01,03

Электронная структура и рентгеноспектральные характеристики полупроводниковой и металлической фаз дисилицида железа

© Г.П. Потуданский, С.И. Курганский

Воронежский государственный университет, Воронеж, Россия E-mail: potudanskiy@phys.vsu.ru

Поступила в Редакцию 12 сентября 2022 г. В окончательной редакции 12 сентября 2022 г. Принята к публикации 16 сентября 2022 г.

> В рамках теории функционала плотности полнопотенциальным методом присоединенных плоских волн с локальными орбиталями проведен расчет электронного строения и рентгеноспектральных характеристик полупроводниковой и металлической фаз дисилицида железа. Выполнены расчеты зонной структуры, полных и парциальных плотностей электронных состояний и впервые получены рентгеновские спектры поглощения *К*-края железа в высоком разрешении. Впервые приведены парциальные плотности электронных состояний *р*-симметрии в зоне проводимости для возбужденного состояния, отражающиеся, согласно дипольным правилам отбора, в *К*-спектрах поглощения. Проведено сопоставление полученных результатов с известными экспериментальными данными. Дано объяснение изменения тонкой структуры вблизи края рентгеновского поглощения при переходе от полупроводниковой фазы к металлической.

Ключевые слова: дисилицид железа, электронная структура, метод APW+lo, XANES, К-край поглощения.

DOI: 10.21883/FTT.2023.01.53916.474

1. Введение

В настоящее время с развитием наноэлектроники и спинтроники возникает интерес в фундаментальных и прикладных исследованиях [1,2], что влечет за собой необходимость в высокоточных методах анализа физикохимических свойств материалов. Наноструктуры из дисилицидов переходных металлов являются одними из фундаментальных материалов при производстве микрои наноэлектроники [3,4]. Среди этих соединений особый интерес вызывает дисилицид железа [5,6], поскольку он способен образовывать металлические и полупроводниковые фазы. Плотности электронных состояний и зонная структура играют важную роль для предсказания различных свойств материалов, в том числе и квантовых. Известно, что уменьшение размера кристаллов до нанометрового масштаба вызывает изменение свойств на границе раздела [6,7]. Поэтому всестороннее изучение FeSi₂ имеет фундаментальное значение. В работе [8] были получены спектры ближней тонкой структуры края рентгеновского поглощения (XANES) вблизи К-краев поглощения железа в МНС, состоящей из слоев магнитных переходных металлов Co₄₅Fe₄₅Zr₁₀, разделенных немагнитными прослойками, состоящими из SiO₂ и a-Si. Обнаруженная идентичность этих спектров и спектра К-края поглощения металлического железа оказалась совершенно неожиданной и вызывает необходимость объяснения этого факта. Мы проводим расчеты FeSi2 с целью дальнейшего определения, присутствует ли это соединение в этих многослойных наноструктурах на межслойных границах, поскольку в работе [8] главный максимум К-края поглощения расположен на таком

же расстоянии от края поглощения, как у силицидов железа.

Ранее дисилицид железа уже частично исследовался, например, в работах [9–11] проводилось изучение зонной структуры только лишь металлической фазы α -FeSi₂ в то время, как в работе [12] проводилось изучение уже обеих фаз, а в работах [13–17] проводилось изучение только лишь β -FeSi₂. Стоит отметить, что в работах [12,14] запрещенные щели в зонной структуре полупроводниковой фазы оказались прямыми, а в [13,16] — непрямыми и положение экстремумов совпало.

Различие зонных структур, полученных в различных расчетах, можно объяснить использованием разных теоретических методов, которые со временем совершенствуются. Также со временем совершенствуются экспериментальные методы, например, в работах [18,19] на спектрах поглощения железа можно заметить увеличение размытия с увеличением энергии, приводящее к тому, что главный максимум, который, как мы покажем ниже, является двойным, в эксперименте становится одинарным и не подходит для использования в работах, где требуется более высокое разрешение. Нынешнее развитие методов машинного обучения [20] может позволить определить, какие именно соединения присутствуют на границах МНС, а использование спектров в более высоком разрешении может оказывать значимое влияние.

Поэтому целью настоящей работы является однозначное теоретическое определение электронной структуры полупроводниковой и металлической фаз дисилицида железа, в частности, трансформации *К*-края поглощения железа при переходе от полупроводниковой фазы к металлической.

2. Метод расчета

В рамках теории функционала плотности (DFT) были проведены расчеты электронной структуры полупроводниковой и металлической фаз дисилицида железа в квантово-механическом программном пакете Wien2k [21], в основе которого лежит как полнопотенциальный метод линеаризованных присоединенных плоских волн (FP-LAPW), так и полнопотенциальный метод присоединенных плоских волн с локальными орбиталями (FP-APW+lo) [22]. Метод FP-APW+lo позволяет получать более точные градиенты электрического поля (EFG), исключать появление так называемых фантомных зон и обеспечить лучшую сходимость цикла самосогласования (SCF) для атомов, у которых есть полуостовные состояния, в отличие от FP-LAPW [23].

Расчет металлического $FeSi_2$ проводился объемным методом FP-APW+lo с обменно-корреляционным функционалом в приближении обобщенной градиентной аппроксимации (PBE-GGA) [24], который, как было ранее нами показано [25], позволяет получить надежный результат при вычислении электронного строения объемных кристаллов и нанопленок. Расчет полупроводникового FeSi₂ проводился тем же методом FP-APW+lo, но уже с функционалом в приближении модифицированного обменно-корреляционного потенциала Беки– Джонсона (mBJ-LDA) [26], который позволяет получить более точное значение ширины запрещенной зоны полупроводников и диэлектриков [27].

Для вычисления плотностей электронных состояний и зонных структур в невозбужденном состоянии использовались обычные элементарные ячейки и 10000 к-векторов в первой зоне Бриллюэна. Для расчетов электронной структуры в возбужденном состоянии, которое необходимо для корректного описания спектров XANES, использовалась суперьячейка и 200 к-векторов в первой зоне Бриллюэна. Параметр $r_{mt}k_{max}$, определяющий число базисных функций, брался равным 6, где r_{mt} — наименьший из радиусов muffin-tin сфер, k_{max} — граница обрыва присоединенных волн. Цикл самосогласования выполняются до тех пор, пока изменение полной энергии между двумя последовательными итерациями не станет достаточно малой величиной.

3. Детали расчета

Дисилицид железа существует в двух фазах: низкотемпературной (лоубусаит) и высокотемпературной (линжиит) [28]. При атмосферном давлении лоубусаит стабилен до 1243 К. При повышении температуры лоубусаит по перитектоидной реакции с силицидом железа начинают образовывать линжиит (α -Fe_{0.92}Si₂), который является стабильным до температуры плавления, которая составляет 1489 К. При понижении температуры линжиита до 1188 К начинается эвтектоидный распад на кремний и лоубусаит (β -FeSi₂) [28].

Г.П. Потуданский, С.И. Курганский

Таблица 1. Координаты атомов α -FeSi₂ [29]

Атом	X/a	Y/b	Z/c
Si	1/2	1/2	0.2700
Si	1/2	1/2	0.7300
Fe	0	0	0

Таблица 2. Координаты атомов β -FeSi₂ [31]

Атом	X/a	Y/b	Z/c
Si1	0.1282	0.2746	0.0512
Si1	0.8718	0.7254	0.9488
Si1	0.1282	0.7746	0.4488
Si1	0.8718	0.2254	0.5512
Si1	0.8718	0.2746	0.0512
Si1	0.1282	0.7254	0.9488
Si1	0.8718	0.7746	0.4488
Si1	0.1282	0.2254	0.5512
Si ₂	0.1273	0.0450	0.2739
Si ₂	0.8727	0.9550	0.7261
Si ₂	0.1273	0.5450	0.2261
Si ₂	0.8727	0.4550	0.7739
Si ₂	0.8727	0.0450	0.2739
Si ₂	0.1273	0.9550	0.7261
Si ₂	0.8727	0.5450	0.2261
Si ₂	0.1273	0.4550	0.7739
Fe1	0.2146	0	0
Fe1	0.7854	0	0
Fe1	0.2146	0.5	0.5
Fe1	0.7854	0.5	0.5
Fe2	0	0.3086	0.3149
Fe2	0	0.6914	0.6851
Fe2	0	0.8086	0.1851
Fe2	0	0.1914	0.8149

Линжиит (α -FeSi₂ или α -Fe_{0.92}Si₂) — металл, принадлежит к тетрагональной сингонии, имеет пространственную группу симметрии $123_P4/mmm$ и элементарную ячейку с параметрами a = 2.6840 Å, b = 2.6840 Å, c = 5.1280 Å, которая содержит 1 формульную единицу. Координаты атомов в элементарной ячейке приведены в табл. 1 [29]. У этой фазы есть другое название — α -лебоит [30]. Некоторые исследователи эту фазу называют ξ -FeSi₂ [28].

Лоубусаит (β -FeSi₂) — полупроводник, принадлежит к орторомбической сингонии, имеет пространственную группу симметрии 64_*Стса*, элементарную ячейку с параметрами a = 9.8789 Å, b = 7.8038 Å, c = 7.4808 Å, которая содержит 8 формульных единиц. Координаты атомов элементарной ячейки приведены в табл. 2 [31].

Экспериментальное исследование энергетического строения выше уровня Ферми может осуществляться с помощью XANES-спектроскопии. Для моделирования XANES-спектров необходимо выполнять зонный расчет для структуры в возбужденном состоянии [32]. Для перевода структуры в возбужденное состояние создается

Рис. 1. Элементарная тетрагональная примитивная ячейка решетки Бравэ α-FeSi₂ и первая зона Бриллюэна α-FeSi₂ [34]. Красной линией обозначен путь обхода неприводимой части зоны Бриллюэна при расчете зонной структуры.

Рис. 2. Элементарная ромбическая базоцентрированная ячейка решетки Бравэ β -FeSi₂ и первая зона Бриллюэна β -FeSi₂ [34]. Красной линией обозначен путь обхода неприводимой части зоны Бриллюэна при расчете зонной структуры.

остовная дырка и добавляется один электрона в зону проводимости для сохранения электронейтральности. Для исключения взаимодействия соседних возбужденных атомов создается суперьячейка, с объемом, большим, чем элементарная ячейка. Размер суперьячейки подбирается таким образом, чтобы расчеты при двух последовательных увеличениях суперьячейки совпадали между собой. Для вычисления *K*-края XANES остовная дырка создавалась на 1*s*-уровне, согласно механизму измерения *K*-края XANES, где остовные электроны, поглощая пучок высокоэнергетических фотонов, выбиваются с 1*s*-уровня.

На рис. 1,2 приведены структуры α -FeSi₂ и β -FeSi₂ и их первые зоны Бриллюэна соответственно. Визуализация структур осуществлялась с помощью программы XCrySDen [33].

4. Результаты и их обсуждение

4.1. Зонная структура

Спектры полной и локальных парциальных плотностей электронных состояний, полученных на основе зонного расчета для невозбужденного состояния α -FeSi₂ и β -FeSi₂ представлены на рис. 3,4 соответственно. Ширина валентной зоны *α*-FeSi₂, минимум которой приходится на точку Г, составила 14.00 eV. Магнитный момент у *α*-FeSi₂ отсутствует, что согласуется с результатами ранее выполненного нами расчета [35]. Расчетная ширина запрещенной зоны для непрямых переходов β-FeSi₂ составила 0.78 eV, для прямых — 0.83 eV, что с точностью до сотых соответствует приведенным в табл. 3 экспериментальным значениям [36,37] и означает, что полупроводник является непрямозонным [38]. Рассчитанная нами ширина валентной зоны β -FeSi₂ составила 13.41 eV, а ее минимум находится в центре (точка Г) первой зоны Бриллюэна. Минимум зоны проводимости находится в направлении Z-Г, а максимум валентной зоны находится в точке У, что совпадает с результатами работ [13,16].

Рис. 4. *a* — зонная структура β-FeSi₂ в широком энергетическом интервале. *b* — зонная структура β-FeSi₂ вблизи уровня Ферми.

Источник	Непрямая (eV)	Прямая (eV)	Температура (K)
Настоящая работа	0.78	0.83	_
[36]	0.84	0.89	10
[36]	0.83	0.90	80
[37]	0.78	0.84	Комнатная
[37]	0.86	0.875	77

Таблица 3. Ширина запрещенной зоны β -FeSi₂

4.2. Плотность электронных состояний (ПЭС)

На рис. 5, 6 приведены спектры полных и локальных парциальных ПЭС, полученных на основе зонного расчета для невозбужденных состояний α -FeSi₂ и β -FeSi₂ соответственно.

Анализ парциальных ПЭС α -FeSi₂ показывает, что основной вклад в прифермиевской области дают d-состояния железа, локализованные в интервале от -6 до 4 eV относительно уровня Ферми, в то время как *s*-и *p*-состояния кремния преимущественно локализованы в диапазонах 5–13 eV и 1.5–7 eV ниже уровня Ферми. На самом же уровне Ферми образовался минимум как d-состояний железа, так и *s*- и *p*-состояний кремния,

что свидетельствует о том, что данная структура может являться стабильной.

Распределение парциальных ПЭС β -FeSi₂ показывает, что вклад *s*- и *p*-состояний как железа, так и кремния в полную ПЭС прифермиевской области мал, в то время как вклад в валентную зону вносят *d*-состояния железа, локализованные в области 0–5 eV ниже уровня Ферми и максимум плотности этих состояний приходится примерно на 1.5 eV ниже уровня Ферми, а вклад *d*-состояний зоны проводимости локализован начиная с 0.8 eV выше уровня Ферми и имеет максимум примерно на 1.5 eV выше уровня Ферми. Распределения *s*- и *p*-состояний кремния по валентной зоне можно охарактеризовать следующим образом: наибольшая плотность *s*-состояний сосредоточена в районе 5–13 eV ниже уровня Ферми, а *p*-состояний — в области 0–7 eV ниже уровня Ферми.

4.3. Осциллирующая тонкая структура края рентгеновского поглощения

Необходимость в моделировании XANES-спектров обусловлен их возможностью отражать распределение плотности состояний, вносящих вклад в формирование зоны проводимости. Согласно дипольным правилам от-

Рис. 5. Полные и парциальные ПЭС α-FeSi₂.

Рис. 6. Полные и парциальные ПЭС β -FeSi₂.

бора, плотность *p*-состояний отражается в экспериментальном *K*-спектре поглощения. Нами был рассчитан указанный спектр, при моделировании которого был использован универсальный функционал PBE-GGA, поскольку он позволяет получать надежные результаты как для металлов, так и для полупроводников при расчете XANES-спектров [39–41].

На рис. 7 приведено сравнение зарегистрированного экспериментально *К*-края поглощения XANES для полупроводниковой фазы (β -FeSi₂_exp) [42], смоделированного в методических целях спектра для этой фазы с очень большим (β -FeSi₂_calc(br)) и малым (β -FeSi₂_calc) размытием и смоделированного спектра для высокотемпературной металлической фазы (α -FeSi₂_calc). Всем спектрам сопоставлены в сравнение парциальные *p*-состояния ПЭС железа в возбужденном состоянии в зоне проводимости указанных фаз, для которых экспериментально измеренный уровень Ферми

составил ~ 7110 eV. Край поглощения полупроводника находится при энергии ~ 7110 eV, за ним следует плечо с точкой перегиба ~ 7114 eV, за которым следует локальный максимум при энергии ~ 7118 eV. Двойной главный максимум, полученный в расчете, в эксперименте не разрешился, что обусловлено недостаточной разрешающей способностью измерительного прибора, что мы наглядно показываем, приведя расчетный спектр с очень большим размытием. Отличия металлической фазы от полупроводниковой оказались следующими: край поглощения и плечо сдвигаются к уровню Ферми на ~ 1 eV, а также происходит заметное перераспределение интенсивностей двух локальных максимумов при энергиях ~ 7146 и ~ 7150 eV, которые

также сдвигаются к уровню Ферми на ~1 eV. Сдвиг

края поглощения металлической фазы является вполне

ожидаемым явлением, поскольку является следствием

отсутствия запрещенной зоны у металлов. Сдвиг ло-

кальных максимумов, находящихся за главным максиму-

тва ства согл 7110 7120 7130 7140 7150 7160 Епегду, eV

Рис. 7. Сравнение экспериментального и теоретических XANES *K*-спектров (сверху) FeSi₂ и плотностей *p*-состояний железа (снизу) FeSi₂.

мом, обусловлен различием группы симметрии между двумя фазами, поскольку при таких высоких энергиях мы имеем дело с другим механизмом рассеяния — EXAFS (расширенная тонкая структура рентгеновского поглощения), где главный вклад в поглощение дает однократное рассеяние фотоэлектрона [43,44].

5. Заключение

В работе представлены результаты теоретического моделирования электронной структуры полупроводниковой и металлической фаз $FeSi_2$ в широкой энергетической области, включающей валентную зону и зону проводимости. При этом наблюдается хорошее согласие между рассчитанными спектрами и спектрами, полученными экспериментальным путем. Форму XANES *K*-края железа для обеих фаз можно считать надежно установленной. Полученные в данной работе результаты будут использованы для дальнейших исследований MHC, состоящей из слоев магнитных переходных металлов $Co_{45}Fe_{45}Zr_{10}$, разделенных немагнитными прослойками, состоящими из SiO₂ и *a*-Si.

Финансирование работы

Исследование выполнено при поддержке Министерства науки и высшего образования России в рамках соглашения № 075-15-2021-1351.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- B.B. Устинов, В.Б. Бетелин, Е.Е. Тыртышников, К.В. Рудаков. Вестн. РАН 89, 4, 381 (2019).
- [2] S.K. Pandey. Int. J. Sci. Studies 6, 2, 23 (2018).
- [3] C.Y. Yang, S.M. Yang, Y.Y. Chen, K.C. Lu. Nanoscale Res. Lett. 15, 1, 1 (2020)
- [4] G. Hamaoui, N. Horny, Z. Hua, T. Zhu, J.-F. Robillard, A. Fleming, H. Ban, M. Chirtoc. Sci. Rep. 8, 1, 1 (2018).
- [5] J. Kalt, M. Sternik, B. Krause, I. Sergueev, M. Mikolasek, D. Bessas, O. Sikora, T. Vitova, J. Göttlicher, R. Steininger, P.T. Jochym, A. Ptok, O. Leupold, H.-C. Wille, A.I. Chumakov, P. Piekarz, K. Parlinski, T. Baumbach, S. Stankov. Phys. Rev. B 101, 16, 165406 (2020).
- [6] S. Liang, R. Islam, D.J. Smith, P.A. Bennett. J. Cryst. Growth 295, 2, 166 (2006).
- [7] J. Kalt, M. Sternik, I. Sergueev, J. Herfort, B. Jenichen, H.-C. Wille, O. Sikora, P. Piekarz, K. Parlinski, T. Baumbach, S. Stankov. Phys. Rev. B 98, 12, 121409 (2018).
- [8] Э.П. Домашевская, А.А. Гуда, А.В. Чернышев, В.Г. Ситников. ФТТ 59, 2, 373 (2017).
- [9] C. Blaauw, F. van der Woude, G.A. Sawatzky. J. Physics C 6, 14, 2371 (1973).
- [10] R. Girlanda, E. Piparo, A. Balzarotti. J. Appl. Phys. 76, 5, 2837 (1994).

XANES. arb. units

0

Fe K-edge

β-FeSi₂ exp

β-FeSi₂ calc

 α -FeSi₂ cal

 β -FeSi₂ calc (br)

- [11] I. Sandalov, N. Zamkova, V. Zhandun, I. Tarasov, S. Varnakov, I. Yakovlev, L. Solovyov, S. Ovchinnikov. Phys. Rev. B 92, 20, 205129 (2015).
- [12] S. Eisebitt, J.-E. Rubensson, M. Nicodemus, T. Böske, S. Blügel, W. Eberhardt, K. Radermacher, S. Mantl, G. Bihlmayer. Phys. Rev. B 50, 24, 18330 (1994).
- [13] S.J. Clark, H.M. Al-Allak, S. Brand, R.A. Abram. Phys. Rev. B 58, 16, 10389 (1998).
- [14] H. Lange. Thin Solid Films 381, 2, 171 (2001).
- [15] L.P. Peng, A.L. He. Mod. Numer. Simulat. Mater. Sci. 3, 01, 13 (2013).
- [16] T. Pandey, D.J. Singh, D. Parker, A.K. Singh. J. Appl. Phys. 114, 15, 153704 (2013).
- [17] Q.L. Qiu, J.J. Yuan, H.J. Cao, Y.Y. Zhu. 3rd Int. Conf. Material, Mechanical and Manufacturing Engineering (IC3ME 2015). Atlantis Press (2015). P. 1560.
- [18] Materials Project. https://materialsproject.org/materials/mp-1714
- [19] Materials Project. https://materialsproject.org/materials/mp-20738
- [20] A.A. Guda, S.A. Guda, A. Martini, A.N. Kravtsova, A. Algasov, A. Bugaev, S.P. Kubrin, L.V. Guda, P. Šot, J.A. van Bokhoven, C. Copéret, A.V. Soldatov. npj Comput. Mater. 7, 1, 1 (2021)
- [21] K. Schwarz, P. Blaha, G.K.H. Madsen. Comp. Phys. Commun. 147, 1–2, 71 (2002).
- [22] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K. Madsen, L.D. Marks. J. Chem. Phys. **152**, *7*, 014101 (2020).
- [23] P. Blaha, D.J. Singh, P.I. Sorantin, K. Schwarz. Phys. Rev. B 46, 3, 1321 (1992).
- [24] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 18, 3865 (1996).
- [25] G.P. Potudanskii, S.I. Kurganskii, E.P. Domashevskaya. Mater. Res. Exp. 6, 11, 1150g9 (2019).
- [26] F. Tran, P. Blaha. Phys. Rev. Lett. 102, 22, 226401 (2009).
- [27] I. Khan, I. Ahmad, H.R. Rahnamaye Aliabad, M. Maqbool. Mater. Today: Proceeding 2, 10, 5122 (2015).
- [28] F. Margarido, M.O. Figueiredo. Mater. Sci. Eng. A 104, 249 (1988).
- [29] F. Weitzer, J.C. Schuster. J. Solid State Chem. 70, 2, 178 (1987).
- [30] F.A. Sidorenko, P.V. Gel'd, L.B. Dubrovskayo. Refract. Trans. Met. Comp. 178 (1964).
- [31] B.A. Aronsson. Acta Chem. Scandinavica 14, 6, 1414 (1960).
- [32] M.D. Manyakin, S.I. Kurganskii, O.I. Dubrovskii, O.A. Chuvenkova, E.P. Domashevskaya, S.V. Ryabtsev, R. Ovsyannikov, E.V. Parinova, V. Sivakov, S.Yu. Turishchev. Mater. Sci. Semicond. Proc. 99, 28 (2019).
- [33] A. Kokalj. J. Mol. Graph. Mod. 17, 3–4, 176 (1999).
- [34] W. Setyawan, S. Curtarolo. Computat. Mater. Sci. 49, 2, 299 (2010).
- [35] С.И. Курганский, Н.С. Переславцева. ФТТ **44**, *4*, 678 (2002).
- [36] Giannini, S. Lagomarsino, F. Scarinci, P. Castrucci. Phys. Rev. B 45, 15, 8822 (1992).
- [37] K. Radermacher, O. Skeide, R. Carius, J. Klomfaß, S. Manti. MRS Online Proc. Library Archive 320, 115 (1993).
- [38] H. Lange, 5th Int. Conf. on Solid-State and Integrated Circuit Technology. Proceedings (Cat. No. 98EX105). Beijing, IEEE (1998). P. 247.

- [39] F.F.H. Aragón, L. Villegas-Lelovsky, L. Cabral, M.P. Lima, A. Mesquita, J.A.H. Coaquira. Nanoscale Adv. 3, 5, 1484 (2021).
- [40] A. Fernandez-Pañella, T. Ogitsu, K. Engelhorn, A.A. Correa, B. Barbrel, S. Hamel, D.G. Prendergast, D. Pemmaraju, M.A. Beckwith, L.J. Bae, J.W. Lee, B.I. Cho, P.A. Heimann, R.W. Falcone, Y. Ping. Phys. Rev. B 101, 18, 184309 (2020).
- [41] G.B. Grad, E.R. González, J. Torres Díaz, E.V. Bonzi. J. Mater. Sci. Res. Rev. 1, 3, 1 (2018).
- [42] B. Khanbabaee, B. Arezki, A. Biermanns, M. Cornejo, D. Hirsch, D. Lützenkirchen-Hecht, F. Frost, U. Pietsch. Thin Solid Films 527, 349 (2013).
- [43] I. Akai, K. Iwamitsu, Y. Igarashi, M. Okada, H. Setoyama, T. Okajima, Y. Hirai. J. Phys. Soc. Jpn. 87, 7, 074003 (2018).
- [44] Е.В. Храмов, В.В. Привезенцев, А.Н. Палагушкин. Поверхность. Рентгеновские, синхротронные и нейтронные исследования 11, 24 (2020).

Редактор К.В. Емцев