01.1;02.2;13.2

Теоретическая зависимость пороговой энергии распыления мишени от угла падения первичных ионов

© А.Н. Пустовит

Институт проблем технологии микроэлектроники и особочистых материалов РАН, Черноголовка, Московская обл., Россия E-mail: pustan@iptm.ru

Поступило в Редакцию 30 марта 2022 г. В окончательной редакции 22 октября 2022 г. Принято к публикации 4 ноября 2022 г.

Для расчета угловой зависимости пороговой энергии распыления от отношения масс мишени и падающих ионов использовано явление блокировки поверхности мишени. Установлено, что угловая зависимость пороговой энергии распыления изменяется обратно пропорционально косинусу угла падения ионов на мишень (отсчет угла от нормали к поверхности мишени) в степени *s*/2 (*s* — степенной показатель в потенциале взаимодействия сталкивающихся частиц). Проведено сравнение полученных результатов с литературными данными.

Ключевые слова: распыление, пороговая энергия, конус затенения, угол падения ионов.

DOI: 10.21883/PJTF.2023.01.54055.19206

Распыление ионными пучками используется при низкоэнергетическом ионном облучении материалов [1] и в физике плазмы [2]. Процесс распыления начинается при некоторой начальной энергии первичных ионов Е, названной пороговой энергией распыления E_{th}. При нормальном падении первичного пучка (порядковый номер Z_1 , масса m_1) на мишень (Z_2 , m_2) E_{th} является конкретной величиной для системы ион-мишень и изменяется от 10 до 450 eV (рис. 4.35 в [3]). Анализ экспериментальных данных по зависимости E_{th}/U_0 (U_0 — энергия сублимации атомов мишени) от m_2/m_1 дает высокий разброс (особенно в области $m_2/m_1 < 50$), связанный с различиями физических свойств систем и трудностями в сепарации ионных пучков низких энергий (большинство результатов получено в плазме разрядов). Большие изменения наблюдаются для ~ 20% мишеней (рекордные для С). Вместе с этим явно наблюдается функциональная зависимость E_{th}/U_0 от m_2/m_1 , описать которую пытались с помощью эмпирических формул [3-5] в диапазоне отношений масс 10⁻¹-2 · 10². Однако единой формулы не найдено. Применение компьютерных методов моделирования для расчета коэффициентов распыления Y в области $< 10^{-4}$ atom/ion малоэффективно из-за резкого увеличения расчетного времени. По этой причине делается вывод о невозможности расчета E_{th} с помощью молекулярной динамики [6]. В настоящее время экспериментальные исследования проведены для E_{th} при нормальном падении ионного пучка. Имеется лишь одна работа [7], в которой исследуется E_{th} для углеродной мишени при углах падения β (отсчет от нормали к поверхности мишени), равных 0 и 80°.

Нахождение зависимости E_{th}/U_0 от m_2/m_1 для различных углов β является одним из приоритетов в явлении распыления и стало задачей настоящей работы.

При E_{th} вылет атомов происходит из верхнего слоя аморфного материала мишени с межатомным расстоянием d [7]. Это условие было применено для расчета зависимости E_{th}/U_0 от m_2/m_1 для $\beta = 0^\circ$ в работе [8], где полагалось, что при E_{th} глубина выхода распыленных частиц h (отсчет ведется вглубь от поверхности мишени) равна нулю. Полученная формула дает хорошее совпадение расчетных и экспериментальных данных во всем диапазоне изменений m_2/m_1 . Дальнейшие расчеты для $\beta \neq 0^\circ$ совпадали с результатами для $\beta = 0^\circ$. Отметим, что при h = 0 из формулы для Y в работе [8] следует, что коэффициент распыления равен нулю.

Для решения поставленной задачи было использовано явление, связанное с блокировкой поверхности мишени при энергиях блокировки E_{bl} [9]. Блокировка возникает за счет роста вершины конуса затенения при энергии ионов E_{bl} до размеров межатомного расстояния в мишени. Величина E_{bl} в зависимости от параметров частиц равна ~ 6–30 eV.

Основной величиной для описания вершины конуса затенения является наибольшее расстояние сближения частиц при лобовом столкновении b_s . Для парного отталкивательного степенного потенциала взаимодействия U(r) величина b_s находится из равенства $U(r) = E_0$ [9]:

$$b_s = \left(\frac{Z_1 Z_2 q^2 k_s}{s a E_0}\right)^{1/s} a,\tag{1}$$

где q — заряд электрона, $E_0 = m_2 E/(m_1 + m_2)$ — относительная энергия частиц, $k_s = [(s-1)/e]^{s-1}$, s — степенной показатель, $a = 0.8853a_0(Z_1^{2/3} + Z_2^{2/3})^{-1/2}$ длина экранирования, a_0 — радиус Бора.

При энергиях $\sim E_{bl}$ форма вершины конуса затенения представляет собой полусферу радиусом b_s . При $E \leq E_{bl}$

Ион	Атомный номер иона Z ₁	Пороговая энергия <i>E_{th}</i> (0), eV [11]	Степенной показатель s	Наибольшее расстояние сближения <i>b_s</i> , nm
$^{1}\mathrm{H}^{+}$	1	66.8	1.31	0.1235
$^{2}\mathrm{D}^{+}$	1	34.12	1.492	0.1237
$^{3}T^{+}$	1	24.69	1.592	0.1237
$^{4}\text{He}^{+}$	2	20.67	1.88	0.1232
${}^{12}C^{+}$	6	17	2.4	0.1236
$^{20}Ne^{+}$	10	19.57	2.58	0.1233
$^{40}\mathrm{Ar^{+}}$	18	26.29	2.76	0.1234
$^{84}\mathrm{Kr}^+$	36	38.42	2.98	0.1235
$^{132}Xe^{+}$	54	48.88	3.12	0.1233

Расчетные значения наибольшего расстояния сближения частиц b_s для никеля при распылении ионами с пороговыми энергиями $E_{th}(0)$

две соседние полусферы, находящиеся на расстоянии d, пересекаются и не дают возможности иону проникать внутрь мишени (рис. 1, a). При $E > E_{bl}$ между этими полусферами образуется щель (рис. 1, b), равная $d - 2b_s$, через которую ион может пройти в мишень.

Обозначим зависимость пороговой энергии распыления от угла падения ионов β величиной $E_{th}(\beta)$, а b_s в формуле (1) значением $b_s(\beta)$ при замене E на $E_{th}(\beta)$. Для начала процесса распыления необходимо, чтобы $E_{th}(0) \gg E_{bl}$ [9]. Для оценки размера щели были рассчитаны значения b_s по формуле (1) для Ni ($Z_2 = 28$, $m_2 = 58.71$, d = 0.2492 nm [10]) при распылении разными ионами с пороговыми энергиями $E_{th}(0)$ [11] (см. таблицу). Эти результаты дают размер щели ~ $2.5 \cdot 10^{-3}$ nm. С ростом E размер щели растет.

Для ионов с энергией $E_{th}(0)$ и $\beta > 0^{\circ}$ происходит частичное или полное затенение щели. В плоскости x'z' размер щели зависит от угла β из-за изменения расстояния d по оси x' (рис. 1, c):

$$d' = d\cos\beta. \tag{2}$$

Формы фигур в плоскостях xz и x'z' для проникновения ионов в мишень при $\beta = 0^\circ$ и $\beta > 0^\circ$ показаны на рис. 2. На рис. 2, a при $E_{th}(0)$ площадь щели, прилегающая к одному атому мишени, равна площади кольца, заключенной между двумя окружностями (диаметрами d и $2b_s(0)$). Отметим, что площадь кольца на рис. 2, aсоставила 2.3% от площади внешнего круга для Ni (рассчитана по данным таблицы). При $\beta > 0$ внешняя окружность превращается в эллипс с диаметрами d и d'. При неизменных параметрах ионного пучка площади внутренних окружностей равны, а площадь эллипса меньше, чем площадь первоначального внешнего круга, и может перекрываться внутренней окружностью. В результате вероятность начала процесса распыления упадет, и для ее роста необходимо увеличить площадь щели. Это достигается с помощью роста пороговой

Рис. 1. Схемы блокировки поверхности и возникновения щели между атомами при нормальном падении (a, b) и падении под углом β (c) первичного ионного пучка на мишень. 1 — атом мишени, 2 — вершина конуса затенения. Оси z и z' направлены перпендикулярно плоскости рисунка из начала соответствующих систем координат xy и x'y'.

энергии распыления и снижения b_s (см. (1)). Поэтому должно выполняться условие $E_{th}(\beta) > E_{th}(0)$. Этот случай представлен на рис. 2, *b*.

Одно из определений E_{th} состоит в том, что при этой энергии иона коэффициент распыления Y равен нулю [5]. При анализе процесса распыления используются вероятностные методы [10]. Поскольку при изменении β общая площадь внешней фигуры изменяется, при одинаковой плотности потока ионов вероятность начала процесса

32

Рис. 2. Формы фигур для возможного проникновения ионов в мишень при нормальном падении ионного пучка с энергией $E_{th}(0)$ (*a*) и наклонном падении ионного пучка с энергией $E_{th}(\beta)$ (*b*).

Рис. 3. Зависимости E_{th}/U_0 от m_2/m_1 для s = 2 и углов падения первичного пучка β , равных 0, 30 и 60°. Экспериментальные результаты [3]: квадраты — Si, кружки — Ni, треугольники — Мо, ромбы — Au.

распыления пропорциональна отношению площади кольца к площади внешней фигуры (круга или эллипса)

$$W(\beta) \propto \frac{\left(d/2\right)^2 \cos\beta - b_s^2(\beta)}{\left(d/2\right)^2 \cos\beta} = 1 - \frac{4b_s^2(\beta)}{d^2 \cos\beta}.$$
 (3)

Для Y = 0 можно считать, что $W(0) = W(\beta)$. С учетом (3) получаем

$$\frac{W(\beta)}{W(0)} = 1 = \frac{d^2 - 4b_s^2(\beta)/\cos\beta}{1 - 4b_s^2(0)}.$$
 (4)

Замена в (4) значений $b_s(0)$ и $b_s(\beta)$ из формулы (1) дает окончательный результат

$$E_{th}(\beta) = \frac{E_{th}(0)}{\cos^{s/2}\beta}.$$
(5)

На рис. 3 представлены рассчитанные по формуле (5) зависимости E_{th}/U_0 от m_2/m_1 для s = 2 и β , равных 0, 30 и 60°. Кривая для $\beta = 0^{\circ}$ построена с помощью уравнения и данных, приведенных в [8]. Экспериментальные результаты взяты из работы [3] для Si, Ni, Mo и Au при $\beta = 0^{\circ}$. Отметим, что все кривые на рис. 3 построены с учетом неупругих потерь, так как при расчете кривой 1 они учитываются [8]. Из рис. 3 видно, что теоретические кривые, по крайней мере для углов $\beta \leq 30^\circ$, располагаются близко друг к другу и на них накладывается ряд экспериментальных точек для $\beta = 0^{\circ}$. Поэтому к указанным в [3] причинам большого разброса экспериментальных данных для $\beta = 0^{\circ}$ отнесем также следующие. Одна из них связана с шероховатостью поверхности мишени на атомном уровне. Эта неровность поверхности может быть естественного происхождения или образоваться в процессе длительного распыления на поверхности мишени при облучении ионами с энергией $E_{th}(0)$. Другая причина связана с возможным распылением мишени нейтральными атомами плазмы. Образуемые в ней нейтральные атомы могут лететь к поверхности мишени под разными углами. В результате воздействия этих двух факторов невозможно утверждать, что распыление происходило исключительно при $\beta = 0^{\circ}$.

Отличием настоящей работы от ранних публикаций (например, [2,5,12,13]) является анализ процесса, происходящего при $E < E_{th}(\beta)$ и затем при $E = E_{th}(\beta)$. Авторы работ [2,5,13] используют полуэмпирические подходы к расчету выхода распыления [1], рассматривая с самого начала $E > E_{th}(\beta)$ и далее $E \to E_{th}(\beta)$. При этом в каждой публикации имеются особенности: 1) предложенная в [12] формула на базе цепей Силсби не может быть применена к распылению тяжелыми ионами из-за учета только одного переориентационного столкновения [13]; 2) в [13] неупругими потерями энергии пренебрегали, из девяти рассмотренных вариантов только два приводят к самым низким E_{th} с не слишком скользящими β и большим количеством столкновений [2], эффект затенения (блокировку) учитывали только при больших углах β ; 3) в [5], вероятно, эксперименты с D_3^+ некорректны из-за возможного присутствия молекулярного эффекта при низких энергиях [14], об учете эффекта блокировки в [2,5] не упоминается и в расчетах используется большое количество столкновений.

При энергии $E_{th}(0)$ установлено [7,8], что для выбивания атома из верхнего слоя должно произойти три неупругих столкновения иона: 1) с поверхностным атомом при входе в мишень; 2) отражение от внутреннего слоя к поверхности (поворот на угол $\sim \pi$); 3) выбивание атома поверхности. На энергетической шкале $E_{th}(\beta)$ является границей между энергиями, принадлежащими областям блокировки и распыления. Полуэмпирические подходы используют расчет У, т.е. работают на границе распыление-блокировка и не всегда корректно учитывают блокировку. По этой причине расчеты приводят к падению $E_{th}(\beta)$ при возрастании угла β . В тех случаях, когда эффект затенения учитывается (при $\beta \ge 60^{\circ}$) [13], наблюдается рост $E_{th}(\beta)$. Настоящая работа выполнена для границы блокировка-распыление и приводит к противоположному выводу: $E_{th}(\beta)$ должно расти при увеличении угла β согласно формуле (5). Учитывая определение E_{th} [5], можно утверждать, что эмпирические подходы в [2,5,13] исследуют припороговые энергии распыления.

К сожалению, сравнить результаты полуэмпирических подходов и результаты, полученные по формуле (5), с данными экспериментов невозможно из-за отсутствия последних. Эта проблема была актуальна и ранее [5]. Однако результат работы важен для более глубокого понимания физики процесса распыления и улучшения результатов расчетов характеристик, связанных в первую очередь с вариациями угла падения ионов.

Финансирование работы

Работа выполнена в рамках государственного задания № 075-00706-22-00.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- B. Rauschenbach, *Low-energy ion irradiation of materials. Fundamentals and application*. Springer Ser. in Materials Science (Springer, Cham, 2022), vol. 324. DOI: 10.1007/978-3-030-97277-6
- W. Eckstein, R. Preuss, J. Nucl. Mater., 320 (3), 209 (2003).
 DOI: 10.1016/S0022-3115(03)00192-2
- [3] Х. Андерсен, Х. Бан, в кн. Распыление твердых тел ионной бомбардировкой. Вып. 1. Физическое распыление одноэлементных твердых тел, под ред. Р. Бериша (Мир, М., 1984), с. 194. [H.H. Andersen, H.L.Bay, in Sputtering by particle bombardment. I. Physical sputtering of single element solids, ed. by R. Behrisch. Topics in Applied Physics (Springer-Verlag, Berlin-Heidelberg-N.Y., 1981), vol. 47, p. 145.
- [4] М.Д. Габович, Н.В. Плешивцев, Н.Н. Семашко, в кн. Пучки ионов и атомов для управляемого термоядерного синтеза и технологических целей (Энергоатомиздат, М., 1986), с. 71–111.
- W. Eckstein, C. Garciá-Rosales, J. Roth, J. László, Nucl. Instrum. Meth. Phys. Res. B, 83 (1-2), 95 (1993).
 DOI: 10.1016/0168-583X(93)95913-P
- [6] C. Yan, Q.I. Zhang, AIP Adv., 2 (3), 032107 (2012).
 DOI: 10.1063/1.4738951
- [7] R. Behrisch, G. Maderlechner, B.M.U. Scherzer, M.T. Robinson, Appl. Phys., 18 (4), 391 (1979). DOI: 10.1007/BF00899693
- [8] А.Н. Пустовит, Поверхность. Рентгеновские, синхротронные и нейтронные исследования, № 10, 77 (2017).
 DOI: 10.7868/S0207352817100122 [A.N. Pustovit, J. Surf. Investig., 11 (5), 1069 (2017).
 DOI: 10.1134/S1027451017050342].
- [9] А.Н. Пустовит, Поверхность. Рентгеновские, синхротронные и нейтронные исследования, № 4, 106 (2022). DOI: 10.31857/S1028096022010162 [А.N. Pustovit, J. Surface Investig., 15 (Suppl. 1), S204 (2021). DOI: 10.1134/S1027451022010165].
- [10] В. Экштайн, Компьютерное моделирование взаимодействия частиц с поверхностью твердого тела, пер. с англ. под ред. Е.С. Машковой (Мир, М., 1995). [W. Eckstein, Computer simulation of ion-solid interactions (Springer-Verlag, Berlin-Heidelberg, 1991). DOI: 10.1007/978-3-642-73513-4].
- [11] W. Eckstein, C. Garcia-Rosales, J. Roth, W. Ottenberger, *Sputtering data*, IPP 9/82 (Max-Planck-Institut für Plasmaphysik, Garching, 1993).
- [12] D.E. Harrison, Jr., G.D. Magnuson, Phys. Rev., **122** (5), 1421 (1961). DOI: 10.1103/PhysRev.122.1421
- [13] Y. Yamamura, J. Bohgdansky, Vacuum, 35 (12), 561 (1985).
 DOI: 10.1016/0042-207X(85)90316-1
- [14] Y. Yao, Z. Hargitai, M. Albert, R.G. Albridge, A.V. Barnes, J.M. Gilligan, B.P. Ferguson, G. Lüpke, V.D. Gordon, N.H. Tolk, Phys. Rev. Lett., 81 (3), 550 (1998).
 DOI: S0031-9007(98)06668-X