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A critical analysis of the conditions of elastic stability of crystal structures of different symmetry as restrictions

imposed on their elastic constants c i j has been carried out. It is shown that the conditions of elastic stability of

all crystals, except for cubic ones, are described by polynomials from the second to sixth powers of their elastic

constants c i j . Necessary and sufficient conditions for the elastic stability of crystals of different symmetry are

presented explicitly.
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1. Introduction

To study elastic properties of the crystal materials is

a priority task in the solid-state physics. Along with

experimental studies, the last two decades have witnessed

distribution ab initio of calculations of elastic constants and

modules of solid-phase compounds with a various structure

by using the density functional theory.

The electron structure and elastic properties of simu-

lated crystal compounds are calculated by a full-potential

linearized augmented-plane-wave method including a local-

orbital method (FP-LAPW+ lo) [1,2], which are based on

the density functional theory (DFT).

Recently, theoretical methods have been intensely develo-

ped to simulate possible structures of compounds and their

mechanical properties depending on the composition and to

find structures to be favorable in terms of energy. Quite

reliable results can be obtained by means of an evolution

prediction algorithm of crystal structures as implemented in

the USPEX software [3–5].

The energy of the crystal compounds simulated by

means of the evolution algorithm is calculated withing the

density functional theory [6] using the PBE version [7] in

the Generalized Gradient Approximation (GGA)) and the

Projector-Augmented Wave method (PAW)) [8], as imple-

mented in the VASP code (Vienna Ab initio Simulation

Package) [9,10].

There are hundreds of original studies in the literature,

which are devoted to evaluate the elastic properties of a

variety of crystal substances.

The structure and elastic properties of osmium nitride

OsN2 with cubic and rhombic lattices, ultra-hard iridium

nitrides IrN2 and IrN3 with cubic, hexagonal, tetragonal,

monoclinic and several rhombic structures, platinum nitride

PtN with structures of a zinc-blende type, rhombic and

cubic structures were studied in the papers [11–13]. The

structure and mechanical stability of the elastic properties

of niobium nitrides NbN with the NaCl and CsCl cubic

structures and the hexagonal δ- and ε-structures as well as

of tetragonal and cubic modifications of boron nitride are

discussed in the papers [14,15].

Tetragonal, orthorhombic and monoclinic phases of silver

azide AgN3 are discussed in terms of their elastic properties

and mechanical stability in the paper [16], which shows

significant difference in their stability and usability of the

orthorhombic modification of the silver azide in the solid-

state reaction of explosion decomposition. The elastic prop-

erties and mechanical stability of the cubic, orthorhombic

and monoclinic chlorates and perchlorates NaClO3, KClO3,

LiClO4, NaClO4, KClO4 are studied in the paper [17].

The structure and mechanical properties of the or-

thorhombic and trigonal phases CaB2H2, the orthorhombic

and monoclinic polymorphs Li2FeSiO4, which can be

alternative cathode materials, are discussed in the papers

of Vajeeston et al. [18,19]. The ab initio calculations

of the mechanical properties of the organic& inorganic

hybrid perovskites CH3NH3BX3 (B = Sn, Pb; X = Br, I)
with cubic, tetragonal and orthorhombic structures are

carried out within the density functional theory in

the paper [20]. The elastic properties and mechani-

cal stability of the semiconductor cubic solid solutions

InxAl1−xAsySb1−y are studied in the paper [21], while the

paper [22] discusses the mechanical stability of gypsum

CaSO4 · 2H2O.

Methods of calculation of the elastic stiffness and me-

chanical stability constants can be applied not only to

the solid-phase crystal compounds, but to fullerites and

materials based thereon [23–25].

Structures of numerous carbide phases MnCm

(M = Zr, Hf,Nb, Ta) [26–32] were predicted and calculated

5∗ 659



660 A.I. Gusev, S.I. Sadovnikov

by means of theoretical methods of analysis of the electron

and crystal structure.

The persistence of the crystal structure is importantly

characterized by an elastic (mechanical) stability, whose

criteria are defined by the elastic constants. The conditions

of the mechanical stability (persistence) of the crystal struc-

tures are usually worded as requirements to the elastic stabil-

ity of the crystal lattices and depend on their symmetry [33].
Criteria of the Born elastic stability are well known for

cubic crystals, and the monograph [33] explicitly provides

the stability criteria of cubic, hexagonal, tetragonal and

trigonal crystals. However, for crystals with lower symmetry

(especially, rhombic and monoclinic ones), the conditions of
the mechanical persistence are defined inexactly and even

erroneously (see, for example, the paper [12]). Derivation

of necessary and sufficient conditions of the elastic stability

of the crystals is a nontrivial and quite difficult task. That is

why many authors just cite wrong stability conditions from

the paper [12] and use them. In connection therewith, with

no sophisticated mathematical derivation, the present paper

provides necessary and sufficient conditions of the elastic

stability of crystals of a various symmetry.

2. Results and discussion

Depending on the crystal symmetry, there are 7 quali-

tatively different matrices of the elastic constants, which

differ in a number of independent non-zero variables c i j and

correspond to the seven crystal systems [33]. The paper [34]
discusses 9 qualitatively different matrices (two matrices

each, with a different number of non-zero variables c i j for

tetragonal and trigonal crystals with a different point sym-

metry). However, Fedorov showed in the monograph [33]
that for correct selection of orientation of the coordinate

system for all the seven point crystal symmetry groups

of the tetragonal system there is one matrix of the elastic

constants; for the trigonal crystals with five point symmetry

groups there is also one matrix of the elastic constants.

The elastic behavior of the lattice is described by the

matrix of the elastic constants of the second order:

c i j =
1

V0

(

∂2E
∂εi∂ε j

)

, (1)

where E and V0 — energy of the elastic deformation of the

crystal and its equilibrium volume, ε — deformation. In the

general case, the matrix (C) of the elastic stiffness constants

has a size of 6× 6, is a symmetrical one and can include

21 independent elastic constants c i j .

The energy of elastic deformation referred to a crystal

volume unit, for arbitrary infinitely small deformation is

determined in [33,35,36] as

E/V ∼
1

2

6
∑

i, j=1

c i jεiε j . (2)

The matrix (C) of the elastic stiffness constants of low-

symmetry crystals of a triclinic system includes the biggest

number of the independent non-zero elastic constants —
21 (c11, c12, c13, c14, c15, c16, c22, c23, c24, c25, c26, c33,

c34, c35, c36, c44, c45, c46, c55, c56 and c66) and takes the

following form:

(C)tricl =





















c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c54 c55 c56

c16 c26 c36 c46 c56 c66





















. (3)

The matrix (S) of elastic compliance constants is correlated

to the matrix (C) in a simple relationship (S)−1 = (C) or

(C)(S) = 1. Taking this into account, the matrix (S) of the

elastic compliance constants has the same size of 6× 6 and

includes 21 independent elastic constants s i j . For crystals

with the symmetry higher than the triclinic one, a part of

the constants c i j or s i j goes to 0.

As per the studies [35–37], the crystal is stable if and

only if the energy of the elastic deformation is positive, i.e.

above zero for all the actual values εI and ε j , if only all εI

and ε j are nonzero. It imposes additional limitations on the

constants c i j and s i j .

The mechanical stability of the crystal of an arbitrary

symmetry has a necessary condition for it, which is not

a sufficient one: all diagonal elements of the matrix of the

elastic stiffness constants are to be positive, i.e.

c ii > 0 (i = 1−6). (4)

The sufficient conditions of the mechanical stability are

fulfilled if all the own values of the matrix (C) of the elastic

stiffness constants are positive. In order to determine own

values of a square matrix C, a characteristic matrix C−λE
is used, where E — a unit matrix, λ — some unknown

variable [38,39]. A polynom |C−λE| is a characteristic

polynom of the matrix C, and its roots are characteristic

roots, i.e. are own values of the matrix C .

The elastic matrix of the cubic crystals includes only

3 independent elastic constants c11, c12 and c44:

(C)cub =





















c11 c12 c12

c12 c11 c12

c12 c12 c11

c44

c44

c44





















. (5)

For the cubic crystals, the constants c11, c12 and c44 are

positive. The mechanical stability conditions of the cubic

crystals determined in the papers [40,41] are known as the
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Born stability criteria:

c11 > c12, c44 > 0, c11 + 2c12 > 0. (6)

The cubic system is the only one, for which the mechanical

stability conditions are linear.

The elastic matrix of the hexagonal crystals includes the

5 independent elastic constants c11, c12, c13, c33, c44:

(C)hex =





















c11 c12 c13

c12 c11 c13

c13 c13 c33

c44

c44

(c11 − c12)/2





















.

(7)

The necessary and sufficient conditions of the elastic

stability of the hexagonal crystals take the following form:

c11 > |c12|, c44 > 0, (c11 + c12)c33 > 2c2
13. (8)

The necessary and sufficient conditions of the elastic

stability of the low-symmetry (tetragonal, trigonal (rhombo-

hedral), orthorhombic and monoclinic) crystals have been

earlier discussed in the papers [12,34].

The matrix of the elastic stiffness constants of the tetrag-

onal crystals depends on the 6 independent constants c11,

c12, c13, c33, c44 and c66:

(C)tetr =





















c11 c12 c13

c12 c11 c13

c13 c13 c33

c44

c44

c66





















. (9)

The mechanical stability conditions of the tetragonal crystals

take the following form:

c11 > |c12|, c44 > 0, c66 > 0, (c11 + c12)c33 > 2c2
13.

(10)

The mechanical stability criteria (10) of the tetragonal

crystals contain the quadratic polynoms from c i j , but in

the papers [12,13,15] the mechanical stability conditions of

the tetragonal phases are represented in an erroneous linear

form as

c ii > 0, (c11 − c12) > 0, (c11 + c33 − 2c13) > 0,

(2c11 + 2c12 + c33 + 4c13) > 0. (11)

The trigonal (rhombohedral) crystals have 6 independent

elastic constants c11, c12, c13, c14, c33, c44:

(C)trig =





















c11 c12 c13 c14

c12 c11 c13 −c14

c13 c13 c33

c14 −c14 c44

c44 c14

c14 (c11 − c12)/2





















.

(12)

Their mechanical stability conditions take the following

form:

c11 > |c12|, c44 > 0, (c11 + c12)c33 > 2c2
13,

(c11 − c12)c44 > 2c2
14. (13)

The elastic stiffness matrix of the orthorhombic crystals

includes 9 independent constants c11, c12, c13, c22, c23, c33,

c44, c55 and c66:

(C)orthorh =





















c11 c12 c13

c12 c22 c23

c13 c23 c33

c44

c55

c66





















. (14)

The paper [34] has shown that taking into account

the condition c ii > 0 (i = 1−6) (4), the necessary and

sufficient conditions of the mechanical stability of the

rhombic crystals include quadratic and cubic polynoms and

take the following form:

c11 > 0, c44 > 0, c55 > 0, c66 > 0, c11c22 > c2
12,

c11c12c33 + 2c12c13c23− c11c2
23− c22c2

13 − c33c2
12 > 0

}

.

(15)

The nonlinear conditions (15) are fundamentally different

from the linear conditions:

c ii > 0, c ii + c j j − 2c i j > 0,

c11 + c22 + c33 + 2(c12 + c13 + c23) > 0, (16)

proposed by the authors of the paper [11] and repeated

in the paper [12]. Note that the stability conditions of

the rhombic crystals used in the papers [11,12], are, in

the best case scenario, only necessary, but not sufficient.

The erroneous linear conditions (16) seem to have been

obtained as a result of incorrect generalization of the cubic

criteria (6) to other orthogonal (tetragonal and rhombic)
crystals. Evaluation of the mechanical stability of the

rhombic crystals by means of the linear conditions (16) can

lead to erroneous conclusions.

In particular, the erroneous linear conditions (16)
have been used to evaluate the mechanical stability
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of such orthorhombic phases as platinum nitride PtN

(sp. gr. Fddd) [13], silver azide AgN3 (sp. gr. Ibam) [16],
perchlorates of alkali metals (sp. gr. Pnma , Cmcm) [17],
calcium borohydride CaB2H2 (sp. gr. Cmc21) [18], complex-

replaced lithium silicate Li2FeSiO4 (sp. gr. Pmn21, Pna21,
Pnma) [19], zirconium carbide Zr3C2 (sp. gr. Fddd) [29].
The wrong conditions of the mechanical stability for

the crystals with the symmetry below the cubic one are

often given in papers of various authors. The wrong linear

conditions (11) of the mechanical stability of the tetragonal

system’s crystals are given in the paper [12], but for

the tetragonal crystals the stability conditions (10) include

the quadratic polynoms from c i j . The same erroneous

linear polynoms are used to write the mechanical stability

conditions for the tetragonal (sp. gr. P42/mmc) platinum

nitride PtN [13] and for the tetragonal (sp. gr. I 4̄2d) crystals
of boron nitride BN [15]. The wrong stability criteria are

given in the paper [14] for the hexagonal niobium nitride.

The paper [42] does not take into account the limitations

c11 > |c12| for the mechanical stability conditions of the

trigonal crystals.

The crystals of the monoclinic systems are described by

elastic matrices having 13 independent elastic constants c11,

c12, c13, c15, c22, c23, c25, c33, c35, c44, c46, c55 and c66:

(C)mon =





















c11 c12 c13 c15

c12 c22 c23 c25

c13 c23 c33 c35

c44 c46

c15 c25 c35 c55

c46 c66





















. (17)

The monoclinic phases are mechanically stable, if their

elastic constants c ii meet the following inequalities, which

include together with the linear polynoms, polynoms of the

second, third and fourth degrees

c ii > 0(i = 1−6), c22 + c33 > 2c23,

c11 + c22 + c33 > 2(c12 + c13 + c23), (18a)

c33c55 > c2
35, c44c66 > c2

46,

c22c33c55 + 2c23c25c35 > c22c
2
35 + c55c

2
23 + c33c

2
25,

(18b)
2
[

c15c25(c33c12 − c13c23) + c15c35(c22c13 − c12c23)

+ c25c35(c11c23 − c12c13)
]

> c2
15(c22c33 − c2

23)

+ c2
25(c11c33 − c2

13) + c2
35(c11c22 − c2

12) + pc55,

(18c)
where p=c11c22c33−c11c2

23−c22c2
13−c33c2

12+2c12c13c23.

The mechanical stability conditions of the crystals of

the cubic and hexagonal systems are determined in the

Born papers [40,41], and the Fedorov monograph [33]
additionally obtains the mechanical stability conditions of

the tetragonal and trigonal crystals. The stability conditions

of the high- and low-symmetry crystals are also described

in the paper [12], but wrong conditions are given for the

tetragonal and orthorhombic crystals. The authors [34]
have discussed an excess number of the matrices of the

elastic constants for the tetragonal and trigonal crystals and

have not provided the stability criteria of the monoclinic

crystals. In the present study we have analyzed the known

mechanical stability conditions, marking and excluding the

erroneous conditions, for some crystal systems we have

calculated correct stability conditions and for the first time

we have collected the mechanical stability criteria of the

crystal systems from the cubic to monoclinic one.

3. Conclusion

Thus, we have described the elastic stability conditions

of the crystals with the various symmetry as limitations

imposed on their elastic constants c i j . These conditions are

described by the linear polynoms of the elastic constants

for the cubic crystals and combinations of the linear and

quadratic polynoms for the hexagonal, tetragonal and trigo-

nal (rhombohedral) crystals. The elastic stability conditions

of the orthorhombic crystals include linear, quadratic and

cubic polynoms. The mechanical stability criteria of the

monoclinic and triclinic crystals additionally include the

polynoms of the fourth and sixth order, respectively.
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