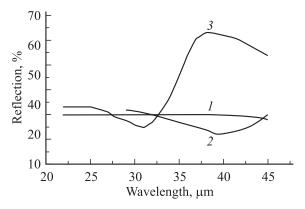
Эффективная масса электронов в Mn_xHg_{1-x} Те

© И.М. Несмелова¶


НПО Государственный институт прикладной оптики, 420075 Казань. Россия

(Получена 23 декабря 2002 г. Принята к печати 4 февраля 2003 г.)

Исследованы спектры отражения монокристаллов и эпитаксиальных слоев $n\text{-Mn}_x\text{Hg}_{1-x}\text{Te}$ при 300 К. Определены экспериментальные значения эффективной массы электронов для образцов с x=0.06-0.10 и концентрацией электронов $N>6\cdot 10^{16}\,\text{cm}^{-3}$. Рассчитанные значения электронной эффективной массы близки к экспериментальным.

Твердые растворы \langle теллурида марганца \rangle - \langle теллурида ртути \rangle Mn_xHg_{1-x} Те \langle (MPT), альтернативные ведущему материалу инфракрасной \langle (ИК) оптоэлектроники \langle теллуриду кадмия \rangle - \langle теллуриду ртути \rangle (КРТ), обладают более прочными химическими связями и соответственно более высокой стабильностью электрофизических свойств [1]. Однако некоторые фундаментальные параметры МРТ изучены недостаточно, а в ряде случаев имеются лишь их расчетные значения, не подтвержденные экспериментом.

В настоящей работе были изучены спектры отражения образцов МРТ n-типа с целью определения эффективных масс электронов в зависимости от концентрации электронов и содержания теллурида марганца.

Спектры отражения образцов Mn_xHg_{1-x} Те при T=300 K; концентрация электронов $N, 10^{17} \text{ cm}^{-3}$: I=0.6, 2=1.5, 3=5.5; мольная доля MnTe x: I=0.09, 2=0.06, 3=0.10.

Измерения проводились при $300\,\mathrm{K}$ на спектрометре ИКС-21 в области спектра $20{-}45\,\mathrm{mkm}$. Исследовались образцы с концентрацией нескомпенсированных доноров $N=(6{-}60)\cdot 10^{16}\,\mathrm{cm^{-3}},\,$ полученных методами рекристаллизации из двухфазной смеси с подпиткой расплава и жидкофазной эпитаксии из расплава теллура.

Спектры отражения некоторых образцов представлены на рисунке. Для образцов с $N>10^{17}\,{\rm cm}^{-3}$ наблюдались характерные плазменные минимумы $\lambda_{\rm min}$, по положению которых были рассчитаны эффективные массы электронов по формуле

$$m_n/m_0 = (e^2 N \lambda_{\min}^2)/(\pi c^2 \varepsilon_{\infty} m_0),$$

где диэлектрическая постояная $\varepsilon_{\infty} = n^2 \ (n$ — показатель преломления) определялась по данным работы [2].

Теоретические значения эффективных масс электронов рассчитывались по теории Кейна. Если выполняется условие $E_g \ll \Delta$, то в случае сферически симметричных энергетических зон и вырожденного электронного газа

$$m_n/m_0 = \left\{1 + (4/3P^2m_0)/\hbar^2 \right.$$

$$\times \left[E_g^2 + 8/3P^2(3\pi^2N)^{2/3}\right]^{-1/2}\right\}^{-1},$$

что идентично выражению, полученному в работе [3]. Значения ширины запрещенной зоны E_g и матричного элемента Кейна P в зависимости от x и температуры T определялись с помощью эмпирических формул из работы [3]. Электрические параметры образцов, представленных на рисунке, а также экспериментальные и расчетные значения эффективных масс электронов даны в таблице. Данные эксперимента удовлетворительно согласуются с расчетом и с теоретическими значениями, полученными в работе [4].

Характеристика образцов при $T=300\,\mathrm{K}$ и эффективные массы электронов твердых растворов $\mathrm{Mn_xHg_{1-x}Te}$

•	Мольная доля МпТе <i>x</i>	Ν,	$\mu,$ $10^4 \text{cm}^2/(\text{B} \cdot \text{c})$	λ _{min} , мкм	$arepsilon_{\infty}$	<i>m_n/m</i> ₀ эксперимент	m_n/m_0 теория
•	0.09 0.06 0.10	0.6 1.5 5.5	8.0 5.0 1.3	- 40.5 31.0	13.68 13.68 13.10		0.0194 0.0190 0.0345

Примечание. N — концентрация электронов, μ — подвижность, λ_{\min} — длина волны плазменного минимума в спектре отражения.

Заметим, что эффективные массы электронов в твердом растворе МРТ несколько больше, чем в КРТ (см., например [5]) при сопоставимых величинах N, x, T. Различия увеличиваются с ростом N. Это в первую очередь говорит о большей плотности электронных состояний в образцах $\mathrm{Mn}_x\mathrm{Hg}_{1-x}\mathrm{Te}$.

Выражаю благодарность Л.Н. Чечериной за проведение гальваномагнитных измерений.

[¶] E-mail: eugene@mi.ru

Список литературы

- [1] A. Rogalski. Infr. Phys., 31 (2), 117 (1991).
- [2] И.М. Несмелова, И.М. Лаврентьева, Н.С. Барышев, Н.П. Цицина. ЖПС, **63** (3), 510 (1996).
- [3] A. Rogalski, K. Jozwikowski. Phys. St. Sol. (a), **122** (1), K39 (1990).
- [4] О.А. Боднарук, И.Н. Горбатюк, С.Э. Остапов, И.М. Раренко. ФТП, **26** (3), 463 (1992).
- [5] И.М. Несмелова. Оптические свойства узкощелевых полупроводников (Новосибирск, Наука, 1992).

Редактор Т.А. Полянская

Electron Effective Mass in a $Mn_xHg_{1-x}Te$ System

I.M. Nesmelova

State Institute of Applied Optics, 420075 Kazan, Russia

Abstract The reflectivity spectra at 300 K of $n\text{-Mn}_x\text{Hg}_{1-x}\text{Te}$ single crystals and epitaxial layers have been investigated. Experimental and theoretical parameters of electron effective masses for $x = 0.06 \dots 0.1$ and $N > 6 \cdot 10^{16} \, \text{cm}^{-3}$ have been determined.