07.1;07.2;13.1 Особенности транспорта носителей заряда в структуре полупроводник—полимер—металл

© А.Н. Лачинов^{1,2}, Д.Д. Карамов^{1,2}, А.Ф. Галиев^{1,2}, С.Н. Салазкин^{1,3}, В.В. Шапошникова^{1,3}, Т.Н. Кост¹, А.Б. Чеботарева¹

¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия

² Институт физики молекул и кристаллов Уфимского федерального исследовательского центра РАН, Уфа, Россия ³ Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, Россия

E-mail: AChebotareva@mics.msu.su

Поступило в Редакцию 10 октября 2022 г. В окончательной редакции 26 октября 2022 г. Принято к публикации 27 октября 2022 г.

Впервые изучен механизм транспорта носителей заряда в структуре оксид индия, легированный оловом (ITO)/полимер/медь, где использовались тонкие пленки полимера полиариленэфиркетона, обладающего свойствами электронного переключения из диэлектрического в высокопроводящее состояние. Изучаемая система может рассматриваться как модель токособирающего контакта в солнечном элементе с верхним слоем ITO.

Ключевые слова: прозрачный проводящий оксид, электропроводящий полимер, контактная система, энергия активации, туннелирование.

DOI: 10.21883/PJTF.2023.01.54052.19388

В настоящее время в фотовольтаике активно развиваются новые подходы к формированию токосъемных контактов к солнечным элементам с верхним слоем из прозрачных проводящих оксидов (ППО) с применением экономичных низкотемпературных процессов с сокращением использования серебра [1]. Одним из перспективных вариантов создания такого контакта является подход, связанный с использованием уникальных термопластичных полимерных материалов кардовых полиариленэфиркетонов (ПАЭК), содержащих боковые флуореновые группы. ПАЭК применяются в качестве адгезивов для прикрепления металлической контактной сетки к ППО и формирования электрического контакта с низким удельным сопротивлением (менее $1 \,\mathrm{m}\Omega \cdot \mathrm{cm}^2$) [2]. Данные полимеры спонтанно переключаются из диэлектрического в высокопроводящее состояние в ходе низкотемпературной ламинации (менее 220°С) при небольшом избыточном давлении (до 1 atm). Однако недостатком контактной системы ППО/ПАЭК/металл является увеличение удельного контактного сопротивления со временем. В первую очередь для понимания причин подобной деградации и разработки в дальнейшем стабильного электрического контакта необходимо изучить механизмы транспорта носителей зарядов в системе ППО/ПАЭК/металл.

Целью настоящей работы является изучение механизмов транспорта носителей зарядов в системе ППО/ПАЭК/металл, где в качестве ППО использовался оксид индия, легированный оловом (ITO), а в качестве металла — медь. ITO является наиболее распространенным материалом верхнего электрода в солнечных элементах. Диапазон толщин полимерных пленок (до 2 µm) соответствовал расстояниям между металлическими проволочными контактами и поверхностью солнечного элемента после ламинации.

Образец представлял собой многослойную структуру типа Si/ITO/ПАЭК/Cu (рис. 1, *b*). Слой ITO толщиной около 100 nm с удельным сопротивлением $0.5 \text{ m}\Omega \cdot \text{сm}$ был сформирован на поверхности полированного кремния методом ультразвукового спрей-пиролиза [3]. Структура Si/ITO имитировала поверхность солнечного элемента.

Синтез статистического сополимерного ПАЭК осуществлялся путем поликонденсации по механизму реакции нуклеофильного замещения активированного арилдигалогенида при взаимодействии 4,4'-дифторбензофенона с дикалиевыми фенолятами смеси бисфенола А (90 mol.%) и фенолфлуорена (10 mol.%) аналогично получению гомополимеров, описанному в работе [4]. Методика синтеза ПАЭК подробно описана в работе [5]. Синтезированный ПАЭК хорошо растворялся в широком круге растворителей (хлороформ, циклогексанон, трикрезол и др.); при формовании из раствора полимер образует прозрачные прочные пленки (прочность при разрыве 77–87 MPa). Температура стеклования полимера 164°С. Структурная формула ПАЭК представлена на рис. 1, *а*.

Полимерная пленка наносилась на поверхность слоя ITO методом спин-коутинга из раствора полимера в циклогексаноне при 1500 грт в течение 1 min. Толщина полимерных пленок задавалась путем изменения концентрации растворов в пределах от 1.25 до 15 wt.%.

После нанесения полимерной пленки образец подвергался двухэтапной сушке: 60 min при нормальных

Рис. 1. *а* — структурная формула ПАЭК, *p*/*q* = 0.90/0.10; *b* — схематическая структура образца: *I* — Си, *2* — ПАЭК, *3* — ITO, *4* — Si.

Рис. 2. ВАХ структур ITO/ПАЭК/Си, измеренные при комнатной температуре, для различных толщин ПАЭК: *1* — 50 nm, *2* — 850 nm, *3* — 2.1 µm.

условиях, затем 60 min при температуре 150°С. Медный электрод размером 6×6 mm с толщиной 2 μ m наносился методом термодиффузионного осаждения в вакууме.

Анализ морфологии поверхности и измерение толщины полимерных пленок проводились методом атомносиловой микроскопии. Толщины варьировались в диапазоне от 50 nm до 2.1 μ m в зависимости от концентрации раствора. С увеличением толщины полимерной пленки среднеквадратичная шероховатость поверхности R_q уменьшалась от 1.4 до 1.0 nm. Учитывая зернистый характер слоя ITO ($R_q \sim 5.0$ nm), можно утверждать, что в процессе изготовления пленок полимер заполняет все неровности поверхности подложки. Полученные оценки свидетельствуют о малой степени шероховатости полимерных пленок и их высоких пленкообразующих свойствах.

Электропроводность экспериментальной структуры изучалась путем измерения вольт-амперных характеристик (ВАХ) структуры ITO/ПАЭК/Си с помощью источника-измерителя B2902A на зондовой станции MPI ETS50 в температурном интервале 25–125°С. Для измерения ВАХ формировались контакты к ITO и Cu с использованием индия для мягкого прижима. Температурный интервал был выбран с учетом условий эксплуатации солнечных элементов.

Измеренные ВАХ демонстрировали близкую к линейной зависимость для разных толщин полимерных пленок при двух полярностях приложенного напряжения, при этом величина приложенного электрического поля изменялась в пределах ± 60 kV/cm. Исключение составляет пленка толщиной 50 nm, образец с которой продемонстрировал ВАХ, имеющую участок с незначительной нелинейностью. При этом для всех образцов характерен симметричный вид ВАХ (рис. 2). При уменьшении толщины от 2.1 μ m до 50 nm происходит значительное уменьшение удельного сопротивления полимерной пленки (в 10⁴ раз).

В работе была оценена применимость нескольких моделей транспорта носителей заряда в структуре полупроводник/полимер/металл, в частности модели Френкеля-Пула [6], термоэлектронной эмиссии Фаулера-Нордгейма [7], надбарьерной эмиссии Шоттки [6], инжекции, ограниченной объемным зарядом [8]. Последняя часто используется в структурах металл/полимер/металл. Проведенный анализ показал, что в данном случае наиболее вероятна инжекция, ограниченная объемным зарядом. Если рассматривать инжекционный механизм, то отсутствие сверхлинейного участка может означать, что либо мы работаем в области транспорта собственных носителей заряда в

Рис. 3. Температурные зависимости тока, протекающего в структуре ITO/ПАЭК/Си, в координатах Аррениуса для различных толщин ПАЭК: 1 - 50 nm, 2 - 850 nm, $3 - 2.1 \, \mu$ m. Величина приложенного электрического поля E = 10 kV/cm.

заданном интервале напряжений, либо этот формализм не подходит для конкретного применения.

Перестроение температурных зависимостей тока в координатах Аррениуса (рис. 3) позволило оценить энергию активации электронных состояний, по которым происходит перенос носителей заряда. Уменьшение толщины полимерных пленок приводит к уменьшению энергии активации от 0.34 до 0.13 eV, что и проявляется в уменьшении сопротивления полимерных пленок.

Симметрия вольт-амперных характеристик означает, что относительные положения инжекционных уровней ITO и Cu близки по энергии. Это вполне допустимо, так как ITO отличает широкий спектр электронных состояний в запрещенной зоне, в том числе и вблизи середины щели [9,10].

Таким образом, установлено, что в структуре ITO/ПАЭК/Си транспорт носителей заряда обусловлен туннелированием в области электронных состояний в полимерной пленке. Энергия активации этих состояний уменьшается по мере уменьшения толщины полимерных пленок. С учетом того, что в таких структурах транспорт происходит по электронным состояниям вблизи середины запрещенной зоны, симметрия ВАХ по напряжению становится возможной из-за наличия соответствующих по энергиям электронных состояний в запрещенной зоне ITO.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда (проект № 22-19-00535, https://rscf.ru/project/22-19-00535).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A. Descoeudres, C. Allebé, N. Badel, L. Barraud, J. Champliaud, G. Christmann, F. Debrot, A. Faes, J. Geissbühler, J. Horzel, A. Lachowicz, J. Levrat, S.M. de Nicolas, S. Nicolay, B. Paviet-Salomon, L.-L. Senaud, C. Ballif, M. Despeisse, Solar Energy, **175**, 54 (2018) DOI: 10.1016/j.solener.2018.01.074
- [2] А.Б. Чеботарева, Т.Н. Кост, А.С. Степанов, С.Н. Салазкин, В.В. Шапошникова, Изв. АН. Сер. хим., **71** (2), 368 (2022).
 [А.В. Chebotareva, T.N. Kost, A.S. Stepanov, S.N. Salazkin, V.V. Shaposhnikova, Russ. Chem. Bull., **71** (2), 368 (2022).
 DOI: 10.1007/s11172-022-3421-6].
- [3] G.G. Untila, T.N. Kost, A.B. Chebotareva, Solar Energy, 204, 395 (2020). DOI: 10.1016/j.solener.2020.04.076
- [4] В.В. Шапошникова, С.Н. Салазкин, В.А. Сергеев, И.В. Благодатских, Л.В. Дубровина, А.А. Сакунц, С.-С.А. Павлова, Изв. АН. Сер. хим., № 10, 2526 (1996). [V.V. Shaposhnikova, S.N. Salazkin, V.A. Sergeev, I.V. Blagodatskikh, L.V. Dubrovina, А.А. Sakunts, S.-S.A. Pavlova, Russ. Chem. Bull., 45 (10), 2397 (1996). DOI: 10.1007/BF01435391].
- [5] A.F. Ponomarev, A.V. Moshelev, V.Kh. Il'yasov, A.N. Lachinov, S.N. Salazkin, V.V. Shaposhnikova, D.S. Sharapov, V.M. Kornilov, Polym. Sci. C, 51, 46 (2009). DOI: 10.1134/S1811238209010081
- [6] S.H. Deshmukh, D.K. Burghate, V.P. Akhare, V.S. Deogaonkar,
 P.T. Deshmukh, M.S. Deshmukh, Bull. Mater. Sci., 30, 51 (2007). DOI: 10.1007/s12034-007-0009-6
- [7] В.В. Плотников, А.В. Дроздовский, Г.А. Шишмакова, Соврем. проблемы науки и образования, № 5, 148 (2013).
- [8] А.С. Тютюник, В.С. Гурченко, А.С. Мазинов, Прикл. физика, № 5, 81 (2021).
 DOI: 10.51368/1996-0948-2021-5-81-87
- [9] M.G. Mason, L.S. Hung, C.W. Tang, S.T. Lee, K.W. Wong, M. Wang, J. Appl. Phys., 86 (3), 1688 (1999). DOI: 10.1063/1.370948
- [10] Z. Huang, Y. Mao, G. Lin, Y. Wang, C. Li, S. Chen, W. Huang, J. Xu, Mater. Sci. Eng. B, 224, 103 (2017). DOI: 10.1016/j.mseb.2017.07.01