплексное самосогласованное трехмерное моделирование процесса усиления мощных ультракоротких терагерцовых (ТГц) импульсов в неравновесных протяженных плазменных каналах, формируемых в ксеноне при его многофотонной ионизации фемтосекундными УФ лазерными импульсами [5–9]. Расчеты основаны на совместном интегрировании волнового уравнения второго порядка в цилиндрической геометрии и системы кинетических уравнений Больцмана для функции распределения электронов по скоростям в различных пространственных точках канала в двучленном приближении.

Модель

Начнем рассмотрение с волнового уравнения второго порядка в цилиндрической геометрии (ось *z* направлена вдоль распространения УФ и ТГц импульсов) для линейно поляризованного короткого ТГц импульса, распространяющегося в канале неравновесной ксеноновой плазмы:

$$\frac{\partial^2 E}{\partial z^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial E}{\partial \rho} \right) = \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} + \frac{4\pi}{c^2} \frac{\partial j}{\partial t}.$$
 (1)

Здесь $\mathbf{r} = \{\rho, z\}$ — радиус-вектор, $E(\rho, z, t)$ — напряженность электрического поля волны, $j(\rho, z, t)$ — плотность тока в плазме, индуцированная ТГц импульсом. Общий подход для вычисления такого тока в диспергирующей среде был рассмотрен в работе [10]. Для анализа процесса усиления импульса, а также определения его параметров волновое уравнение (1) необходимо решать совместно с системой кинетических уравнений Больцмана для определения функции распределения электронов по скоростям (ФРЭС) в различных пространственных точках канала:

$$\frac{\partial f(\mathbf{r}, \mathbf{v}, t)}{\partial t} - \frac{e \mathbf{E}(\mathbf{r}, t)}{m} \frac{\partial f}{\partial \mathbf{v}} = St(f).$$
(2)

Здесь $f(\mathbf{r}, \mathbf{v}, t) - \Phi$ РЭС, нормированная согласно условию

$$\int f(\mathbf{r}, \mathbf{v}, t) d^3 v = 1, \qquad (3)$$

 $E(\mathbf{r}, t)$ — вектор электрического поля, а St(f) — интеграл столкновений, который в общем случае учитывает как упругие, так и неупругие столкновения электронов. В случае, если дрейфовая скорость электронов в электрическом поле мала по сравнению с их тепловой скоростью, уравнение (2) можно анализировать в рамках двухчленного приближения [11,12]. Тогда

$$f(\mathbf{r}, \mathbf{v}, t) = f_0(\mathbf{r}, v, t) + \cos \vartheta f_1(\mathbf{r}, v, t)$$
(4)

 $(\vartheta$ — угол между вектором скорости и вектором напряженности электрического поля волны), где нулевая гармоника $f_0(\mathbf{r}, v, t)$ определяет распределение электронов по абсолютному значению скорости, а первая $f_1(\mathbf{r}, v, t)$ определяет асимметрию распределения электронов по скоростям и обеспечивает возможность найти электрический ток в плазме:

$$j(\mathbf{r},t) = -\frac{4\pi e N_e(\mathbf{r})}{3} \int v^3 f_1(\mathbf{r},v,t) dv.$$
 (5)

Здесь $N_e(\mathbf{r})$ — концентрация электронов в плазме. Подставляя (4) в (2), получаем систему уравнений для гармоник f_0 и f_1 в каждой пространственной точке канала [12]:

$$\frac{\partial f_0(\mathbf{r}, v, t)}{\partial t} = \frac{eE(\mathbf{r}, t)}{3mv^2} \frac{\partial}{\partial v} \left(v^2 f_1(\mathbf{r}, v, t) \right) + \frac{m}{M} \frac{1}{v^2} \frac{\partial}{\partial v} \left(v_{tr}(v) \left(v f_0 + \frac{T_g}{m} \frac{\partial f_0}{\partial v} \right) \right), \qquad (6)$$

$$\frac{\partial f_1(\mathbf{r}, v, t)}{\partial t} + v_{tr}(v) f_1(\mathbf{r}, v, t) = \frac{eE(\mathbf{r}, t)}{m} \frac{\partial f_0(\mathbf{r}, v, t)}{\partial v}.$$
(7)

Здесь v_{tr} — транспортная частота столкновений, M — масса атома ксенона, $T_g = 0.025 \,\text{eV}$ — газовая температура.

В соответствии с рассматриваемой моделью фемтосекундный УФ лазерный импульс распространяется в ксеноне вдоль оси z и создает неравновесный плазменный канал, характеризующийся гауссовым распределением электронной плотности по радиусу и изотропной ФРЭС, имеющей пичковую структуру. Для атомов ксенона (потенциал ионизации $I_i \approx 12.13 \, \text{eV}$) при ионизации излучением KrF-лазера ($\hbar\Omega = 5.0\,\mathrm{eV}$) фотоионизационный пик характеризуется энергией $\varepsilon_0 = 3\hbar\Omega - I_i \approx 2.87 \,\text{eV}.$ Как было показано в [5], такая плазма является средой для усиления ТГц излучения. При моделировании мы полагаем, что ТГц импульс распространяется вслед за лидирующим фемтосекундным УФ импульсом и находится в зоне усиления, которая может составлять несколько сантиметров [6-9]. Мы также полагаем, что ионизующий фемтосекундный импульс распространяется в газе со скоростью света почти без потери энергии, формируя канал с однородной концентрацией электронов вдоль оси z. Система отсчета выбрана так, что лидирующий УФ импульс находится в точке z = 0.

Уравнение (1) решалось совместно с системой уравнений для гармоник ФРЭС нулевого и первого порядков (6), (7) в каждом узле пространственной сетки. Краткое обсуждение численной процедуры содержится в [9] и приведенных в этой работе ссылках. Аналогично [9] временной шаг интегрирования составлял $\Delta t = 4 \cdot 10^{-15}$ s, шаг пространственной дискретизации был $\Delta z = c\Delta t = 1.2 \cdot 10^{-4}$ ст и $\Delta \rho = 0.065$ ст. Размер области счета был выбран в направлении распространения пучка (ось z) L = 1.0 ст и в поперечном направлении $R_{\text{max}} = 6.0$ ст. Выбранный временной шаг интегрирования позволял использовать явную схему для уравнения Больцмана. Начальные условия для уравнений (1), (6) и (7) выбирались аналогично [9].

Результаты моделирования

Остановимся прежде всего на результатах моделирования процесса распространения слабого затравочного ТГц импульса на длине пробега 30 ст в неравновесном плазменном канале в ксеноне радиусами $R_0 = 0.5$ ст и $R_0 = 1.5$ ст с радиальным профилем $N_e = N_e^{(0)} \exp(-(\rho/R_0)^2)$ и различными начальными значениями электронной плотности $N_e^{(0)}$. Поперечный размер начального ТГц импульса определялся радиусом плазменного канала $\rho_0 = R_0$. Распределение электронной плотности вдоль оси канала будем считать однородным.

Типичные распределения пространственной структуры поля для электронных концентраций в плазме 3×10^{13} и 10^{14} сm⁻³ и для плотности газа $N = 10^{20} \,\mathrm{cm}^{-3}$, а также для случая распространения импульса в пустом пространстве приведены на рис. 1. Начальный импульс показан на рис. 1, а. Данные нормированы на максимальное значение напряженности поля в затравочном импульсе. Во-первых, в соответствии с [6,7] мы видим, что плазменный канал предотвращает диффузионное расплывание импульса в радиальном направлении: для концентрации 10¹⁴ ст⁻³ распространяющийся импульс ТГц локализован внутри плазменного канала (рис. 2, *d*), в то время как для $N_e^{(0)} = 10^{13} \,\mathrm{cm}^{-3}$ (рис. 2, *c*) и особенно для случая распространения в свободном пространстве (рис. 2, b) дифракционная расходимость заметно более существенна. Эти данные подтверждают сделанное ранее утверждение [6], что показатель преломления в плазме ксенона с пичковой структурой ФРЭС может быть больше единицы, т.е. такая плазма является оптически более плотной средой по сравнению с неионизованным газом. Также мы видим, что с увеличением электронной плотности растет задержка во времени между УФ и ТГц импульсами.

Все предыдущие расчеты относились к относительно слабым полям, которые не влияют на эволюцию энергетического спектра электронов. Для изучения предельно возможного усиления импульса в канале и насыщения усиления, определяемого влиянием усиливаемого импульса на ФРЭС в плазме канала, мы провели расчеты динамики усиления для различных значений пиковой интенсивности начального импульса. Для дальнейшего анализа данных мы ввели фактор усиления g(L) как

Рис. 1. Пространственное распределение абсолютного значения напряженности электрического поля в ТГц импульсе: начальное распределение (*a*), при распространении на 30 ст в свободном пространстве (*b*), при распространении на 30 ст в неравновесном плазменном канале с плотностью газа 10^{20} ст⁻³ с гауссовым профилем электронной плотности со значениями $N_e^{(0)} = 3 \cdot 10^{13}$ ст⁻³ (*c*) и 10^{14} ст⁻³ (*d*). Радиальные размеры канала и затравочного ТГц импульса равны $\rho_0 = R_0 = 0.5$ ст. Линии уровня соответствуют определенным значениям напряженности электрического поля. Фемтосекундный УФ импульс находится в точке z - ct = 0. Пиковая интенсивность затравочного импульса 1 W/cm².

Рис. 2. Фактор усиления (см. (8)) в зависимости от пиковой интенсивности затравочного импульса для радиусов плазменного канала 1.5 сm (1) и 0.5 сm (2).

отношение энергии импульса на длине $L = 30 \,\mathrm{cm}$ к начальной:

$$g(L) = \int E^{2}(\rho, z, t = L/c)\rho d\rho dz / \int E^{2}(\rho, z, t = 0)\rho d\rho dz.$$
(8)

Результаты расчетов для $N_e^{(0)} = 10^{14} \,\mathrm{cm}^{-3}$, $N = 10^{20} \,\mathrm{cm}^{-3}$ и двух значений радиусов канала $(R_0 = 0.5 \,\mathrm{cm} \,\mathrm{u} \, R_0 = 1.5 \,\mathrm{cm})$ представлены на рис. 2. Как видно, величина g(L) практически постоянна вплоть до величины интенсивности $\leq 10^3 \,\mathrm{W/cm}^2$, а затем быстро убывает с увеличением интенсивности. Это убывание есть результат существенной перестройки ФРЭС в канале, вызываемой усиливаемым импульсом. Расчеты показывают, что вне зависимости от начального радиуса плазменного канала верхний предел по интенсивности излучения в ТГц импульсе составляет величину порядка $I^* \approx 10^7 \,\mathrm{W/cm}^2$.

Для более детального понимания эффекта насыщения усиления ТГц импульса на уровне ~ 10^7 W/cm² на рис. 3 представлены результаты расчета эволюции ФРЭС в пространственной точке (z - ct = -0.2 cm) за лидирующим УФ импульсом как на оси плазменного канала ($\rho = 0$), так и на его периферии ($\rho = \rho_0$).

Как видно, в обоих случаях усиливаемый ТГц сигнал вызывает сильную перестройку ФРЭС, разрушая пичковую структуру спектра, создаваемую УФ импульсом. Как результат, усиление в плазме убывает во времени и затем сменяется поглощением. При этом наиболее быстрая перестройка ФРЭС происходит на оси канала в области сильного поля. Вследствие этого как радиальное, так и распределение поля вдоль оси z могут существенно искажаться. При этом расчеты показывают возможное сокращение длины затравочного импульса и формирование униполярных ТГц импульсов [13–17].

Рис. 3. ФРЭС в зависимости от длины распространения в пространственной точке за лидирующим УФ импульсом (z - ct = -0.2 cm) для $\rho_0 = 0.5 \text{ cm}$, $I_0 = 10^5 \text{ W/cm}^2$. $N_e^{(0)} = 10^{14} \text{ cm}^{-3}$, $N = 10^{20} \text{ cm}^{-3}$. Радиальные координаты $\rho = 0$ (*a*) и $\rho = \rho_0$ (*b*). Длины распространения (в cm) даны на вставке.

Степень униполярности (*U*-фактор) таких импульсов количественно удобно характеризовать нормированной "площадью" импульса, определяемой как

$$U = \frac{\int E(\rho, z)\rho d\rho dz}{\int |E(\rho, z)|\rho d\rho dz}.$$
(9)

Типичная зависимость степени униполярности импульса, рассчитанная с помощью (9) на длине пробега импульса 30 cm в плазме канала, для различных значений его начальной пиковой интенсивности приведена на рис. 4. Отметим, что знак *U*-фактора меняется в зависимости от интенсивности начального импульса вследствие возникающей пространственной неоднородности его усиления по мере движения в плазменном канале. Расчеты показали, что значительная степень униполярности возникает лишь при начальных интенсивностях, превышающих 10^6 W/cm², когда значительное искажение ФРЭС приводит к тому, что только передний фронт затравочного импульса оказывается в зоне усиления.

Рис. 4. Степень униполярности импульса в зависимости от пикового значения интенсивности начального импульса на длине распространения 30 ст в плазменном канале в ксеноне с параметрами $R_0 = 1.5$ ст, $N_e^{(0)} = 10^{14}$ ст⁻³, $N = 10^{20}$ ст⁻³.

Заключение

Таким образом, в работе построена модель распространения и усиления ТГц импульсов в неравновесном плазменном канале в ксеноне. Модель основана на численном интегрировании трехмерного волнового уравнения второго порядка в цилиндрической геометрии для поля ТГц импульса совместно с кинетическим уравнением Больцмана, описывающим эволюцию функции распределения электронов по скоростям в различных пространственных точках плазменного канала. Показано, что неравновесная плазма канала, образованного при ионизации ксенона импульсом KrF-лазера, является не только усиливающей, но и фокусирующей средой, что приводит к возможности использования такой плазмы как самостоятельного волновода для эффективной транспортировки ТГц импульсов. В относительно слабых полях (начальная интенсивность излучения в канале $\leq 10^3 \, \text{W/cm}^2$) обратным влиянием усиливаемого импульса на эволюцию распределения электронов по скоростям можно пренебречь. Однако при достижении значений интенсивности $\sim 10^5 - 10^6 \, \mathrm{W/cm^2}$ распространяющийся ТГц импульс разрушает пичковую структуру спектра электронов, что приводит к падению, а затем и исчезновению усиления в канале и одновременно к увеличению радиуса ТГц пучка. Как результат, наблюдается сокращение длительности ТГц импульса. В частности, становится возможным формирование униполярных ТГц импульсов, оказывающих однонаправленное воздействие излучения на вещество.

Финансирование работы

Работа выполнена при поддержке Научно-образовательной школы "Фотоника и квантовые технологии. Цифровая медицина". А.В. Богацкая также благодарит за поддержку фонд развития теоретической физики и математики "Базис" (грант № 20-1-3-40-1).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- B. Fischer, M. Walther, P. Jepsen. Phys. Med. Biol., 47, 3807 (2002). DOI: 10.1088/0031-9155/47/21/319
- [2] M. Tonouchi. Nat. Photon., 1, 97 (2007).DOI: 10.1038/nphoton.2007.3
- [3] S. Fleischer, Y. Zhou, R.W. Field, K.A. Nelson. Phys. Rev. Lett., 107, 163603 (2011).
 - DOI: 10.1103/PhysRevLett.107.163603
- [4] T. Kampfrath, K. Tanaka, K. Nelson. Nature Photon., 7, 680 (2013). DOI: 10.1038/NPHOTON.2013.184
- [5] A.V. Bogatskaya, A.M. Popov. JETP Lett., 97(7), 388 (2013).
 DOI: 10.1134/S0021364013070035
- [6] A.V. Bogatskaya, I.V. Smetanin, E.A. Volkova, A.M. Popov. Las. Part. Beams, 33(1), 17 (2015).
 DOI: 10.1017/S0263034614000755
- [7] A.V. Bogatskaya, Hou Bin, I.V. Smetanin, A.M. Popov. Phys. Plasmas, 23(9), 093510 (2016).
 DOI: 10.1063/1.4962515
- [8] A.V. Bogatskaya, N.E. Gnezdovskaia, A.M. Popov. Phys. Rev. E., **102**(4), 043202 (2020).
 DOI: 10.1103/PhysRevE.102.043202
- [9] A. V. Bogatskaya, E.A. Volkova, A.M. Popov. J. Opt. Soc. Am. B, 39(1), 299 (2022). DOI: 10.1364/JOSAB.435710
- [10] A.V. Bogatskaya, A.M. Popov. Las. Phys. Lett., 16(6), 066008 (2019). DOI: 10.1088/1612-202X/ab183d
- [11] V.L. Ginzburg, A.V. Gurevich. Sov. Phys. Usp., 3(1), 115 (1960). DOI: 10.1070/PU1960v003n01ABEH003261
- [12] Ю.П. Райзер. *Лазерная искра и распространение разрядов* (Наука, М., 1974).
- [13] A.V. Pakhomov, R.M. Arkhipov, I.V. Babushkin, M.V. Arkhipov, Yu.A. Tolmachev, N.N. Rosanov. Phys. Rev. A., 95, 013804 (2017).
 - DOI: 10.1103/PhysRevA.95.013804
- [14] R.M. Arkhipov, A.V. Pakhomov, M.V. Arkhipov, A. Demircan,
 U. Morgner, N.N. Rosanov, I. Babushkin. Phys. Rev. A., 101, 043838 (2020). DOI: 10.1103/PhysRevA.101.043838
- [15] R. Arkhipov, M. Arkhipov, A. Pakhomov, I. Babushkin, N. Rosanov. Las. Phys. Lett., 19(4) 043001 (2022). DOI: 10.1088/1612-202X/ac5522
- [16] A.V. Bogatskaya, E.A. Volkova, A.M. Popov. Phys. Rev. E., 104, 025202 (2021). DOI: 10.1103/PhysRevE.104.025202
- [17] A.V. Bogatskaya, E.A. Volkova, A.M. Popov. Plasma Sour.
 Sci. Technol., 30(8), 085001 (2021). DOI: 10.1088/1361-6595/ac0a4b