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Resonant dynamics of the magnetization of uniaxial nanoparticle
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Analysis of equilibrium conditions was carried out and resonant precessional dynamics of magnetization of a

single-domain magnetically uniaxial ellipsoidal particle. Considered the case when magnetic field is along the

easy magnetization axis. the easy magnetization axis is directed parallel to the axis of symmetry of the ellipsoid

and transverse to pumping by a weak high-frequency field. Features of the behavior of the magnetization were

discovered. It has been revealed that the magnetization has features of resonant behavior: large resonant precession

angles with amplitude 0.5M0 , elliptical deviations of the precession trajectory from circular at a negative value

of the effective anisotropy field, and the presence of a frequency region with nonlinear precession for an oblate

nanoparticle.

Keywords: ferromagnetic resonance, elliptical nanoparticles, transverse bias field, effective anisotropy, bistability,

easy magnetization axis, nonlinear effects.

DOI: 10.21883/PSS.2022.06.53825.279

1. Introduction

It is known that recording of data on lattice structures

of magnetic nanoparticles (NP) is based on changing an

equilibrium configuration of magnetic moments of indivi-

dual nanoparticles due to impact of a local magnetic field

pulse. In doing so, data reading can be implemented by

exciting the configuration occurred by a weak radio pulse

at a frequency of ferromagnetic resonance (FMR) [1–5].
In connection therewith, significant interest is paid to

understanding fundamental behavior of a spin subsystem

in an external static and high-frequency magnetic field

in the nanoparticle, with the complex configuration of

internal fields including exchange, dipole-dipole and mag-

netostatic fields, a crystalline anisotropy field. At this,

many FMR features are defined by geometric factors —
a size of the nanoelements, a shape and a ratio of

their sides, spatial arrangement in the structure [6–9].
Thus, many studies in this field are focused on studies

of FMR in thin-film elliptical and rectangular microstrips

of a nanometer thickness, which are regarded as one

of the main geometric elements for data recording and

processing. At this, besides a main
”
homogeneous“ FMR

mode, the experiment also showed an evident resonance

peak depending on the thickness, which is correlated

to heterogeneity of the internal field and, therefore, of

distribution of the magnetization at angles and edges of the

microstrips [10,11].

In order to interpret results to be obtained therein, it

is also necessary to take into account that a position

of the FMR line and its form substantially depend not

only on the configuration of the structure itself, but on

the size and symmetry, a magnetization equilibrium state,

a type and value of magnetic anisotropy of individual

nanoparticles. At the same time, the heterogeneity of

the internal magnetostatic field near microstrip boundaries

leads to localized edge modes in the resonance spec-

trum [12–17].

Special properties of 3D single-domain nanoparticles

affecting their dynamic characteristics may also include

bistability due to equilibrium orientation states with unequal

projections of the magnetic moment, which are mutu-

ally translatable in controllable transitions with different

precession modes during remagnetization [18–20]. In

order to understand the impact of the bistability on FMR,

a remagnetization type and dynamics of the magnetic

moment in the lattice structure, it is necessary to take

into account the above-mentioned factors in a mathematical

model describing the said phenomena in an individual

nanoparticle.

Based on analysis of the equilibrium conditions, the

present paper gets equilibrium states for a single-domain

magnetically uniaxial ellipsoidal nanoparticle when an

”
easy“ axis and a bias field are oriented along the axis

of symmetry and various values of a form factor n
(nonsphericity). Numerical solution of the Landau−Lifshitz

equation for a region of collinear direction of mag-

netization and the external static field is based on

to study features of the resonance dynamics when

the weak transversal high-frequency field is switched

on. Even for a slightly oblate nanoparticle at spec-

ified material parameters, a frequency range has been

revealed to implement the dynamic bistability and observe

FMR nonlinearity and a nutation type of the resonance

precession.
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2. General relationships

Let us consider a sample shaped as an ellipsoid of

revolution. We assume that, besides the shape anisotropy,

the sample has uniaxial anisotropy, which easy axis is

coincident with the symmetry axis of the sample. In

this case the free-energy density contains Zeeman energy,

anisotropy energy, and energy of scattering fields [21,22]:

F = −M(H + h) − Ku

M2
(Mn)2 +

1

2
MN̂M. (1)

Here M — NP magnetization, H and h — a static and high-

frequency field, Ku — a uniaxial anisotropy constant, n —
an anisotropy axis unit vector, N̂ — a diagonal tensor of

demagnetization factors, whose components are correlated

in a relationship Nx + Ny + Nz = 4π and depend on the

form factor — a longitudinal-to-transversal semiaxis ratio

of the ellipsoid n = l‖/l⊥. It is convenient to introduce

the following parameters for the ellipsoid of revolution

N⊥ = Nx = Ny , N‖ = Nz and 1N = N⊥ − N‖ . Then, for

an oblong and oblate ellipsoid 1N is determined by the

expressions:

1N
2π

= 1− 3

n2 − 1

[

n√
n2 − 1

ln
(

n +
√

n2 − 1
)

− 1

]

> 0,

n > 1,

1N
2π

= 1− 3

n2 − 1

[

n√
n2 − 1

arcsin
√

n2 − 1− 1

]

< 0,

n < 1, (2)

Taking into account the orientation of the
”
easy“ axis of the

magnetic anisotropy along the symmetry axis of the ellip-

soidal sample, it is convenient to introduce for consideration

a field of effective anisotropy HKN = 2Ku/M0 + M01N,

which will define its resonance behavior (here M0 —
saturation magnetization).
The Fig. 1 shows the dependence of the magnitudes HKN

and 1N on the form factor n, obtained for the mate-

rial parameters of the nanoparticle Ku = 105 erg/cm3 and

M0 = 800Gs. The magnitude axis is dotted with three

values (0.95, 1.0, 1.05) corresponding to an oblate, spherical

and oblong NP shape, which will be included in the below-

shown numerical analysis of resonance behavior features. It

is clear that depending on n the effective anisotropy field

has regions of both negative and positive values. In the case

under consideration, when n; 0.94 the field HKN ≃ 0 and

when n is changing around this value, the field sign HKN is

reversed.

Time dependence of vector orientation M and, therefore,

the NP magnetization’s precession dynamics for various

cases of bias and high-frequency pumping is determined

on the basis of numerical solution of the Landau−Lifshitz

equation [21,22]:

∂M

∂t
= −γM×Heff +

α

M
M× ∂M

∂t
, (3)
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Figure 1. Dependence of the effective anisotropy field and the

parameter 1N on the semiaxis ratio of the ellipsoidal nanoparticle.

where γ = 1.76 · 107 (Oe · s)−1 — a magnetic&mechanic

ratio, α — a dimensionless constant of attenuation, the

effective magnetic field

Heff = −∂F/∂M = H + h +
2Ku

M0

n + N̂M. (4)

The equilibrium values of the polar θ0 and azimuthal ϕ0

angle, defining a direction of the vector M with refer-

ence to the ellipsoid symmetry axis (axis OZ) and the

perpendicular axis (for example, OX), are to be found

from the condition ∂F/∂ϕ = ∂F/∂θ = 0. There is no

dependence on the azimuthal angle in the basal plane under

bias of the ellipsoidal nanoparticle along the symmetry

axis (H ‖ n ‖ OZ) and the equilibrium angle ϕ0 may be

considered zero. For the oblong and spherical nanoparticle

(when n ≥ 1), the equilibrium polar angle θ0 is zero at any

field H . However, θ0 = 0 remains for the oblate nanoparticle

(n < 1) as well up to the value 1N = −(H + Hu)/M0. With

further decrease in n the angle θ0 changes in accordance

with the expression:

cos θ0 = − H
Hu + 1NM0

. (5)

The Fig. 2 shows the dependences of the longitudinal

component of the magnetization Mz = M0 cos θ0 on the

form factor n, as obtained for values of the external field

H = 50, 150Oe (the curves 1, 2). It is clear that the

equilibrium vector remains parallel to the external field and

the NP symmetry axis for H = 50Oe at n > 0.928, and for

H = 150Oe at n > 0.906.
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Figure 2. Dependences of the longitudinal component

of the high-frequency magnetization on the form factor n,
H = 50, 150Oe (the curves 1, 2).

In general, the frequency of the magnetization resonance

precession is defined by the following expression:

ωres =
γ

M0 sin θ0

[

(

∂2F
∂ϕ2

)

0

(

∂2F
∂θ2

)

0

−
(

∂2F
∂ϕ∂θ

)2

0

]1/2

,

(6)

where second order derivatives of the free energy are

calculated for the equilibrium angles ϕ0 and θ0. Under

NP bias along the easy axis and the symmetry axis (H ‖ n)
within the values n, where the equilibrium angle θ0 is zero,

taking into account (1) and (6), the dependence of the

resonance frequency on the external field is determined by

the following expression:

ωres = γ

(

H +
2Ku

M0

+ M01N

)

. (7)

Note that quite small NP nonsphericity deviation substan-

tially affects the value 1N and, therefore, the field HKN,

thereby changing a position of typical values of the fre-

quency ωres(0) and the resonance dependences as a whole.

As will be shown below, the form factor n also affects

the magnetization’s precession dynamics of the ellipsoidal

nanoparticle.

3. Specifics of precession dynamics

Numerical solution of the equations (3) has been carried

out using the Runge−Kutta method for the permalloy

nanoparticle with the above material parameters. The

parameters of the static field have been selected to be close

to the resonance values at specified conditions of bias and

pumping. Time dependence of the high-frequency field is

specified as h(t) = h0 sinωt, where the amplitude h0 ≪ H ,

and the orientation h0 ⊥ H.

The Fig. 3 shows the dependences of the resonance ampli-

tude of the transverse high-frequency component Mx on the

factor n, as obtained for the field H = (50, 100, 150)Oe
(the curves 1−3) at the high-frequency field amplitude

h0 = (0.1, 0.5)Oe (the thin and thick curves). The insert

shows the dependence of the resonance frequency on

the form factor n for the above values of the field H .

It is clear that the precession amplitude dependence on

the form factor is characterized by a maximum, which

value depends both on the bias field, and on the high-

frequency field: if with increase in H the maximum

value decreases, then with increase in h0 the value Mxm

increases. The maximum is positioned by a value of the

parameter n, at which the effective anisotropy field HKN

becomes zero.

Under bias of the ellipsoid of revolution along the

symmetry axis and transverse pumping by the weak field

(h0 ≪ H), one should expect relatively small precession

amplitudes Mxm ≪ M0 and circular steady-state paths in the

plane (Mx , My) due to symmetry of precession and initial

conditions ϕ0 = θ0 = 0. Nevertheless, the Fig. 4 set of

steady-state resonance paths corresponding to H = 50Oe,

h0 = 0.5Oe and the parameter values n = 1.05, 1.00,

0.95, 0.94, 0.935, 0.93 (the curves 1−6) comprises not

only circular, but elliptical paths as well. For n, at

which HKN > 0, all the paths are circular, whereas for n,
at which HKN < 0, the precession paths are undergo-

ing more and more noticeable elliptical distortions with

n
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Figure 3. Dependences of the resonance amplitude of precession

and the resonance frequency (on the insert) on the form factor,

H = 50, 100, 150Oe (the curves 1−3), h0 = (0.1, 0.5)Oe (the
thin and thick curves).
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Figure 4. Resonance paths under NP bias along the
”
easy“ axis,

which is parallel to the symmetry axis, H = 50Oe, h0 = 0.5Oe,

n = 1.05, 1.0, 0.95, 0.94, 0.935, 0.93 (1−6).
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Figure 5. Time dependence of the x -component of magnetization

when steady-state oscillations are becoming sustained, n = 0.95,

0.94, 0.93 (a−c), H = 50Oe and h0 = 0.5Oe.

decrease in n. In these conditions, a nonlinear effect

begins to appear distinctly, which consists in imposition

of double frequency’s nutation motion upon the circular

precession of a high-frequency field frequency, thereby

resulting in the path becoming elliptical. Attention is

paid to the fact that with decrease in n the preces-

sion amplitude increases and at the value n = 0.94, to

which HKN = 0 corresponds, the amplitude reaches the

value Mx = M0/2.

The Fig. 5, a−c shows the dependence of the

x -component of magnetization on time, when the steady-

state oscillations are becoming sustained from an initial

equilibrium state, for three cases corresponding to the

paths 3, 4, 6 in the Fig. 4. It is clear that when getting

onto the circular paths, a transient process is of a regular

type (a, c). When getting to the elliptical path (at n = 0.93),
the transient process is characterized by beats and the

longest time interval (c) due to not only the least precession

frequency, but to nonlinearity of the process as well.

Next, we will consider the frequency dependence of

the magnetization amplitude of precession for the three

cases discussed above n < 1 at H = 50Oe and h0 = 0.5Oe.

The Fig. 6 shows the frequency dependence of the maxi-

mum x -components of NP precession magnetization with

n = 0.95, 0.94, 0.93 (the curves 1−3). In the first two

cases the precession oscillations are close to linear ones

despite their large amplitude, and a value of the resonance

frequency being implemented is close to the value to be

determined using the formula (7). In case n = 0.93,

the precession is substantially nonlinear and its maximum

amplitude corresponds to the frequency ω ≈ 2.7 · 108 s−1,

whereas the formula (7) yields the value ωr ≈ 1 · 108 s−1.

Moreover, the latter case has an evident large fre-

quency range, in which dynamic bistability is implemented,

wherein under the same system parameters two steady-

state precession modes with different characteristics can

become sustained as affected by initial conditions and

fluctuations. In this case the modes making up the bistability

differ in terms of the precession amplitude by several

times. In particular, the frequency ω ≈ 2.5 · 108 s−1 might

have two steady-state precession modes implemented —
with Mxmax ≈ 50G and with Mxmax ≈ 500G. Also, note

that for the three presented cases the maximum precession

amplitude is implemented at n = 0.93, which is attributed

to a minimum effective field affecting the particle magneti-

zation.

4. Conclusion

The analysis has been carried out to demonstrate that

there is a number of evident nonlinearity-correlated features

within the FMR spectrum of the single-domain ellipsoidal

nanoparticle with the
”
easy“ axis coinciding with the

symmetry axis under bias along this axis and conventional

transverse pumping by the weak alternating field (h0 ≪ H).
First of all, these include large resonance precession angles,
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Figure 6. Frequency dependence of the resonance amplitude of precession, n = 0.95, 0.94, 0.93 (the curves 1−3), H = 50Oe,

h0 = 0.5Oe.

at which the amplitude is 0.5M0; elliptical disturbances of

the steady-state precession path at a negative value of the

effective anisotropy field; presence of the frequency range,

in which the dynamic bistability is implemented at n = 0.93

and the precession becomes substantially nonlinear.

Note that with the amplitude and frequency of the

pumping field used in this paper, the homogeneous mode

is largely removed in terms of the frequency from the

spin-wave mode. That is why there is no energy transfer

from the homogeneous precession to the spin waves and no

development of spin-wave instabilities [22–24].

In the conclusion, we also indicate limitations being im-

posed on an NP size, which are correlated to a requirement

of homogeneous magnetization [25]: the presence of the

high-frequency field requires that the maximum NP size d
was much smaller than a depth of a skin-layer δ . For

the permalloy nanoparticle the condition d ≪ δ ≈ 10−4 cm

must be met; thermal fluctuations may substantially affect

the nanoparticle magnetization’s precession dynamics. Their

influence is described by a multiplier exp(−1U/kBT ) [3],

where 1U — a potential barrier separating an
”
easy“ and

”
hard“ direction. Thermal excitation does not disturb the

precession dynamics, if the NP size d > dmin ≈ 10 nm; an

NP single-domain requirement to be met provided its radius

is below Rcr ≈ σs/M2
0, where the surface energy of the

domain boundary (for the permalloy σs ≈ 1 erg/cm2). That

is why for the nanoparticle being investigated by us it is

required that d < 2Rcr ≈ 30 nm.

Thus, the most optimal NP size for FMR observation is

d ∈ (10−30) nm. However, note that according to data from

the paper [26] metal particles with d ≈ (40−50) nm should

be considered as single-domain ones.
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