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Helmholtz-Gauss beams with quadratic radial dependence
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1. Introduction

In this article, we build a new class of solutions of the

parabolic equation [1,2]

2ikuz + 1⊥u = 0, (1)

(also called the paraxial wave equation [3]), where

1⊥ = ∂xx + ∂yy and k = const is a wave number. It is

assumed that |u| → 0 for |x | + |y | → ∞. We will call z the

longitudinal coordinate, and x and y transverse coordinates.

Solutions of equation (1) are used for approximate

description of time-harmonic wave propagation along

axis z [1–4] when paraxiality conditions are fulfilled [3,4].
Solutions of equation (1) can also be used as a technical

tool for building exact time-nonharmonic solutions of the

wave equation for which fulfillment of paraxiality conditions

is not required [4–9].

The class considered in the article is built on the

basis of quadratic Bessel–Gaussian beams [7] and in-

cludes several subclasses, one of which is well-known

astigmatic Gaussian beams, whose relation to quadratic

Bessel–Gaussian beams is studied in [10], others are

similar to asymmetric [11] and shifted [12] Bessel–Gaussian
beams. Among them there are solutions that describe

optical vortices of various orders, which opens up the

prospect of their use in numerous applications from

manipulation of microparticles to information transmis-

sion [13].
The beams belonging to the class under consideration

mostly inherit the geometric properties of quadratic Bessel–
Gauss beams, which distinguish them from the classical

(linear) Bessel–Gauss beams [7,14,15]. As noted in [7],

”
while the latter have an essentially conical geometry, the

former propagate colinearly“. This is due to the fact

that quadratic Bessel–Gaussian beams are components of

the Fourier series expansion in the angular variable of an

astigmatic Gaussian beam propagating along the optical

axis [10], and classical ones are that of axisymmetric

Gaussian beam, but inclined to the optical axis and/or

shifted in the transverse direction [15].
When building the class under consideration, a new

technical tool is used that is a two-sheeted surface together

with solutions of the Helmholtz equation on this surface.

To avoid false associations, we want to emphasize that

this surface is not a Riemann surface associated with any

analytic function of a complex variable. An important role

in our consideration is played by the secondary parabolic

equation, which arose earlier in the article [16] when

constructing a class of Helmholtz–Gauss solutions with

linear radial dependence. In articles [17,18] this approach

is generalized to media with quadratic dependence of the

refractive index on the radius.

2. Laplace–Gauss and Helmholtz–Gauss
solutions and a secondary parabolic
equation

The fundamental mode of the equation (1) is a well

known Gaussian beam [19], having the form

G =
C

q(z )
exp

{
ik
2

r2

q(z )

}
, (2)

where r2 = x2 + y2, q(z ) = z − z 0 − ib, z 0 and b > 0 are

real constants, and C is a complex constant. This function

is Gaussian localized in transverse coordinates. Solutions of

equation (1) having the form

u = AG, (3)
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where A = A(x , y, z ) 6= const, are called higher modes. We

call the function A the amplitude [16]. Substituting (3)
into (1), we obtain

2ikAz + 1⊥A + 2ik
xAx + yAy

q(z )
= 0.

Following [16,17,20], having performed a complex change

of variables

X =
x

q(z )
, Y =

y
q(z )

, Z = −
1

q(z )
, (4)

after some transformations, we arrive at a parabolic equation

for the amplitude:

2ikAZ + 1̂A = 0, (5)

where

1̂ = ∂XX + ∂YY . (6)

According to the terminology proposed in [17], equation (5)
is called a secondary parabolic equation.

If the amplitude A does not depend on Z:

A = 9(X ,Y ),

we arrive at the Laplace equation

1̂9 = 0

and get the Laplace–Gaussian modes [16,20]

u = 9

(
x

q(z )
,

y
q(z )

)
G,

where 9 is an arbitrary harmonic function.

If the amplitude depends exponentially on Z:

A = exp

(
−i

K2

2k
Z

)
9(X ,Y ),

where K is an arbitrary complex constant, then we arrive

at the Helmholtz equation

1̂9 + K29 = 0 (7)

and get the Helmholtz–Gauss modes [16,20,21]

u = 9

(
x

q(z )
,

y
q(z )

)
exp

(
iK2

2kq(z )

)
G,

where 9 is an arbitrary solution of equation (7).
Particular cases of such modes are the Bessel–Gauss

beams built by Gori, Guattari and Padovani [7,14,15]

um =
C

q(z )
exp

{
ikr2

2q(z )
+

iK2

2kq(z )
+ imφ

}
Jm

(
Kr

q(z )

)
,

(8)
where φ is the polar angle on the xy plane, and their

generalizations [11,12,17,22].

Note that the values of complex coordinates X ,Y cor-

responding to points of physical space are not completely

independent: as can be seen from (4), their arguments either

coincide or differ by π, i.e. X and Y are linearly dependent

over the real number field. The set of such pairs (X ,Y ),
which we will call a physical sheet, can be parametrized in

terms of polar coordinates:

X = R cos8, Y = R sin8, (9)

where R = r/q(z ) is the complex polar radius and 8 = φ is

the real polar angle. The Laplace operator on a physical

sheet, expressed in terms of R, 8, has the form

1̂ =
1

R
∂

∂R
R

∂

∂R
+

1

R2

∂2

∂82
, (10)

in this case, the 2π-periodicity condition is assumed to

be satisfied for the variable 8. In particular, Bessel–
Gauss beams (8) can be obtained by selecting a solution

of equation (7), which has the form

H = Jm (KR) exp (im8) .

The techniques presented in this section will be used

in constructing solutions of another type — quadratic

Helmholtz–Gauss beams.

3. Quadratic Bessel–Gauss and
Helmholtz–Gauss beams

Let us consider another type of localized solutions of

equation (1), namely, Bessel–Gauss beams with quadratic

radial dependence or, briefly, quadratic Bessel–Gauss
beams, found by Caron and Potvlidge [7]. These solutions

in the article [7] are presented in the form

um = Em
w0

W (z )
exp

[
−

(
1 + i(µ2 + 1)

z
z R

)
r2

W 2(z )

]

× J|m|/2

[
µr2

W 2(z )

]
exp(imφ), (11)

where J|m|/2 is the Bessel function of |m|/2 order, and

W (z ) = w0

√

1− (µ2 + 1)

(
z

z R

)2

+ 2i
z

z R
. (12)

In this case w0 and

z R =
kw2

0

2

are real, and Em and µ are complex parameters character-

izing the solution. The beam (11) is Gaussian localized in

transverse coordinates for |Imµ| < 1. Such functions are

essentially different from (8). In particular, the argument of

the Bessel function contains r2 instead of r , and its index

is |m|/2. At the same time, the vortex on the beam optical

axis (11) has the same topological charge m as (8).
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For further investigations, it will be convenient to use not

the original form (11), which we will call Scottish, but the

alternative (Spanish) form [10,23] proposed by Chamorro-

Posada:

um =
C√

q1(z )q2(z )
exp

{
ikξ(z )r2 + imφ

}
J|m|/2(kη(z )r2),

(14)
where q j(z ) = z − z j − ib j , j = 1, 2, z j and b j > 0 are

real constants and C is a complex constant,

ξ(z ) =
(
q−1
1 (z ) + q−1

2 (z )
)
/4,

η(z ) =
(
q−1
1 (z ) − q−1

2 (z )
)
/4.

In the article [10], the equivalence, up to a shift over the

longitudinal variable z , of the Scottish (11) and Spanish (14)
representations of the quadratic Bessel–Gaussian beam

was proved, and there was established link between the

parameters characterizing these representations.

Note that the function

Ĝ =
C√

q1(z )q2(z )
exp

{
ikξ(z )r2

}
, (15)

unlike (2), does not satisfy equation (1). Nevertheless,

we will look for solutions of equation (1) that generalize

quadratic Bessel–Gauss beams (14) in a form similar to (3):

u = A Ĝ, (16)

with some non-constant amplitude function A = A(r, φ, z ).
If we substitute (16) into (1) and perform a complex change

of variables

R = η(z )r2, 8 = 2φ, Z = ln
q1(z )

q2(z )
, (17)

then after some algebra (see Appendix) we arrive at a

secondary parabolic equation for the amplitude, which has

the form

2ikAZ + R(1̂ + k2)A = 0, (18)

with periodic conditions

A(Z, R, 8 + 4π) = A(Z, R, 8), (19)

arising from the requirement of uniqueness of solution in the

physical space. In equation (18), the analytical expression

for the operator 1̂ coincides with (10). The difference from

the case considered above lies in the non-standard periodic

conditions (19) with respect to the variable 8, which plays

the role of an angle. Therefore, we will now interpret the

operator 1̂ in equation (18) as a Laplacian on an auxiliary

two-sheeted complex surface with a branch point at R = 0,

the first sheet of which corresponds to 8 ∈ [0, 2π), and the

second one to 8 ∈ [2π, 4π) with cuts at 8 = 2πn. Each

of these sheets is similar to the physical sheet considered

above, which arises when constructing the Laplace–Gauss
and Helmholtz–Gauss modes with the usual (linear) radial

dependence [16,20,21]. As before, the points of such a

surface are characterized by a complex radial variable R
and a real angular variable 8.

We confine ourselves to considering solutions (18) that

do not depend on Z:

A = 9(R, 8). (20)

In this case we arrive at the Helmholtz equation

(1̂ + k2)9(R, 8) = 0. (21)

We see that an arbitrary solution 9(R, 8) of the Helmholtz

equation on a two-sheeted surface corresponds to some

solution of equation (1) in the original physical space:

u = 9(η(z )r2, 2φ)Ĝ. (22)

If the first cofactor is limited or does not grow too fast,

then the function (22) is localized with respect to transverse

coordinates. In this case, it is natural to call such a

solution of equation (1) a quadratic Helmholtz–Gauss beam.

We emphasize that if 9 is 4π-periodic over 8, then the

function u is 2π-periodic over φ respectively.

An arbitrary solution of equation (21) on a two-sheeted

surface can be represented as a sum of two solutions,

one of which is 2π-periodic over 8, and the other is 2π-

antiperiodic. In physical space, this corresponds to even

and odd solutions with respect to the rotation through the

angle π around the optical axis. The first term is a smooth

solution of equation (21) on an one-sheet surface (i.e., on a

plane with a complexified radial variable), and the second

term on the first sheet (8 ∈ [0, 2π)) satisfies equation (21)
with boundary conditions on the cut:

{
9(R, 2π) = −9(R, 0),

98(R, 2π) = −98(R, 0),

and in this case, it continues to the second sheet

(8 ∈ [2π, 4π)) in an odd way.

4. Examples

4.1. Quadratic Bessel–Gauss beams

If we take

9m = J|m|/2(kR) exp
{

i
m
2
8

}
= J|m|/2(kη(z )r2) exp {imφ} ,

(23)
then the function (22) will coincide with (14).

4.2. Asymmetric quadratic Bessel–Gauss beams

The constructions of this section are based on an

approach that made it possible to obtain asymmetric Bessel

modes in the article [24] and asymmetric Bessel–Gaussian
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beams in the article [11]. We use the identity 5.7.6.1

from [25]

∞∑

p=0

t p

p!
J p+ν(s) = sν/2(s − 2t)−ν/2Jν

(√
s(s − 2t)

)
, (24)

|2t| < s .

In the case s = kR, ν = |m|/2, t = 2kc exp(i8κ) (κ = 1 for

m ≥ 0, κ = −1 for m ≤ 0, for m = 0 any sign can be taken,

c is some complex constant) it follows from (24) that

9̃m =

∞∑

p=0

(kc)p

p!
9m+2pκ =

(
R

R − 2c exp(i8κ)

)|m|/4

× J|m|/2

(
k
√

R(R − 2c exp(i8κ))
)
exp

{
i

m
2
8

}
.

(25)
These solutions (asymmetric Bessel modes) were found

in [24] for the case of even positive m when they are regular

on an one-sheet surface, and were used in [11] to construct

asymmetric Bessel-Gauss beams. In the general case, de-

spite the restriction |2t| < s (i.e., |2c| < R) in formula (24),
function (25) satisfies the Helmholtz equation (21) on the

entire two-sheeted surface for an arbitrary value c , which

can be verified by direct calculation. In this case, at the

point where the difference R − 2c exp(i8κ) vanishes, the

function (25) has a removable singularity. For c = 0 the

functions (25) coincide with (23). If we return to the

original variables, then (25) takes the form

9̃m =

(
η(z )r2

η(z )r2 − 2c exp(2iφκ)

)|m|/4

exp {imφ}

× J|m|/2

(
kr

√
η(z )(η(z )r2 − 2c exp(2iφκ))

)
. (26)

The product (22) gives a new family of localized solutions

of equation (1), which, by analogy with [11], we call

asymmetric quadratic Bessel–Gauss beams [26]. Such

solutions contain an optical vortex with a topological charge

m located on the optical axis, and vortices with a topological

charges ±1, the locations of which are determined by the

values of the Bessel function roots.

4.3. Singular quadratic Bessel–Gauss beams and
their regularization

Let us consider the functions

9−
m = J−|m|/2(kR) exp

{
i

m
2
8

}
. (27)

Such functions for R > 0 satisfy the Helmholtz equa-

tion (21) on a two-sheeted surface. For even m, func-

tions (27) either coincide with (23) or differ from them

in sign and do not give new solutions to equation (1).
If the values of m are odd, the functions (27) can no

longer be expressed in terms of (23), and the Bessel

functions with negative semi-integer indices grow infinitely

at R → 0. Accordingly, the functions (22) — singular

symmetric Bessel–Gauss beams— have a singularity on

the optical axis and, apparently, have no direct physical

meaning.

Nevertheless, let us use formula (24) and construct new

asymmetric singular solutions of equation (21):

9̃−
m =

∞∑

p=0

(kc)p

p!
J−|m|/2+p(kR) exp

{
i
(m
2
− pκ

)
8

}

=

[|m|/2]∑

p=0

(kc)p

p!
9−

m−2pκ +

∞∑

p=1+[|m|/2]

(kc)p

p!
9−m+2pκ

=

(
R − 2c exp(−i8κ)

R

)|m|/4

× J−|m|/2

(
k
√

R(R − 2c exp(−i8κ))
)
exp

{
i
m
2
8

}
,

(28)
κ = signm, square brackets indicate the integer part of the

number. The respective functions (22) with singularities on

the optical axis will be called singular asymmetric Bessel–
Gaussian beams.

Let’s remove the singularities on the axis, for which we

compose a linear combination of the obtained functions,

which will be bounded at R → 0. The most obvious way is

to consider the series (28) again, excluding the singular

terms from it and leaving only the regular ones:

9 = 9̃−
m −

[|m|/2]∑

p=0

(kc)p

p!
9−

m−2pκ =
∞∑

p=1+[|m|/2]

(kc)p

p!
9−m+2pκ

=

(
R − 2c exp(−i8κ)

R

)|m|/4

× J−|m|/2

(
k
√

R(R − 2c exp(−i8κ))
)
exp

{
i
m
2
8

}

−

[|m|/2]∑

p=0

(kc)p

p!
J−|m|/2+p(kR) exp

{
i
(m
2
− pκ

)
8

}
.

(29)
Such regularized amplitudes are bounded and tend to zero

at R → 0.

Let us describe another way of regularizing the solutions

under consideration. Let N > 1 + m/2 be a natural number

and ωN = exp(2πi/N). Let us consider N functions 9̃−
m, j ,

j = 1, . . . , N of the form (28) differing in the values of the

constants c = c j , with c j = c1ω
j−1
N . Then, as is easy to

see, the linear combination

9 =
N∑

j=1

ω
j−1
N 9̃−

m, j (30)

will be bounded at R → 0, since the coefficients for all

irregular terms will vanish.

Optics and Spectroscopy, 2022, Vol. 130, No. 2



248 A.B. Plachenov, G.N. Dyakova

Having calculated the product (22), we find a regularized

quadratic Bessel–Gauss beam, a localized solution of

equation (1). Regardless of the regularization method, all

such solutions are odd with respect to rotation through the

angle π around the optical axis, vanish on this axis, and

have an optical vortex on it with an odd topological charge.

Note that since Bessel functions with semi-integer indices

are expressible in terms of elementary functions [27],
singular and regularized quadratic Bessel–Gaussian beams

also have this property.

4.4. Quadratic Cosine–Gaussian Beams

Let us consider the simplest particular case of singular

amplitude (27) corresponding to m = ±1 [27]:

9−
±1 = J−1/2(kR) exp

{
±

i8
2

}

=

√
2

πkR
cos kR exp

{
±

i8
2

}
. (31)

Then, according to (28),

9̃−
±1 =

4

√
R − 2c exp(∓i8)

R

× J−1/2

(
k
√

R(R − 2c exp(∓i8))
)
exp

{
±

i8
2

}

=

√
2

πkR
cos

(
k
√

R(R − 2c exp(∓i8))
)
exp

{
±

i8
2

}
.

(32)
Functions (31) and (32) are unbounded at R → 0 solutions

of equation (21) on a two-sheeted surface.

Let us consider the regularization of such amplitudes.

Since for m = ±1 series (28) contains only one singular

term, the simplest regularized amplitude corresponding

to (29) is just the difference 9̃−
±1 −9−

±1. In the general

case, let 9̃−
±1, j , j = 1, . . . , N be functions of the form (32)

differing in the values of the complex constants c = c j , and

now these constants are already arbitrary. Then the linear

combination

9 =
N∑

j=1

C j9̃
−
±1, j (33)

in case of meeting the condition

N∑

j=1

C j = 0

is bounded and tends to zero at R → 0. In the initial

variables, the function (33) has the form

9 =
exp {±iφ}

r

√
2

πkη(z )

×

N∑

j=1

C j cos
(

kr
√
η(z )(η(z )r2 − 2c j exp(∓2iφ))

)
. (35)

Then, if (34) is fulfilled, the product (22) is a regular

localized solution of equation (1), odd with respect to

rotation through the angle π about the optical axis and

vanishing on this axis. Functions of this kind were called

quadratic Cosine–Gaussian beams in [28].

4.5. Shifted quadratic Bessel–Gauss beams

We begin description of another solutions family by

considering the Cartesian coordinates on the two-sheeted

surface under consideration:

X = R cos8 = η(z )(x2 − y2), (36)

Y = R sin8 = 2η(z )xy. (37)

Obviously, changing 8 by 2π does not change the values

of X and Y . Therefore, any analytic function that can be

expressed in terms of (36) and (37) is 2π-periodic over 8

and, therefore, π-periodic over φ. For such functions, the

operator 1̂ is defined by formula (6).
Notice, that

R2 = X2 + Y 2 = (X + iY )(X − iY ), (38)

exp{i8} =
√

(X + iY )/(X − iY )

= (X + iY )/R = R/(X − iY ). (39)

With the help of (38) and (39) we can transform even-

numbered functions (23) regular on an one-sheet surface:

92m = J|m|(kR) exp {im8}

= J|m|

(
k
√

X2 + Y 2

)(
X + iY
X − iY

)m/2

. (40)

Let us now perform a shift in (40) by a constant complex

vector (X0,Y0): X 7→ X ′ = X − X0, Y 7→ Y ′ = Y − Y0 and

obtain new solutions of the Helmholtz equation (21):

9′
2m = J|m|(kR′)

(
X ′ + iY ′

X ′ − iY ′

)m/2

, (41)

where

R′ =
√

X ′2 + Y ′2 =
√

(X ′ + iY ′)(X ′ − iY ′).

Such solutions of the Helmholtz equation were considered

in [29] and used to build shifted Bessel-Gaussian beams

in [12,17].
Using (41) as the amplitude function in (22), we obtain

a new family of solutions of the parabolic equation (1).
Notice that in the case of X0 + iY0 = 0 (for m > 0) or

X0 − iY0 = 0 (for m < 0), (41) turns into (25) for some c ,
and, consequently, the shifted quadratic Bessel-Gaussian

beams turn into the asymmetric ones considered earlier.

Note that an optical vortex with a topological charge m,

located on the optical axis in case of an non-shifted

quadratic Bessel–Gauss beam, as a result of a complex

shift, generally speaking, changes its position and ends up

at the point where X ′ + iY ′ vanishes for m > 0 or X ′ − iY ′

vanishes at m < 0.
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4.6. Astigmatic Gaussian beams

The class of quadratic Helmholtz–Gaussian beams turns

out to contain the well-known astigmatic Gaussian beams.

In particular, if we take the simplest solution of the

Helmholtz equation (21), which has the form of a plane

wave on an auxiliary surface:

9 = exp(ikX) = exp
(
ikη(z )(x2 − y2)

)
, (42)

product (22) takes the form of aligned simple astigmatic

(ASA) Gaussian beams [19]:

u =
C√

q1(z )q2(z )
exp

{
ik
2

[
x2

q1(z )
+

y2

q2(z )

]}
.

Having selected another wave direction on the (XY ) plane:

9 = exp
(
ik(X cosϕ + Y sinϕ)

)
, (43)

where ϕ — a real constant, we arrive at rotated simple

astigmatic (RSA) Gaussian beams [19] at ϕ 6= nπ, n ∈ Z.

If we take the nonreal value ϕ in (43), we obtain, under

certain restrictions on Imϕ, the general astigmatic (GA)
Arnaud–Kogelnik beam [8,19,30].
It is interesting to note that, as shown in the article [10],

when expanding a Gaussian beam with simple astigmatism

or a general astigmatic Arno–Kogelnik beam into a Fourier

series over the variable φ, the terms of such an expansion

have the form of quadratic Bessel–Gauss beams with even

numbers.

5. Conclusion

In this article quadratic Helmholtz–Gauss modes are

constructed, which are a new class of localized solutions of

a paraxial parabolic equation. This class contains both well-

known solutions, such as quadratic Bessel–Gaussian beams

and astigmatic Gaussian beams, as well as new families of

solutions that require detailed study.

The constructed class contains both paraxial and non-

paraxial solutions of equation (1). Paraxial solutions can be

used for an approximate description of time-harmonic wave

propagation along the z axis. At the same time, paraxiality

is not required to build exact nonstationary solutions of the

wave equation.

We would like to note that the secondary parabolic

equation obtained in this article, in our opinion, can be

used to build not only the Helmholtz–Gaussian modes, but

also other types of solutions.

We also would like to note that, apparently, the possibility

of the existence of Helmholtz–Gauss beam classes with a

dependence on the radius that is different from linear and

quadratic seems quite possible. This idea is suggested by

the solutions found in the article [31], whose structure

resembles asymmetric Bessel–Gaussian beams, in which,

however, the argument of the Bessel function at large

distances from the optical axis is of the order of r3/2.
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Appendix

Derivation of the secondary parabolic
equation (18)

After substitution (16) into equation (1) we obtain the

equation for the amplitude:

2ikAz +
1

r
∂r (rAr ) +

1

r2
Aφφ4ikξ(z )rAr

+ 4k2η2(z )r2A = 0. (44)

Let us perform a complex change of variables by introduc-

ing new coordinates (17). In these variables

Az = 4ηAZ − 4ξRAR,

1

r
∂r (rAr ) = 4v(AR + RARR),

4ikξrAr = 8ikξRAR,

1

r2
Aφφ =

4v

R
A88,

and equation (44) takes the form

8ikvAZ + 4vR

(
AR

R
+ ARR +

1

R2
A88 + k2A

)
= 0,

which after reductions coincides with (18).
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