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Ferromagnetic resonance in a single-domain particle with uniaxial
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An additional resonance peak near the effective anisotropy field HKN is identified on the basis of analysis

of magnetization precession dynamics of single-domain uniaxial magnetic ellipsoid particle in the spectrum of

ferromagnetic resonance, corresponding to bias along the
”
hard“ axis, under longitudinal excitation by a weak

high-frequency field. This peak is related to manifestation of the angular bistability arising due-to the presence of

two symmetrical angular equilibrium positions of particle magnetization in a field that is weaker than the HKN field.
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1. Introduction

Features of the dynamic behavior of dipole lattice

structures are associated not only with discrete spatial

ordering of nanoparticles and their interaction, but also with

magnetic properties of individual particles that form the

lattice. Precession dynamics of magnetic moment of an

individual single-domain micro- and nano-particle depends

largely on its size, symmetry, magnetic anisotropy, as well

as on the value and orientation of external static and varying

fields [1–8].

One of manifestations of the magnetic moment (MM)
dynamics in a high-frequency field is ferromagnetic reso-

nance (FMR) [9–11]. It is known that a uniaxial magnetic

film magnetized in its plane along the
”
hard“ axis has two

resonance branches in the FMR spectrum at low frequencies

with different type of the dependence of frequency on the

bias field [10]. The resonance frequency tends to zero at a

field value where both branches converge. According to the

theory, there is no resonance peak for the finite frequency

at the above-mentioned field value. However, in [12] such a

peak was detected experimentally, and in [13] it was shown

that the emergence of this resonance peak is related to the

manifestation of angular bistability in the MM precession

motion of the film.

As far as the type of main resonance dependencies is to

a large extent common for specimens with different com-

position, geometry, anisotropy, we consider that resonance

features like these can manifest in FMR spectra of individual

single-domain uniaxial micro- or nano-particle and, as a

consequence, in lattices formed by such particles. This work

shows, on the basis of numerical solution to the Landau–
Lifshitz equation and analysis of MM precession dynamics

of a uniformly magnetized ellipsoid specimen, that presence

of two close angular equilibrium positions under bias in

the
”
hard“ direction by a field with value close to that of

the effective anisotropy field HKN results in a resonance

response and bistability of the MM precession even under

longitudinal excitation by a weak high-frequency field (i. e.
at h ‖ H0 and h ≪ H0). In this case the resonance response

is even stringer than that of the transverse excitation (when

h ⊥ H0). Also, it worth to note that with the excitation

field amplitude and frequency used in this work the uniform

mode is significantly distant in frequency from the spin-wave

mode, thus there is no energy transfer from the uniform

precession to spin waves and no development of spin-wave

instabilities [14–16].

2. General relationships

Let us consider a specimen shaped as an oblong ellipsoid

of revolution. We assume that, along with the shape

anisotropy, the specimen has a weak induced uniaxial

anisotropy, which axis of easy magnetization is coincident

with the symmetry axis of the specimen. In this case

the free-energy density contains Zeeman energy, anisotropy

energy, and energy of scattering fields

F = −M(H0 + h) + K sin2 θ +
1

2
M

⌢

NM. (1)

Here: K — constant value of the uniaxial anisotropy,

θ — polar angle of vector M measured from the symmetry

axis of the ellipsoid (OZ axis),
⌢

N — diagonal tensor

with components related to each other by the following

relationship: Nx + Ny + Nz = 4π and dependent on the

ratio between the longitudinal and transverse semi-axes

of the ellipsoid: n = l‖/l⊥ [10]. For oblong ellipsoid of
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revolution: n > 1, Nx = Ny = N⊥, Nz = N‖, and

1N = N⊥ − N‖

= 2π

{

1− 3

n2−1

[

n√
n2−1

ln
(

n+
√

n2−1
)

−1

]

}

.

(2)

Individual components of tensor
⌢

N can be written as

follows

N‖ =
4π

3
− 2

3
1N, N⊥ =

4π

3
+

1

3
1N. (3)

Timed́ependence of vector orientation and features of its

precession dynamics for various cases of bias and high-

frequency excitation of particle are determined on the

basis of numerical solution to the Landau–Lifshitz equation

written in spherical coordinates [11]:

∂θ

∂t
= −γα

M
∂F
∂θ

− γ

M sin θ

∂F
∂ϕ

,

∂ϕ

∂t
=

γ

M sin θ

∂F
∂θ

− γα

M sin2 θ

∂F
∂ϕ

, (4)

where α — dimensionless constant of attenuation, and

free-energy density of the specimen is defined by rela-

tionship (1). In general, frequency of the magnetization

resonance precession is defined by the following general

expression:

ωres =
γ

M sin θ

[

(

∂2F
∂ϕ2

)

0

(

∂2F
∂θ2

)

0

−
(

∂2F
∂ϕ∂θ

)2

0

]1/2

, (5)

where second order derivatives of the free energy are

calculated for equilibrium angles ϕ0 and θ0 determined from

the following condition: ∂F/∂ϕ = ∂F/∂θ = 0.

With bias of the oblong ellipsoid along the symmetry axis

(H0 ‖ n), equilibrium angle θ0 is equal to zero at any values

of field H0, while the resonance dependence in this case is

defined by the high-frequency branch of FMR:

ωres = γ(H0 + HKN)

= γ
[

H0 + 2K/M0 + (3N⊥ − 4π)M0

]

, (6)

where γ=1.76 · 107 (Oe · s)−1, HKN=2K/M0+1NM0 —
effective anisotropy field.

With bias of the ellipsoid in the
”
hard“ plane H0 ⊥ n

in the equilibrium state vector M0 lies in the plane of

vectors (n, H0). In this case, the equilibrium azimuth angle

measured from the direction of field H0 (for example, from

OX axis) is ϕ0 = 0, and angle θ0 is defined by the following

expressions:

sin θ0 =











1, H0 > HKN

± H0

HKN

, H0 < HKN

. (7)

Field dependencies of resonance frequencies for the cases

in question, taking into account (1) and (5), are defined by

the following expressions:

ωres =







γ

√

H2
KN − H2

0, H0 < HKN

γ
√

H0(H0 − HKN), H0 > HKN

. (8)

From (8) it follows that one of the resonance branches lies
in the region of fields H0 < HKN, while another one is in the

region of H0 > HKN, therefore one frequency value ω < ω0

has two correspondent values of resonance field:

H(1,2)
res =











√

H2
KN − ω2/γ2

1

2

(

HKN +
√

H2
KN + 4ω2/γ2

) . (9)

3. Conditions of magnetization uniformity

First, let us note the restrictions imposed on size of the

particle, which MM dynamics is under consideration. Here

and elsewhere, we used parameters of particle material

close to those of 80Ni20Fe permalloy: 4πM0 = 104 Gs,

K = 104 erg/cm3, σ ≈ 1018 s−1, α = 0.01, frequency of

SHF-field ω = 2 · 108 s−1 and n = 1.02. To keep the

magnetization uniformly distributed over the specimen

in the presence of SHF-field, it is necessary to have

maximum particle size d much less than the depth of the

skin-layer δ = c/(2πσωµ)1/2 [18]. For above-mentioned

values of parameters and c = 3 · 1010 cm/s, µ ≈ 100 we get

d ≪ δ ≈ 10−4 cm.

The following restriction is imposed due-to the presence

of thermal fluctuations, which can disturb the precession

dynamics defined by the effective field acting on the MM

at every instant in time. The effect of thermal fluctua-

tions is described by exponential term exp(1U/kT ) [19],
where 1U = 1NefM2

0V/2 — potential barrier, dividing

the directions along the
”
easy“ axis and in the

”
hard“

plane, V — particle volume, 1Nef = HKN/M0 — param-

eter of the effective anisotropy. To prevent the thermal

excitation from disturbing the precession dynamics, the

following condition must be met: V > Vmin [5], where

Vmin = 2kT/NefM2
0 ≈ 10−18 cm3. Thus, for a spherical (or

close to spherical) particle, it diameter d > dmin ≈ 10 nm.

One more restriction is associated with the requirement

of single-domain type of the particle, which is assumed as

fulfilled in the following consideration. For a single-domain

particle, its radius must be less than Rcr ≈ σs/M2
0, where

surface domain wall energy for permalloy is σs ≈ 1 erg/cm2 .

Therefore, for the particle in question the following con-

dition must be met: d < 2Rcr ≈ 30 nm. According to

performed estimates, optimum particle size to observe FMR

is 10 < d < 30 nm. However, it should be noted that

according to [20] metal cylindrical particles with a diameter

of d ≈ 40−50 nm and a height of h ≈ 45 nm should be

considered as single-domain.
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4. Numerical analysis

Fig. 1 (a, b) shows field dependencies of equilibrium

angle θ0 and resonance frequencies built using formu-

lae (6−8). The dependence of θ0(H0) shows that in the

region of H0 ≥ HKN there is one equilibrium orientation

of magnetization (θ0 = π/2, M ‖ H0), while in the region

of H0 < HKN magnetization of the ellipsoid has two sym-

metrical angular equilibrium positions. If bias field values

are close to HKN, then the angular distance between two

symmetrical equilibrium positions is small as well, and can

be overcome easily under the impact of a high-frequency

field. With decrease in frequency the resonance fields

become close to each other and at ω → 0 both branches

converge in the point of H0 = HKN.

The dynamic equations were solved numerically based

on the Runge–Kutta method. Here and elsewhere, we used

parameters of particle material close to those of 80Ni20Fe
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Figure 1. Field dependencies a) of equilibrium angle θ0 and

b) resonance frequency under bias of the oblong ellipsoid in the

”
hard“ plane (curve 2), curve 1 — bias along the

”
easy“ axis.
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Figure 2. Projection of the precession resonance trajectory under bias along the
”
easy“ axis of the ellipsoid (h ⊥ H0 ‖ n).

permalloy (4πM0 = 104 Gs, K = 104 erg/cm3, α = 0.01,

n = 1.02), frequency of SHF-field ω = 2 · 108 s−1, parame-

ters of the static field were selected close to the resonance

values at the specified conditions of bias and excitation.

Time dependence of the excitation field is defined in the

following form: h(t) = h sinωt, where h = 0.2Oe, which

assumes linear character of the FMR, provided that h ≪ H0.

With bias of the oblong ellipsoid along the axis of symmetry

(H0 ‖ n) and excitation by field h ⊥ H0, the precession

trajectory of vector M outgoes from the initial position of

ϕ0 = θ0 = 0 to the circular trajectory, which is shown in

Fig. 2 on the plane (µx , µy), where µα = Mα/M0.

With bias in the
”
hard“ plane (H0 ⊥ n) the precession

trajectory becomes more complicated, and its shape can

be significantly affected by both value and frequency

of the static field and amplitude and orientation of the

varying field. The traditional implementation of FMR is

correspondent to the case of orthogonal static H0 and high-

frequency h fields [4]. In the following, we consider the

magnetization precession of ellipsoid under a longitudinal

excitation (h‖H0 ‖OX) and a weak high-frequency field

(h ≪ H0). In this case free energy has the following form:

F = − M(H0 + h sinωt) cosϕ sin θ + K sin2 θ

+
M2

6

[

4π + (3 sin2 θ − 2)1N
]

. (10)

Fig. 3 shows projections of precession trajectories of

vector µ on the ZOY plane built for several values of H0

close to resonance from the moment of field switch-on

until substantially stationary motion is established. At a

selected frequency, in accordance with (9) resonance values

of the field are Hres = (103.45, 105.35)Oe. The first value

corresponds to the case of H0 < HKN, when the direction

of equilibrium vector M0 does not coincide with H0. At
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Figure 3. Projections of precession trajectories on the ZOY plane at various bias fields in the
”
hard“ plane of the ellipsoid and longitudinal

excitation (h ‖ H0).

H0 = HKN = 104.116Oe vector M0 becomes parallel to

field H0.

It can be seen from the trajectories shown in the figure

that with increase in the field H0 first a sharp increase in

amplitude of the precession is observed and maximum of

the response is achieved at H0 = 103.1Oe. Then, within

a small interval of field 1H0 ≈ 1Oe, along with changes

in character, a decrease in amplitude of trajectories takes

place, and at a field of H0 ≃ 104Oe the amplitude drops

dramatically almost down to zero. It should be noted that

in a narrow region of field near H0 ≃ 103.5Oe instability

is manifested, which consists in change of the trajectory

character: the precession starts from one equilibrium

position, and the steady trajectory becomes
”
attracted“

by the symmetric (about the
”
hard“ plane) equilibrium

position. At the same time the amplitude of this precession

is considerably less than the amplitude of the precession

near two equilibrium positions.

At H0 ≥ HKN, the precession under the action of

longitudinal excitation field disappears. Thus, the high-

amplitude precession of magnetization near the resonance

static field under a weak longitudinal excitation is related

to small deviations of the equilibrium magnetization from

the direction of static field and the presence of a small

component of magnetization normal to the SHF field when

H0 < HKN.

Fig. 4 shows two more projections of vector µ for the

field H0 = 103.1Oe, along with the spatial view of the

precession trajectory with maximum amplitude under bias

in the
”
hard“ plane and a longitudinal excitation (one

more projection of this trajectory is shown in Fig. 3).
In contrast to the flat trajectory under bias along the

”
easy“

axis (Fig. 2), in the case under consideration the steady

trajectory is more complicated volumetric closed curve.

In this case, the change in longitudinal component µz

for the trajectory in question is more than an order
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Figure 4. Two projections and general view of the resonance trajectory under bias in the
”
hard“ plane and longitudinal excitation

(h ‖ H0 ⊥ n).

of magnitude higher than the change in two transverse

components.

It is known that response of a magnetic system for

the impact of varying field is defined by the imaginary

component of high-frequency susceptibility χ′′, which is

related to the absorbed power of SHF-field by the following

relationship: P = χ′′ωh2V/2, where V — volume of the

specimen. Since frequency, amplitude of the field, as

well as volume of the specimen are considered pre-defined,

then the high-frequency response defined by a value of χ′′

with a reasonable degree of accuracy can be linked with

1µz = |µmax
z − µmin

z |.
With this consideration in mind, Fig. 5 illustrates the field

dependence of oblong ellipsoid value under its bias in the

”
hard“ plane for two excitation options — longitudinal and

transverse (solid and dashed lines). These dependences

are different in terms of number of
”
resonance“ peaks: at

the traditional (for linear FMR) transverse excitation there

are two such peaks, while at the longitudinal excitation

there is one peak. When approaching to the bistability

field Hb, which value is defined by parameters of the particle

and the excitation field (in the case under consideration

Hb = 103.1Oe), a sharp growth of 1µz takes place with

achievement of the maximum response value. As was

already mentioned, this maximum is due to the bistability,

which is related to two equilibrium positions close in their

angles in the region of H0 < HKN. These positions
”
attract“

the magnetic moment at any orientation of field h(t), the
precession of the magnetic moment takes place near each

of them with different probability (depending on proximity

of the static field to Hb). Then, with increase in the field

an asymmetric drop of the response takes place, which

decreases abruptly almost down to zero at H0 ≃ 104Oe,

which means absence of precession.

Similar behavior of the response in the region of

H0 < HKN is observed under a transverse excitation as well

H0, Oe

100 102 104 106

0.1

0.3

0.2

0.4

0

D
m

Figure 5. FMR spectrum of the oblong ellipsoid under bias in

the
”
hard“ plane, longitudinal and transverse excitation (solid and

dashed lines).

(dashed line). However, in this case the response amplitude

is less than in the case of longitudinal excitation, and also,

in addition to the above-mentioned peak, there is a peak in

the spectrum in the region of H0 > HKN. Its amplitude is

less than the amplitude of the first peak. Also, it’s worth

to note that the response amplitude at bias in the
”
hard“

plane is considerably higher than the response amplitude

at bias along the symmetry axis of the ellipsoid. At the

same time, width of resonance peaks 1H0 ≃ 1Oe, which is

considerably ńarrower than width of the resonance line at

bias long the
”
easy“ axis (see. Fig. 2, b).
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5. Conclusion

The performed analysis shows that in the FMR spectrum

of a single-domain uniaxial magnetic micro- or nano-particle

shaped in the form of an oblong ellipsoid of revolution, with

bias in the
”
hard“ plane and longitudinal excitation by a

weak SHF-field (h ‖ H0 ⊥ n) in the region of H0 < HKN a

resonance peak is observed, which position does not cor-

respond to the resonance value of the field H(1)
res , amplitude

is higher than that of the resonance peak under transverse

excitation, and precession trajectory of magnetization has

a complicated volumetric character with two
”
centers of

attraction“. Width of this peak is considerably ńarrower

than that of the resonance curve under transverse excitation.

The emergence of such a peak and bistability is related to

the presence of two equilibrium positions of the ellipsoid

magnetic moment, which are close to each other in their

angles. Peaks of similar type should also manifest in FMR

spectra of oblate ellipsoid particles and in structures with

cubic crystal anisotropy. Observation of similar peaks in

resonance investigations of thin magnetic films and their

interpretation was reported in [13,14].
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