Влияние наноалмазов на усиление флуоресценции продуктов реакции фототрансформации триптофана в присутствии галогенуглеводородов

© Ю.А. Кальвинковская¹, Т.А. Павич¹, А.А. Романенко¹, С.Б. Бушук², А.Н. Собчук¹, В.А. Лапина¹

¹ Институт физики им. Б.И. Степанова НАН Беларуси, 220072 Минск, Беларусь ² ГНПО "Оптика, оптоэлектроника и лазерная техника", 220072 Минск, Беларусь e-mail: juliet@ifanbel.bas-net.by

Поступила в редакцию 11.05.2022 г. В окончательной редакции 19.07.2022 г. Принята к публикации 21.08.2022 г.

> Изучена роль наноалмазов в реакции фотохимической трансформации триптофана в присутствии галогенуглеводородов. Исследована фотохимическая трансформация свободного триптофана в составе суспензии с алмазными наночастицами и в составе гибридного комплекса с ними при воздействии УФ излучением в присутствии хлороформа. Данные стационарных и времяразрешенных спектроскопических исследований показывают наличие безызлучательного переноса энергии электронного возбуждения между молекулами триптофана и продуктами его фоторазрушения для случая ковалентного комплекса с наноалмазом. Показано, что при наличии переноса энергии происходит увеличение интенсивности интегральной флуоресценции в диапазоне ~ 450 nm. Таким образом, ковалентный комплекс триптофана с наноалмазом может служить флуоресцентным маркером присутствия хлороформа в растворе.

> Ключевые слова: наноразмерные алмазы, гибридные комплексы, фототрансформация триптофана, спектрально-люминесцентные свойства, кинетика затухания флуоресценции, хлороформ.

DOI: 10.21883/OS.2022.11.53769.3659-22

Введение

02

В настоящее время развитие нанотехнологий приводит к созданию высокотехнологичных материалов с уникальными свойствами и поиску областей их эффективного применения [1-4]. Физические и химические свойства наноматериалов уникальны и отличаются от их объемных аналогов благодаря сверхмалым размерам, которые варьируются от 1 до 100 nm [5-7]. В последние годы наноуглеродные материалы стали перспективными альтернативами другим наноматериалам для различных технологических применений благодаря их наноразмерности, способности к функционализации поверхности, высокой химической устойчивости, способности к образованию комплексов [8-10]. Среди наноуглеродных материалов можно выделить наночастицы алмазов детонационного синтеза, которые могут быть эффективно модифицированы благодаря наличию развитой химии поверхности [11] и могут образовывать гибридные органо-неорганические комплексы [12,13]. Свойства наноразмерных алмазов детонационного происхождения представляют значительный интерес во многих областях исследования [14] из-за их разнообразных применений [15].

В настоящей работе исследовано влияние процессов фотохимической деградации триптофана на фотофизические свойства его ковалентных и координационных комплексов с наноалмазными частицами. Триптофан благодаря наличию в нём карбоксильной группы удобен для конъюгирования с алмазными наночастицами, обладающими аминогруппами. Известно, что ультрафиолетовое излучение (UV) может приводить к фотохимическому разрушению ароматических аминокислот, в частности триптофана [16]. В результате такого разрушения образуются продукты фотораспада — кинуренин и его производные, не флуоресцирующие в спектральной области, свойственной для аминокислоты. Флуоресценция триптофана и его продуктов существенно зависит от свойств окружающей среды [17-19]. Исследована фотохимическая трансформация свободного триптофана в составе суспензии с алмазными наночастицами и в составе гибридного комплекса при облучении UV в присутствии хлороформа. Присутствие галогенорганических соединений в водных средах приводит к появлению интенсивной флуоресценции продуктов фототрансформации триптофана после облучения [20]. Данные стационарных и времяразрешенных спектроскопических исследований показывают наличие безызлучательного переноса энергии электронного возбуждения между молекулами триптофана и продуктами его фоторазрушения для случая ковалентного комплекса с наноалмазом.

Полученные результаты могут быть использованы для разработки высокочувствительной оптической тест-системы индикации хлорорганики в окружающей среде, основанной на фотохимической трансформации триптофана в присутствии хлорорганических соединений.

Экспериментальная часть

Приготовление образцов

Для синтеза органо-неорганического гибридного комплекса триптофана с наноалмазами (ND-Tr) и спектральных измерений использовали L-tryptophan (Tr) фирмы "Sigma-Aldrich" (Германия), наноалмазы детанационного синтеза (ND) от производителя НП ЗАО "Синта" (г. Минск, Республика Беларусь), 1, 1'-карбонилдиимидазол (CDI), диметиламинопиридин (DMAP) и диметилсульфоксид (DMSO) производства фирмы "Sigma-Aldrich", диэтиловый эфир, безводный пиридин, этиловый спирт, ацетон и глицерин — марки (х.ч.). Синтез проводился в атмосфере азота и в безводных растворителях. Порошок наноалмазов (50 mg) в 50 ml безводного DMSO и 6 ml безводного пиридина (Pyr) перемешивали на магнитной мешалке в течение 1 h и диспергировали 10 min на вортексе. Полученный коллоид обрабатывали ультразвуком (22 kHz) в течение 40 min, после чего в реакционную колбу добавляли 30 mg 1.1'-CDI и перемешивали 3 h при 40°C. Далее в реакционную колбу вносили 50 mg L-триптофана и 15 mg DMAP и продолжали перемешивать на магнитной мешалке в течение 48 h при комнатной температуре. Полученный таким образом комплекс ND-Tr (рис. 1) центрифугировали (20 min при 10000 rpm), полученный осадок очищали от не связанных с ND продуктов реакции, промывая 2 раза по 10 ml DMSO и 10 ml этилового спирта с последующем центрифугированием (20 min 10000 rpm). Промывочный раствор (промывка несвязанного L-триптофана) наблюдался под UV до визуального исчезновения голубого свечения.

Стабильная неводная суспензия наноалмазов с L-триптофаном (ND + Tr) ($C_{\rm Tr} = 1.0 \cdot 10^{-4}$ M) была получена следующим образом: 10 mg ND смешивали с 100 ml диметилсульфоксида в закрытой стеклянной колбе емкостью 100 ml и перемешивали на магнитной мешалке в течение 1 h. Затем смесь обрабатывали при ультразвуковом облучении с помощью ультразвукового генератора с частотой 24 kHz в течение 20 min. Смесь отстаивалась в течение 12 h до осветления жидкости (до образования устойчивой суспензии) и выпадения осадка. В первую фракцию (прозрачная жидкость) был добавлен L-триптофан (2 mg), и смесь перемешивали на магнитной мешалке в течение 10 min.

Для записи спектров поглощения, а также спектров флуоресценции, возбуждения флуоресценции и кинетики флуоресценции были приготовлены растворы свободного триптофана в составе суспензии с алмазными наночастицами ND + Tr и в составе гибридного комплекса комплексов ND-Tr в DMSO при T = 293 K.

Рис. 1. Схема синтеза комплекса ND-Tr.

Спектральные измерения

Спектры поглощения растворов Tr, комплекса ND-Tr и суспензии ND + Tr в DMSO в присутствии хлороформа $(1.0 \cdot 10^{-3} \text{ M})$ регистрировались на двухлучевом спектрофотометре Varian Cary 500 (США). Измерения проводились в кварцевых кюветах толщиной 1 сm.

Измерения стационарных спектров флуоресценции, возбуждения флуоресценции проводились с использованием многофункционального спектрофлуориметра Fluorolog-3 (Horiba Scientific, США-Франция-Япония). В стационарных измерениях в качестве источника возбуждения флуоресценции выступала непрерывная ксеноновая лампа мощностью 450 W, излучение которой пропускалось через двойной монохроматор для выделения нужной длины волны возбуждения.

Все спектральные измерения проводились в стандартной 90°-геометрии при комнатной температуре. В канале регистрации флуоресценции использовался дифракционный спектрометр iHR320 (Horiba Scientific) и термоэлектрически охлаждаемый ФЭУ PPD-850 (Horiba Scientific) в качестве детектора. Спектры флуоресценции и спектры возбуждения флуоресценции были скорректированы на спектральную чувствительность прибора.

Кинетики затухания флуоресценции регистрировались методом времякоррелированного счета одиночных фото-

нов. В качестве источника возбуждения флуоресценции использовался импульсный светодиод Picobrite PB-265 (Horiba Scientific) с максимальной интенсивностью излучения на длине волны 264 nm и длительностью импульса на полувысоте 0.85 ns и импульсный полупроводниковый светодиод Picobrite PB-340 (Horiba Scientific) с максимальной интенсивностью излучения на длине волны 342 nm и длительностью излучения на длине волны 342 nm и длительностью импульса на полувысоте 0.75 ns. Селекция длин волн регистрации производилась с помощью монохроматора ML44 (SOLAR LS). Сигнал флуоресценции детектировался с помощью ФЭУ R3809U-50 (Hamamatsu), затем усиливался предусилителем HFAH-40 (Becker & Hickl GmbH) и обрабатывался модулем времякоррелированного счета фотонов SPC-130 (Becker & Hickl GmbH).

Затухание сигнала флуоресценции аппроксимировалось в программном обеспечении FAST (Edinburgh Instruments) двух- либо трехэкспоненциальной зависимостью с использованием соотношения [21]:

$$I_f(t) = B + \sum_i A_i \exp(-t/\tau_i),$$

где $I_f(t)$ — зависимость интенсивности флуоресценции от времени, τ_i — постоянные времени затухания, B, A_i — экспериментальные константы.

Весовой вклад f_i компоненты с постоянной времени τ_i оценивался в соответствии с формулой

$$f_i = \frac{A_i \tau_i}{\sum_i A_i \tau_i}$$

Среднее время жизни возбужденного состояния τ_0 для случая регистрации затухания свечения определялось как

$$au_0 = rac{\sum\limits_i A_i au_i^2}{\sum\limits_i A_i au_i}.$$

Аппроксимация проводилась с использованием метода наименьших квадратов, качество аппроксимации оценивалось по приведенному параметру χ^2 .

Результаты и их обсуждение

На рис. 2 приведены спектры поглощения растворов триптофана, комплекса ND-Tr и суспензии ND + Tr в DMSO в присутствии хлороформа $(1.0 \cdot 10^{-3} \text{ M})$. В спектрах поглощения комплекса ND-Tr и суспензии ND + Tr имеется вклад рассеяния из-за присутствия в растворе алмазных наночастиц, размер которых много меньше длины волны света, что приводит к видимому различию оптической плотности в максимуме поглощения.

Для всех растворов, содержащих хлороформ, наблюдалась выраженная полоса поглощения в диапазоне 240–310 nm с максимумом при 280 nm, которая относится к первой электронной полосе поглощения $S_0 \rightarrow S_1$

0.25 Tr Complex ND-Tr 0.20 Suspension ND + Tr Optical density 0.15 0.10 0.05 0 300 350 400 450 500 Wavelength, nm

Рис. 2. Спектры поглощения растворов: I — триптофана $(1.0 \cdot 10^{-4} \text{ M})$, 2 — комплекса ND-Tr, 3 — суспензии ND + Tr $(1.0 \cdot 10^{-4} \text{ M})$ в DMSO в присутствии хлороформа $(1.0 \cdot 10^{-3} \text{ M})$.

триптофана. Были проведены исследования флуоресценции растворов триптофана в DMSO, комплекса ND-Tr в DMSO и суспензии ND + Tr в DMSO в присутствии хлороформа $(1.0 \cdot 10^{-3} \text{ M})$. Под воздействием UV излучения (280 nm) у триптофана в растворе происходит разрыв пиррольного кольца индола, при этом образуются формилкинуренин, кинуренин и другие конечные продукты фототрансформации триптофана (ФТТ) [22], которые проявляют максимум флуоресценции в области $\sim 450\,\mathrm{nm}$ и выше при возбуждении на длине волны 365 nm. Облучение растворов триптофана производилось ксеноновой лампой мощностью 450 W через монохроматор на длине волны 280 nm при спектральной ширине щели 14.7 nm. Плотность мощности облучения образцов составляла $\sim 8 \,\mathrm{mW/cm^2}$, время облучения -10 min.

На рис. 3 приведены спектры флуоресценции растворов триптофана, комплекса ND-Tr и суспензии ND + Tr в DMSO до и после облучения образцов (длина волны возбуждения 365 nm) и спектры возбуждения флуоресценции продуктов ФTT после облучения (длина волны регистрации 450 nm). Спектральная ширина щели на выходе монохроматора составляла 1.5 nm.

На рис. 4 приведены спектры флуоресценции растворов триптофана, комплекса ND-Tr и суспензии ND + Tr в DMSO в присутствии хлороформа $(1.0 \cdot 10^{-3} \text{ M})$ до и после облучения образцов (длина волны возбуждения 365 nm) и спектры возбуждения флуоресценции продуктов ФTT после облучения в присутствии хлороформа (длина волны регистрации 450 nm). Спектральная ширина щели на выходе монохроматора составляла 1.5 nm.

Для всех трех тест-систем, содержащих хлороформ, после облучения при возбуждении на 365 nm наблюдалось появление широкой интенсивной полосы флуоресценции в спектральном диапазоне от 400 до 600 nm с максимумом в районе 450 nm, соответствующей флу-

Рис. 3. Спектры возбуждения флуоресценции (A) и флуоресценции (B) соединений в DMSO: 1 — триптофана $(1.0 \cdot 10^{-4} \text{ M})$, 2 — комплекса ND-Tr, 3 — суспензии ND + Tr $(1.0 \cdot 10^{-4} \text{ M})$ после облучения на 280 nm, 4 — спектр возбуждения флуоресценции (A) и флуоресценции (B) суспензии ND + Tr до облучения. Длина волны возбуждения 365 nm, длина волны регистрации 450 nm.

Рис. 4. Спектры возбуждения флуоресценции (А) и флуоресценции (В) соединений в DMSO в присутствии хлороформа $(1.0 \cdot 10^{-3} \text{ M})$: I — триптофана $(1.0 \cdot 10^{-4} \text{ M})$, 2 — комплекса ND-Tr, 3 — суспензии ND + Tr $(1.0 \cdot 10^{-4} \text{ M})$ после облучения на 280 nm, 4 — спектр возбуждения флуоресценции (А) и флуоресценции (В) суспензии ND + Tr до облучения. Длина волны возбуждения 365 nm, длина волны регистрации 450 nm.

оресценции продуктов фототрансформации триптофана (формилкинуренинов, кинуренинов и других конечных продуктов фотодеградации триптофана). Из анализа спектров флуоресценции в различных тест-системах видно, что в случае с комплексом ND-Tr в DMSO интенсивность флуоресценции продуктов фототрансформации триптофана значительно выше, реакция протекает значительно быстрее и накопление конечного продукта — кинуренина ярко выражено, о чем свидетельствует спектр флуоресценции 2 на рис. 4.

Можно отметить, что во всех трёх системах в спектрах возбуждения проявляются два отчетливых максимума при длинах волн ~ 306 и ~ 350 nm. Спектральная полоса с максимумом при 260 nm в спектрах возбуждениям может быть отнесена к спектру возбуждения кинуренина, одного из продуктов фототрансформации триптофана. Это предположение соответствует отсутствию упомянутой полосы в спектре возбуждения необлученного раствора. Максимум 306 nm соответствует поглощению триптофана, который после облучения полностью не деградировал. Вторая полоса в спектрах возбуждения с максимумом в районе $\sim 350\,\text{nm}$ также соответствует поглощению кинуренина, при возбуждении в этой области (365 nm) проявляется его спектр флуоресценции с максимумом в районе ~ 450 nm. Поэтому интенсивный спектр флуоресценции 2 на рис. 4 с максимумами в ~ 450 nm и выше обусловлен в основном свечением кинуренина. Отсутствие выраженных коротковолновых полос кинуренина в спектрах возбуждения облученных растворов, не содержащих хлороформ, может быть связано со значительно меньшей эффективностью фототрансформации триптофана в этом случае. Наличие в спектре возбуждения достаточно интенсивного максимума в районе 300 nm, соответствующего поглощению триптофана, при регистрации на 450 nm, где флуоресценция триптофана незначительна, может служить основанием для предположения о фотоиндуцированном распаде триптофана и получении в результате этого процесса возбужденных продуктов фотораспада, обладающих длинноволновой флуоресценцией в области \sim 450 nm и выше, либо о переносе энергии возбуждения с молекул триптофана на молекулы продуктов его фотораспада.

Кинетика затухания флуоресценции

Времена жизни флуоресценции триптофана, комплекса ND-Tr и суспензии ND + Tr в растворе DMSO в присутствии хлороформа $(1.0 \cdot 10^{-3} \text{ M})$ были измерены до и после облучения для различных длин волн возбуждения и регистрации 350 и 450 nm. Времена затухания флуоресценции с их относительными вкладами и средние времена жизни возбужденного состояния триптофана в трех системах приведены в таблице.

В необлученном растворе триптофана при возбуждении триптофана (264 nm) наблюдается время жизни 7.3 ns со значительным вкладом 97.1%, что соответствует времени жизни флуоресценции триптофана ($\lambda_{reg} = 350$ nm) в DMSO [23]. В облучённом растворе триптофана появляется короткая составляющая ~ 3.6 ns с весовым вкладом 44.3% и остается составляющая 6.7 ns с весовым вкладом 47.9%, что соответствует времени жизни флуоресценции неразрушенного триптофана.

Образец	λ _{ex} ,	$\lambda_{\rm reg} = 350{ m nm}$			$\lambda_{ m reg} = 450 m nm$		
	nm	τ , ns; $(f_i, \%)$	$\langle \tau \rangle$, ns	χ^2	τ , ns; $(f_i, \%)$	$\langle \tau \rangle$, ns	χ^2
1 триптофан	264	$\tau_1 = 1.4 (2.9) \tau_2 = 7.3 (97.1)$	7.1	1.09			
1 триптофан после облучения	264	$\begin{aligned} \tau_1 &= 1.2 \ (7.8) \\ \tau_2 &= 3.6 \ (44.3) \\ \tau_3 &= 6.7 \ (47.9) \end{aligned}$	4.9	1.16	$ au_1 = 1.2 \ (10.1) \ au_2 = 5.2 \ (30.1) \ au_3 = 17.7 \ (59.8)$	12.2	1.07
	342				$ au_1 = 1.0 \ (18.2) \ au_2 = 3.9 \ (40.7) \ au_3 = 15.6 \ (41)$	8.2	1.19
2 комплекс ND-Tr	264		6.9	1.10			
2 комплекс ND-Tr после облучения	264	$\begin{aligned} \tau_1 &= 0.5 \; (9.1) \\ \tau_2 &= 3.2 \; (20.4) \\ \tau_3 &= 6.5 \; (70.5) \end{aligned}$	5.3	1.17	$ au_1 = 0.8 \ (11.3) \ au_2 = 3.4 \ (47.6) \ au_3 = 10.3 \ (41.1)$	6.0	1.25
	342				$ au_1 = 0.7 \ (13.5) \ au_2 = 3.0 \ (53.7) \ au_3 = 9.8 \ (32.8)$	4.9	1.22
3 суспензия ND + Tr	264	$\tau_1 = 1.5 (2.9) \tau_2 = 7.4 (97.1)$	7.2	1.14			
3 суспензия ND + Tr	264	$ au_1 = 2.0 (5.1) \ au_2 = 7.2 (94.9)$	6.9	1.23	$ au_1 = 6.7 \ (76.4) \ au_2 = 12.1 \ (23.6)$	8.0	1.06
после облучения	342				$ au_1 = 1.2 \ (20.8) \ au_2 = 3.5 \ (33.5) \ au_3 = 11.9 \ (45.7)$	6.9	1.17

Времена жизни триптофана $(1.0 \cdot 10^{-4} \text{ M})$, комплекса ND-Tr и суспензии ND + Tr $(1.0 \cdot 10^{-4} \text{ M})$ в растворе DMSO в присутствии хлороформа $(1.0 \cdot 10^{-3} \text{ M})$ до и после облучения для различных длин волн возбуждения и регистрации

При возбуждении облучённого раствора триптофана на 264 nm, когда возбуждаются молекулы и триптофана, и кинуренина при $\lambda_{reg} = 450$ nm, наблюдается появление длинной составляющей ~ 17.7 ns с весовым вкладом 59.8%. При возбуждении облученного раствора триптофана на 342 nm, когда возбуждаются только молекулы кинуренина при $\lambda_{reg} = 450$ nm, длинная составляющая времени жизни флуоресценции кинуренина 15.6 ns дает меньший вклад (41%).

Важно отметить, что при возбуждении облученного раствора триптофана в области 264 nm при регистрации флуоресценции триптофана наблюдается составляющая ее затухания с временем жизни 3.6 ns и значительным вкладом (44.3%), которая соответствует времени жизни возбужденного состояния кинуренина, зарегистрированного при длине волны регистрации 450 nm и том же возбуждении и при возбуждении непосредственно в полосе поглощения кинуренина при 342 nm. В растворе свободного триптофана до облучения подобное поведение не наблюдается. Этот факт можно объяснить, если предположить наличие безызлучательного переноса энергии электронного возбуждения между возбужденной молекулой триптофана и молекулой кинуренина в основном состоянии. По своим спектроскопическим характеристикам эти молекулы формируют донорно-акцепторную пару. Если при возбуждении в 264 nm одновременно возбуждаются как свободный триптофан, так и кинуренин, то по мере возвращения молекул кинуренина в основное состояние они становятся акцептором для возбужденных молекул триптофана, чем и можно объяснить присутствие практически одинаковых значений постоянной времени затухания в испускании обеих молекул со значительным вкладом и отсутствие этого эффекта для необлученного раствора. Таким образом, осуществляется безызлучательный перенос энергии электронного возбуждения между молекулами триптофана и продуктами его фоторазрушения. Следует заметить, что короткие времена жизни флуоресценции порядка 1.5 ns, присутствующие с незначительным вкладом, характерны для сверхбыстрой дезактивации возбужденных состояний кинуренина и продуктов его вторичного фотораспада в DMSO [24]. Упомянутые короткие времена затухания наблюдаются даже в необлученных растворах, что говорит о присутствии продуктов фотораспада триптофана в них в незначительных количествах.

Для раствора комплекса ND-Tr после облучения также наблюдалось появление короткого затухания флуоресценции при возбуждении 264 nm как при регистрации в полосе флуоресценции триптофана (350 nm), так и в полосе флуоресценции кинуренина (450 nm), причем со значительным весовым вкладом: 3.2 ns (20.4%) и 3.4 ns (47.6%) соответственно. Этот эффект можно было бы объяснить перекрытием спектров флуоресценции триптофана и кинуренина в области регистрации с максимумом 350 nm, однако по данным [24] спектр флуоресценции кинуренина в DMSO с максимумом при 460 nm не заходит в эту область. Таким образом, для случая ковалентно связанного комплекса также можно отметить наличие безызлучательного переноса энергии между триптофаном и продуктами его фототрансформации.

Суспензия ND + Tr при тех же условиях эксперимента показала иное поведение. В ней не наблюдалось присутствия компоненты в области 3 ns в затухании как для необлученного, так и для облученного раствора при длине волны возбуждения 264 nm. Тем не менее для облученного раствора при возбуждении в полосу поглощения кинуренина (342 nm) в флуоресценции кинуренина появилась составляющая с постоянной времени 3.5 ns и значительным вкладом (33.5%). Таким образом, можно сделать вывод об отсутствии переноса энергии электронного возбуждения между молекулами триптофана и продуктами его фотораспада в случае суспензии ND + Tr.

Полученные данные находятся в соответствии с вышеприведенными спектральными данными по интенсивности флуоресценции продуктов фотораспада триптофана. В случае ковалентно связанного комплекса ND-Tr присутствие безызлучательного переноса энергии между молекулами триптофана и кинуренина приводит к существенному усилению сигнала флуоресценции раствора в области испускания продуктов фототрансформации триптофана.

Наличие переноса энергии в ковалентно связанном комплексе ND-Tr и его отсутствие в случае суспензии ND + Tr может быть объяснено тем, что при ковалентном связывании происходит концентрация молекул триптофана на поверхности наноалмазных частиц. При этом среднее расстояние между ними уменьшается. При облучении часть молекул триптофана превращается в продукты его фототрансформации, сохраняя ковалентное связывание. Поэтому для безызлучательного переноса энергии в случае ковалентно связанного комплекса создается ситуация более благоприятная, чем в случае суспензии.

Заключение

Была исследована фотохимическая трансформация свободного триптофана, триптофана в составе суспензии с алмазными наночастицами и в составе гибридного комплекса с ними при облучении UV в присутствии хлороформа методами стационарной и времяразрешенной спектроскопии. Проведенные спектроскопические исследования показали, что для всех трех систем, содержащих хлороформ, после облучения при возбуждении на 365 nm наблюдалось появление широкой интенсивной полосы флуоресценции продуктов фототрансформации триптофана в диапазоне ~ 450 nm, причем в случае с комплексом ND-Tr в DMSO интенсивность флуоресценции продуктов фототрансформации триптофана значительно выше и накопление конечного продукта кинуренина ярко выражено.

Анализ времяразрешенных спектроскопических данных показывает наличие безызлучательного переноса энергии электронного возбуждения между молекулами триптофана и продуктами его фоторазрушения для случая ковалентного комплекса с наноалмазом. При ковалентном связывании близкое расположение молекул триптофана и молекул продуктов его деградации на поверхности наноалмазных частиц способствует такому переносу энергии, что приводит к существенному усилению сигнала флуоресценции раствора в области испускания продуктов фототрансформации триптофана.

Изученные комплексы могут быть использованы при разработке чувствительных оптических тест-систем индикации хлорорганики в окружающей среде с использованием наноалмазных частиц.

Финансирование работы

Работа выполнена при финансовой поддержке гранта БРФФИ (грант № Ф20ГРМГ-003).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- N.L. Rosi, C.A. Mirkin. Chem. Rev., 105 (5), 1547 (2005). DOI: 10.1021/cr030067f
- [2] X. Qian, X.-H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, S. Nie. Nat. Biotechno., 26 (1), 83 (2008). DOI: 10.1038/nbt1377
- [3] S. Zeng, D. Baillargeat, H.-P. Ho, K.-T. Yong. Chem. Soc. Rev., 43 (10), 3426 (2014). DOI: 10.1039/C3CS60479A
- [4] C. Cheng, S. Li, A. Thomas, N.A. Kotov. Chem. Rev., 117 (3), 1826 (2017). DOI: 10.1021/acs.chemrev.6b00520
- [5] L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu. Chem. Rev., 114 (21), 10869 (2014). DOI: 10.1021/cr400532z
- [6] M.W. Tibbitt, J.E. Dahlman, R. Langer. J. Am. Chem. Soc., 138 (3), 704 (2016). DOI: 10.1021/jacs.5b09974
- [7] S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, W.C.W. Chan. Nat. Rev. Mater., 1, 16014 (2016). DOI: 10.1038/natrevmats.2016.14
- [8] Z. Liu, J.T. Robinson, S.M. Tabakman, K. Yang, H. Dai. Mater. Today, 14 (7), 316 (2011). DOI: 10.1016/S1369-7021 (11)70161-4

- [9] Y. Liu, X. Dong, P. Chen. Chem. Soc. Rev., 41 (6), 2283 (2012). DOI: 10.1039/c1cs15270j
- [10] R.G. Mendes, A. Bachmatiuk, B. Buechner, G. Cuniberti, M.H. Ruemmeli. J. Mater. Chem. B, 1 (4), 401 (2013). DOI: 10.1039/C2TB00085G
- [11] V.A. Lapina, G.S. Akhremkova, T.M. Gubarevich. Russ. J. Phys. Chem. A, 84 (3), 267 (2010). DOI: 10.1134/S0036024410020184
- [12] V.A. Lapina, S.B. Bushuk, T.A. Pavich, A. V. Vorobey. J. Appl. Spectrosc., 83 (3), 344 (2016).
 DOI: 10.1007/s10812-016-0292-3
- [13] V.A. Lapina, T.A. Pavich, P.P. Pershukevich. Opt. Spectrosc., 122 (2), 219 (2017). DOI: 10.1134/S0030400X19080186
- [14] Д.Л. Гурьев. Хим. физика, 37 (11), 57 (2018).
- [15] J.R. Arnault. Nanodiamands: advanced material analysis, properties and applications (Elsevier, Amsterdam, Netherlands, 2017).
- [16] D. Creed. Photochem. Photobiol., 39 (4), 537 (1984).
 DOI: 10.1111/j.1751-1097.1984.tb03890.x
- [17] R.J. Robbins, G.R. Fleming, G.S. Beddard, G.W. Robinson,
 P.J. Thistlethwaite, G.J. Woolfe. J. Am. Chem. Soc., 102 (20),
 6271 (1980). DOI: 10.1021/ja00540a016
- [18] E.P. Kirby, R.F. Steiner. J. Phys. Chem., 74 (26), 4480 (1970).
 DOI: 10.1021/j100720a004
- [19] R. Klein, I. Tatischeff, M. Bazin, R. Santus. J. Phys. Chem., 85 (6), 670 (1981). DOI: 10.1021/j150606a012
- [20] R.A. Edwards, G. Jickling, R.J. Turner. Photochem. Photobiol., 75 (4), 362 (2002).
- DOI: 10.1562/0031-8655(2002)075<0362:tlirot>2.0.co;2
- [21] J.C. Lakowicz. *Principles of Fluorescence Spectroscopy, 3rd* ed (Springer Science+Business Media, New York, 2006).
- [22] C.L. Lander, K. Tran, M.L. Raymond, R.J. Turner, R.A. Edwards. Photochem. Photobiol., 90 (5), 1027 (2014). DOI: 10.1111/php.12279
- [23] G.J. McCarthy. *The Rare Earth in Modern Science and Technology. V. 2* (Plenum Press, New York, 1980).
- [24] П.С. Шерин. Фотохимические реакции триптофана и его природного метаболита кинуренина. Автореф. канд. дис. (РАН "Международный томографический центр", Новосибирск, 2009).

URL: https://rusneb.ru/catalog/000199_000009_003469207/