07.2 Электропроводящие и фотоэлектрические свойства гетероструктур на основе оксидов галлия и хрома со структурой корунда

© Д.А. Алмаев¹, А.В. Алмаев^{1,2}, В.В. Копьев¹, В.И. Николаев^{3,4}, А.И. Печников³, С.И. Степанов³, М.Е. Бойко³, П.Н. Бутенко^{1,3}, М.П. Щеглов³

¹ Национальный исследовательский Томский государственный университет, Томск, Россия

² ООО "Фокон", Калуга, Россия

³ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

⁴ ООО "Совершенные кристаллы", Санкт-Петербург, Россия

E-mail: almaev001@mail.ru

Поступило в Редакцию 25 июля 2022 г. В окончательной редакции 28 сентября 2022 г. Принято к публикации 29 сентября 2022 г.

Методами хлоридной парофазной эпитаксии и магнетронного распыления получены гетероструктуры α -Ga₂O₃/ α -Cr₂O₃ со структурой корунда. Исследованы структурные, электропроводящие и фотоэлектрические свойства полученных образцов. Установлено, что гетероструктуры α -Ga₂O₃/ α -Cr₂O₃ демонстрируют слабые выпрямительные свойства и в сравнении с пленками α -Ga₂O₃ обладают более высоким быстродействием при воздействии ультрафиолетового излучения.

Ключевые слова: оксид галлия, оксид хрома, корунд, анизотипные гетероструктуры.

DOI: 10.21883/PJTF.2022.22.53802.19322

Оксид галлия (Ga₂O₃) — ультраширокозонный полупроводник, который представляет интерес для разработки приборов силовой электроники, ультрафиолетовой (УФ) оптоэлектроники и сенсорики [1-6]. Разработка соответствующих электронных приборов на основе Ga₂O₃ ограничена недостижимостью практически значимой дырочной проводимости, что связывают с особенностью энергетического спектра полупроводника и сильной локализацией дырок на атомах кислорода [7-9]. Электронно-дырочные переходы могут быть созданы на основе анизотипных гетеропереходов Ga₂O₃ с другими оксидами. Для создания гетеропереходов наиболее перспективен полиморф *α*-Ga₂O₃ с кристаллической решеткой корунда. Эта кристаллическая модификация характеризуется постоянными кристаллической решетки a = 0.4983 nm и c = 1.3433 nm, малой эффективной массой электронов $m_n^* \approx 0.25 m_0$ (где *m*₀ — масса покоя электрона), высокими значениями теоретической критической напряженности электрического поля (9 MV/cm) и шириной запрещенной зоны $E_g = 5.1 - 5.6 \,\mathrm{eV} \, [2,3,5-11].$

Кристаллическая структура корунда с близкими параметрами кристаллической решетки типична для множества оксидов переходных и непереходных металлов с общей формулой M_2O_3 (M = Al, Ga, In, Fe, Cr, V, Ti, Rh, Ir) [1,5,7–9]. В качестве пары для создания анизотипного гетероперехода с α -Ga₂O₃ наиболее привлекателен оксид хрома (α -Cr₂O₃). Несоответствие кристаллических решеток α -Ga₂O₃ и α -Cr₂O₃ не превышает 1%. Этот полупроводник с $E_g = 2.9-3.4$ eV обладает собственной дырочной проводимостью, активно исследуется для разработки прозрачных проводящих оксидов,

газовых сенсоров и фотодетекторов [12–14]. Структуры *α*-Ga₂O₃/*α*-Cr₂O₃ могут быть перспективны для разработок силовых приборов и фотодиодов.

Настоящая работа посвящена исследованию структурных, электропроводящих и фотоэлектрических свойств анизотипных гетеропереходов α-Ga₂O₃/α-Cr₂O₃.

Пленки α -Ga₂O₃ толщиной 2 μ m были выращены в ООО "Совершенные кристаллы" методом хлоридной парофазной эпитаксии с использованием газообразных хлорида галлия и кислорода в качестве прекурсоров. Рост проходил на сапфировых подложках базисной ориентации при температуре $T = 500^{\circ}$ C в течение 30 min. В процессе роста α -Ga₂O₃ был легирован оловом.

Сверху на эпитаксиальные слои *α*-Ga₂O₃ или сапфировую подложку были нанесены тонкие пленки α-Cr₂O₃ толщиной 150 nm, которые были получены методом высокочастотного магнетронного распыления (ВЧМР) мишени хрома в плазме O₂ + Ar. Для реализации ВЧМР использовалась установка Edwards А-500. Рабочее давление, мощность установки и концентрация кислорода в смеси O_2 + Ar составляли 7 μ bar, 70 W и 56.1 \pm 0.5 vol.% соответственно. Пленки а-Cr2O3 после напыления были подвергнуты отжигу в воздухе при $T = 500^{\circ}$ С в течение 180 min. На поверхности пленок α-Ga₂O₃ и α -Cr₂O₃, а также структур α -Ga₂O₃/ α -Cr₂O₃ методом магнетронного распыления Ті-мишени на постоянном токе на установке Edwards А-500 были сформированы контакты толщиной 100 nm и площадью 0.5 mm². Маски на поверхности гетероструктур при распылении Ті располагались так, чтобы контакты были сформированы к каждому слою.

Фазовый состав образцов исследовался методом рентгеноструктурного анализа (XRD). Для этого использовался дифрактометр "ДРОН 6" ("Буревестник") в режиме Си K_{α} -излучения ($\lambda = 1.5406$ Å) в стандартной θ-2θ-конфигурации. Микрорельеф поверхности тонких пленок оксида хрома исследовался при помощи атомносилового микроскопа Silver HV (NT-MDT). Для измерения спектров пропускания пленок в области длин волн $\lambda = 200 - 800 \, \text{nm}$ были использованы оптоволоконные спектрометры Ocean Optics USB 2000+ и Ocean Insight FLAME. Измерения вольт-амперных характеристик (ВАХ), вольт-фарадных характеристик и частотной зависимости емкости образцов проводились при помощи герметичной микрозондовой установки, источникаизмерителя Keithley 2636A и RLC-метра Agilent E-4980-А в темновых условиях или при воздействии излучения с длиной волны $\lambda = 254$ nm. В качестве источника монохроматического излучения была использована криптонфторовая лампа с соответствующим фильтром. Плотность мощности излучения соответствовала 1.3 mW/cm². Оценка плотности фототока J_{ph}, токовой монохроматической чувствительности R*, удельной обнаружительной

способности D* и внешней квантовой эффективности

EQE проводилась при помощи выражений, представлен-

Рис. 1. XRD-спектры пленок оксида галлия (a), оксида хрома (b) и структуры α -Ga₂O₃/ α -Cr₂O₃ (c) на сапфировых подложках.

ных в работах [7,9]. Для исследований электрофизических свойств были подготовлены двенадцать образцов структур α -Ga₂O₃/ α -Cr₂O₃.

Анализ спектров рентгеновской дифракции показал доминирование пиков при $2\theta = 40.9$, 87.7° для пленок оксида галлия и при $2\theta = 39.7$, 85.9° для тонких пленок оксида хрома, которые соответствуют отражениям (0006) и (00012) фаз *α*-Ga₂O₃ и *α*-Cr₂O₃ (рис. 1, a и *b* соответственно). На спектрах гетероструктур α -Ga₂O₃/ α -Cr₂O₃ (рис. 1, *c*) проявлялись оба пика оксида галлия с увеличенной относительно пиков подложки интенсивностью. Пик оксида хрома при $2\theta = 39.7^{\circ}$ обнаружить на спектре гетероструктур не удалось, однако пик при $2\theta = 85.9^{\circ}$ также характеризовался увеличенной относительно пиков подложки интенсивностью. Положение пиков подложки на всех спектрах было одинаковым. При помощи атомно-силового микроскопа было установлено, что поверхность тонких пленок α -Cr₂O₃, не подвергнутых отжигу, была сплошной и относительно гладкой по всей площади образца. После отжига, который стимулировал рекристаллизацию, проявилась мелкозернистая структура, средний размер кристаллита составил 34 nm. Кристаллиты ориентированы в направлении, перпендикулярном подложке.

При диапазонах $\lambda = 550-800$ nm для α -Cr₂O₃ и $\lambda = 260-360$ nm для α -Ga₂O₃ коэффициенты пропускания были не менее 70 и 80% соответственно. Значения коэффициентов пропускания резко уменьшались при снижении λ от 400 до 320 nm для пленок α -Cr₂O₃ и от 260 до 240 nm для пленок α -Ga₂O₃, т.е. вблизи края собственного поглощения оптического излучения в этих материалах. На основе анализа спектров оптического пропускания было установлено, что для полученных пленок характерны прямые оптические переходы, были определены значения оптической ширины запрещенной зоны $E_g^{opt} = 3.1 \pm 0.1$ eV для α -Cr₂O₃ и 5.1 ± 0.1 eV для α -Ga₂O₃.

Нанесенные Ті-контакты к пленкам α-Cr₂O₃ и α-Ga₂O₃ показали омический характер и оказались стабильными в интервале *T* = 300-673 К. Установлено, что пленки α-Ga₂O₃ характеризуются крайне низкими значениями плотности темнового тока J_D при комнатной температуре и высокими фотоэлектрическими характеристиками $J_{ph}, J_{ph}/J_D, R^*, D^*$ и ЕQЕ (см. таблицу), сопоставимыми или превосходящими результаты других научных коллективов [1,4–7,14]. Времена нарастания τ_1 и спада τ_2 фотоотклика, определенные по уровням $0.9J_L$ (где J_L — полный электрический ток пленки при воздействии ультрафиолета) и 1.1J_D соответственно, для пленок α -Ga₂O₃ составляли 0.1 и \sim 60 s. Высокие значения τ_2 обусловлены, вероятно, особенностями глубоких ловушечных центров с различными энергиями активации, о наличии которых в запрещенной зоне полупроводника сообщалось в работе [15].

Тип проводимости пленок α-Cr₂O₃ был определен по температурной зависимости коэффициента Зеебека, который был положительным и увеличивался с 41

Рис. 2. ВАХ гетероструктуры α -Ga₂O₃/ α -Cr₂O₃ в темновых условиях (*a*), эволюция ВАХ гетероструктуры α -Ga₂O₃/ α -Cr₂O₃ в темновых условиях (*b*) и ВАХ состаренной гетероструктуры α -Ga₂O₃/ α -Cr₂O₃ в темновых условиях и при облучении светом с $\lambda = 254$ nm (*c*).

до $86 \,\mu$ V/К при повышении *T* от 373 до 573 К. Эти пленки характеризуются более высокой электропроводностью в сравнении с α -Ga₂O₃, но слабой чувствительностью к воздействию УФ-излучения, обусловленной, вероятно, усилением поверхностной рекомбинации при малых λ .

Полученные гетероструктуры α -Ga₂O₃/ α -Cr₂O₃ проявляли слабые выпрямительные свойства (рис. 2, *a*). Отношение прямого и обратного токов при напряжении U = 60 V составляло 71. После пяти циклов воздействия УФ-излучения с последующим нагревом от T = 25до 400°C в течение 15 min наблюдалось снижение тока при прямом смещении и увеличение тока при обратном смещении с последующей стабилизацией (рис. 2, *b*). Такое старение, вероятно, связано с изменением микроструктуры α -Cr₂O₃ [16]. В дальнейшем при измерениях и хранении образцов в герметичной упаковке

Электропроводящие и фотоэлектрические характеристики пленок α -Ga₂O₃, α -Cr₂O₃ и структур α -Ga₂O₃/ α -Cr₂O₃ при U = 35 V и комнатной температуре (T = 300 K)

Параметр	Структура		
	α -Ga ₂ O ₃	α -Cr ₂ O ₃	α -Ga ₂ O ₃ / α -Cr ₂ O ₃
J_D , nA/cm ²	420	$2.3\cdot 10^9$	$9.8\cdot 10^5$
J_{ph} , A/cm ²	13.9	$1.2\cdot10^{-2}$	1.2
${J}_{ph}/{J}_D$	$3.3\cdot10^7$	$5.3 \cdot 10^{-3}$	$1.1 \cdot 10^3$
R^* , A/W	21.4	$6.7 \cdot 10^{-3}$	2.1
D^* , cm · Hz ^{1/2} /W	$1.3\cdot10^{15}$	$2.9 \cdot 10^8$	$2.3 \cdot 10^{12}$
EQE, %	$1.1\cdot 10^4$	3.3	984.5

Примечание. J_{ph} — фототок, R^* — токовая монохроматическая чувствительность, D^* — обнаружительная способность, EQE — внешний квантовый выход.

27

в течение 7-30 суток изменений ВАХ не наблюдалось. Для состаренных образцов (рис. 2, с) отношение прямого и обратного токов при напряжении U = 2 Vсоставляет ~ 30 , снижается до 3 при U = 16 V и при дальнейшем увеличении U практически не изменяется. Следует отметить, что при одинаковых условиях эксперимента и хранения J_D изменялась в пределах одного порядка величины от образца к образцу. Сосредоточим внимание на состаренных образцах. Значения J_D для α-Ga₂O₃/α-Cr₂O₃ при прямом и обратном смещении на три-четыре порядка величины выше J_D для пленок α -Ga₂O₃. Величина J_D с повышением U с 2 до 40 V при обратном и прямом смещениях возрастает по степенному закону $J \propto U^m$, где m — показатель степени. Значения *m* составляют 1.77 ± 0.01 и 2.0 ± 0.1 для прямой и обратной ветвей соответственно. Вид вольтфарадных характеристик и частотных зависимостей емкости структур *α*-Ga₂O₃/*α*-Cr₂O₃ характерен для гетероструктур. Мы полагаем, что слабые выпрямительные свойства структур *α*-Ga₂O₃/*α*-Cr₂O₃ обусловлены, с одной стороны, низкой концентрацией носителей заряда в α-Cr₂O₃ *p*-типа и наличием высокой концентрации электрически активных дефектов в базе, в качестве которой выступает *α*-Ga₂O₃ *n*-типа. С другой стороны, повышение J_D при прямом и обратном смещениях (в сравнении с пленкой α -Ga₂O₃) свидетельствует о формировании области пространственного заряда на границе полупроводников, в результате чего опустошается часть ловушечных уровней в *α*-Ga₂O₃ и в зону проводимости полупроводника поступают свободные электроны.

Фотоэлектрические характеристики структур α -Ga₂O₃/ α -Cr₂O₃ уступают характеристикам α -Ga₂O₃ (см. таблицу), но τ_2 для α -Ga₂O₃/ α -Cr₂O₃ примерно в 5 раз меньше, чем для α -Ga₂O₃. Снижение τ_2 обусловлено, вероятно, наличием электрического поля в области пространственного заряда на границе раздела полупроводников, увеличивающего скорость неравновесных электронов.

Исследованы электропроводящие и фотоэлектрические свойства анизотипных гетероструктур на основе пленок α -Ga₂O₃ и α -Cr₂O₃ со структурой корунда, полученных методами хлоридной парофазной эпитаксии и ВЧМР соответственно. Гетероструктуры α -Ga₂O₃/ α -Cr₂O₃ характеризуются слабыми выпрямительными свойствами и в сравнении с пленками α -Ga₂O₃ более низкими временами спада фотоотклика при воздействии излучения с длиной волны 254 nm за счет формирования области пространственного заряда на границе раздела полупроводников со встроенным электрическим полем.

Список литературы

- J. Moloney, O. Tesh, M. Singh, J.W. Roberts, J.C. Jarman, L.C. Lee, T.N. Huq, J. Brister, S. Karboyan, M. Kuball, P.R. Chalker, R.A. Oliver, F.C.-P. Massabuau, J. Phys. D: Appl. Phys., **52** (47), 475101 (2019). DOI: 10.1088/1361-6463/ab3b76
- [2] K. Akaiwa, K. Kaneko, K. Ichino, S. Fujita, Jpn. J. Appl. Phys., 55, (12) 1202BA (2016). DOI: 10.7567/JJAP.55.1202BA
- [3] A.K. Mondal, M.A. Mohamed, L.K. Ping, M.F.M. Taib, M.H. Samat, M.A.S.M. Haniff, R. Bahru, Materials, 14 (3), 604 (2021). DOI: 10.3390/ma14030604
- X.Y. Sun, X.H. Chen, J.G. Hao, Z.P. Wang, Y. Xu, H.H. Gong,
 Y.J. Zhang, X.X. Yu, C.D. Zhang, F.-F. Ren, S.L. Gu,
 R. Zhang, J.D. Ye, Appl. Phys. Lett., 119 (14), 141601 (2021).
 DOI: 10.1063/5.0059061
- [5] X. Zhao, Z. Wu, D. Guo, W. Cui, P. Li, Y. An, L. Li, W. Tang, Semicond. Sci. Technol., **31** (6), 065010 (2016). DOI: 10.1088/0268-1242/31/6/065010
- [6] D.Y. Guo, X.L. Zhao, Y.S. Zhi, W. Cui, Y.Q. Huang, Y.H. An, P.G. Li, Z.P. Wu, W.H. Tang, Mater. Lett., 164, 364 (2015). DOI: 10.1016/j.matlet.2015.11.001
- [7] X. Hou, Y. Zou, M. Ding, Y. Qin, Z. Zhang, X. Ma, P. Tan, S. Yu, X. Zhou, X. Zhao, G. Xu, H. Sun, S. Long, J. Phys. D: Appl. Phys., 54 (4), 043001 (2020).
 DOI: 10.1088/1361-6463/abbb45
- [8] S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, Appl. Phys. Rev., 5 (1), 011301 (2018). DOI: 10.1063/1.5006941
- [9] D. Kaur, M. Kumar, Adv. Opt. Mater., 9 (9), 2002160 (2021).
 DOI: 10.1002/adom.202002160
- [10] Y. Xu, C. Zhang, Y. Cheng, Z. Li, Y. Cheng, Q. Feng, D. Chen, J. Zhang, Y. Hao, Materials, **12** (22), 3670 (2019). DOI: 10.3390/ma12223670
- [11] J.A. Spencer, A.L. Mock, A.G. Jacobs, M. Schubert, Y. Zhang,
 M.J. Tadjer, Appl. Phys. Rev., 9 (1), 011315 (2022).
 DOI: 10.1063/5.0078037
- [12] L. Farrell, K. Fleischer, D. Caffrey, D. Mullarkey, E. Norton, I.V. Shvets, Phys. Rev. B, 91 (12), 125202 (2015).
 DOI: 0.1103/PhysRevB.91.125202
- [13] А.В. Алмаев, Б.О. Кушнарев, Е.В. Черников,
 В.А. Новиков, Письма в ЖТФ, 46 (20), 35 (2020).
 DOI: 10.21883/PJTF.2020.20.50154.18342 [A.V. Almaev,
 B.O. Kushnarev, E.V. Chernikov, V.A. Novikov, Tech. Phys.
 Lett., 46, 1028 (2020). DOI: 10.1134/S106378502010017X].
- [14] Z. Fan, M. Zhu, S. Pan, J. Ge, L. Hu, Ceram. Int., 47 (10A), 13655 (2021). DOI: 10.1016/j.ceramint.2021.01.226
- [15] A. Polyakov, V. Nikolaev, S. Stepanov, A. Almaev, A. Pechnikov, E. Yakimov, B.O. Kushnarev, I. Shchemerov, M. Scheglov, A. Chernykh, A. Vasilev, A. Kochkova, S.J. Pearton, J. Appl. Phys., 131 (21), 215701 (2022). DOI: 10.1063/5.0090832
- [16] A.V. Almaev, B.O. Kushnarev, E.V. Chernikov, V.A. Novikov, P.M. Korusenko, S.N. Nesov, Superlatt. Microstruct., 151, 106835 (2021). DOI: 10.1016/j.spmi.2021.106835

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.