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To the theory of stimulated brillouine scattering in the field of 2D
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The problem of stimulated Mandelstam-Brillouin scattering (SMBS) in a plasma in the field of a two-

dimensionally localized and inhomogeneous pump wave is considered for arbitrary values ??of the scattering

angle. Exact solutions of the system of truncated equations for the amplitude of an electromagnetic scattered wave

and the amplitude of a sound wave are obtained in the approximation of strong dissipation of sound waves for an

arbitrary direction of propagation of the scattered wave. The angular dependence of the intensity of the scattered

radiation and its dependence on the inhomogeneity parameter of the pump wave are studied.
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Introduction

Stimulated Raman scattering (SRS) of light in a spatially-

localized pumping wave field along one direction (flat
layer) was discussed in many publications [1–3]. Absolute

instability was reported for the localization region sizes

exceeding a certain value which depends on the pumping

wave amplitude. Such instability only occurs when the

interacting wave group velocity projections on the pumping

wave propagation direction are opposite in sign. Several

modes are excited which differ in coordinate dependences

of amplitude envelopes and have different thresholds and

increments. Dependence of unstable wave amplitudes on

coordinate was studied [1] and a single amplitude peak

existing within the interaction region was reported for the

first mode having the lowest threshold. Similar issues

were discussed later regarding heterogeneous plasma [4].
Heterogeneous plasma generally means pumping wave

heterogeneities.

Further development resulted in the study of para-

metric instabilities in two-dimensional geometry. Two-

dimensionality occurs as a result of both plasma hetero-

geneity (limitation) and pumping wave field heterogeneity.

Stimulated scattering in a 2D localized pumping wave filed

in homogeneous plasma was discussed in many publica-

tions [5–8]. It was shown that exit of one of the waves

beyond the interaction region boundary stabilizes absolute

instability and convective wave amplification takes place

when a specified threshold condition is satisfied. These

findings are used in practice for plasma diagnostics, particle

acceleration and interpretation of other nonlinear processes.

In real experiments, medium is not always homogeneous

and a question also arises regarding its influence on scat-

tered radiation characteristics. Such issues were investigated

in some early publications [9–13], but today they are getting

of interest again due to new experimental results [14].
The scattering process is investigated herein using a

reduced equation system for interacting wave amplitudes

taking into account the medium heterogeneity [15]. An

accurate solution for scattered emission intensity has been

obtained and the dependence of the intensity on the

scattering angle and typical pumping wave heterogeneity

size at arbitrary scattering angles to a strong sound wave

dissipation approximation (free path is much less lower than

the heterogeneity size) has been studied.

Main equations

Consider a pumping wave with frequency ω0 and wave

vector k0 localized in a rectangular spatial region (Fig. 1)
which propagates in the direction opposite to axis 0X .

The pumping wave and scattered wave interaction region

is concentrated in rectangle 0 < y < L2, −L1A < x < L1B .

Scattered wave vector projections (of sound and elec-

tromagnetic waves with frequencies ω1, ω2 and wave

vectors k1 and k2) on axis 0X are of opposite sign. For

the waves of interest, synchronism conditions ω1 + ω2 = ω0

are satisfied. Assume also that plasma heterogeneity or

spatial configuration of the pumping wave result in the

wave vector dependence of pumping wave k0, scattered

sound wave k and scattered electromagnetic wave k2 on

coordinate x . Due to this heterogeneity, wave vector

synchronism conditions k0 = k1 + k2 are satisfied only at a

certain coordinate value x = x0. Without loss of generality,

assume x0 = 0.

To calculate instability development, specify the initial

fluctuation whose evolution will later give birth to an

instable mode. In a space-limited region, several methods
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Figure 1. Wave vector interaction region and orientation

(k0,1,2 are pumping wave, scattered sound and electromagnetic

wave vectors, respectively).

may be used to specify the initial fluctuation. In an

absolutely instable system, a local perturbation in the form

of δ-function may serve as such fluctuation. Moreover, the

width of this δ-function accommodates many wavelengths

and this perturbation lasts longer than the lowest wave

frequency in order to satisfy the synchronism conditions.

Such approach is demonstrated in [16]. In an absolutely

stable system, even when it is convectively instable, a

space- and time-limited initial perturbation will give a time-

limited response. Therefore, two approaches are usually

addressed — response to a permanent perturbation (test
wave) or response to repeatedly appearing and disappearing

fluctuations. In the latter case, the system will generate

a noise spectrum. At the initial (linear) instability de-

velopment stage (threshold and increment calculation), all
approaches lead to equations of the same type.

We assume herein that the initial perturbation is gen-

erated by a test electromagnetic wave propagating at an

angle β2 to axis 0X . The sound wave propagates at an

angle β1 to axis 0X . The equations for the interacting wave

amplitudes a1 and a2 are as follows

∂a1

∂t
−Vs cos β1

∂a1

∂x
+ Vs sin β1

∂a1

∂y
+ γs a1 = ν1a2e

−iϕ(x),

∂a2

∂t
+ c cos β2

∂a2

∂x
− c sin β2

∂a2

∂y
+ γta2 = ν2a1e

iϕ(x),

(1)
where a1 = iδN/N0, δN is the electron concentration

perturbation, a2 = δE∗ is the scattered wave amplitude,

Vs is the ion-sound wave velocity, c is the light velocity,

γs ,t are sound and scattered wave damping factors, ν1,2 are

nonlinear wave coupling coefficients proportional to the

pumping wave amplitude. For Brillouin stimulated scatter-

ing processes (BSS), γs ,t and ν1,2 are defined as follows

γs =
V 2

s

2ω1

dk1x(x)

dx
+

νi

2
, γt = −

1

2

c2

ω2

dk2x(x)

dx
+

νeω
2
Le

2ω2
2

,

ν1 =
Ze2ε0
4mmi

k1

ω0ω2Vs
, ν2 = ε∗0ω

2
Le/(4ω0),

where νi is the frequency of collision of ions with neutral

particles or ions of other type, ν2 is the frequency of

collision of electrons with ions, e, m, N0 is the electron

charge, mass and concentration, Z, mi is the charge number

and mass of ions, ωLe is the electron Langmuir frequency,

ε0 is the pumping wave amplitude which is considered as

pre=defined, ϕ(x) =
x
∫

0

χ(x ′)dx ′ is the phase difference of

scattered and sound waves interacting with the pumping

wave due to plasma heterogeneity and pumping wave field,

χ(x) = k0x(x) − k2x(x) − k1x(x).
The equation system (1) applicable to BSS can be derived

from microwave field plasma hydrodynamics equations and

field equations [15,17]. To describe the scattering process,

in addition to the angles β1 and β2, it is convenient to

introduce also an angle θ = π − β2 (Fig. 1) which will

be referred to as the scattering angle. For stimulated

scattering processes, the angles β1, β2 and θ are not in-

dependent. For scattering with small variations of frequency

(ω1 ≪ ω0, ω2
∼= ω0), the wave vectors k0 and k2 have

the same absolute values k2
∼= k0. This approximation is

applicable when condition β2 ≫ Vs/c is satisfied. Con-

sidering that k2
∼= k0, then β1 = (π − β2)/2 = θ/2. The

resonance wave interaction condition k0 = k1 + k2 means

that k1 ≈ 2k0 sin(θ/2) ≈ 2k0 cos(β2/2).
For waves of opposite sign, group velocity projections on

the directions of axes 0X and 0Y , these angles vary within

π/2 ≤ β2 ≤ π, 0 ≤ β1 ≤ π/4, 0 ≤ θ ≤ π. Considering

these, we obtain from (1)

− cos

(

θ

2

)

∂a1

∂x
− sin

(

θ

2

)

∂a1

∂y
+ γ1a1

= µ1a2 cos

(

θ

2

)

e−iϕ(x),

cos θ
∂a2

∂x
+ sin θ

∂a2

∂y
+ γ2a2 = e−iϕ(x), (2)

where the following notations are introduced

µ1 =
Ze2ε0
2mmi

k0

ω2
0V

2
s

, µ2 = ε∗0
ω2

Le

4ω0c
,

γ1 = γ s/Vs , γ2 = γ t/c.

1/γ1 = Vs/γs determines the free path of the ion-sound

wave, and 1/γ2 = c/γt determines the free path of the

scattered wave. In view of the fact that a stationary process

(response to a permanent perturbation) is addressed, time

derivatives are omitted in (2).
Stimulated scattering at the angle θ = π/2 (lateral scat-

tering) and with other geometry in homogeneous plasma

was addressed in [7]. For heterogeneous plasma, the lateral

scattering in a 2D localized and heterogeneous pumping

wave field was addressed recently in [18], and this research
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is a follow-up of this publication for an arbitrary scattering

angle.

Specify the boundary conditions in order to solve the

problem. Assume that the high frequency wave ampli-

tude a2 in the point of entrance into the interaction region

is constant, and the low frequency wave amplitude a1 at the

boundary is equal to zero:

a1(x = L1B , y) = a1(x , y = L2) = 0, (3)

a2(x , y = 0) = a2(x = L1A, y) = C. (4)

Solution of equations (2) for zero boundary conditions

enables to clear up the question about convective instability

and to find amplification coefficients. In order to study

spatial characteristics of the interacting wave amplitudes

and angular dependence of scattered emission intensity,

the equations (2) shall be solved with nonzero boundary

conditions.

Spatial distribution of the scattered
emission intensity with strong sound wave
dissipation

Consider the solution of the equation system (2). In order

avoid the phase factor, introduce new functions b1,2(x , y) as
follows:

b1(x , y) = a1(x , y) exp
(

iϕ(x)/2
)

,

b2(x , y) = a2(x , y) exp
(

−iϕ(x)/2
)

. (5)

Using (5), transform (2) to

− cos

(

θ

2

)

∂b1

∂x
− sin

(

θ

2

)

∂b1

∂y

+

(

γ1 + cos

(

θ

2

)

i
2
χ(x)

)

b1 = µ1 cos

(

θ

2

)

b2,

cos θ
∂b2

∂x
+ sin θ

∂b2

∂y
+

(

γ2 + cos θ
i
2
χ(x)

)

b2 = µ2b1.

(6)
Now, according to (3)−(5), the boundary conditions for

function b1,2(x , y) will be as follows

b1(x = L1B , y) = b1(x , y = L2) = 0,

b2(x = −L1A, y) = C exp
(

−iϕ(−L1A)/2
)

,

b2(x , y = 0) = C exp
(

−iϕ(x)/2
)

. (7)

The scattering angle corresponds to the transition to lateral

scattering θ = π/2.

Consider solution (6) to a sufficiently strong sound wave

damping approximation when derivatives ∂b1/∂x(∂y) may

be ignored. |∂b1/∂x(∂y)| ≪ |γ1, χ|b1 is the approximation

validity condition. The pumping wave field heterogeneity

causes the wave interaction in plasma near the resonance

point where the wave vector condition is satisfied (χ = 0).

Having chosen this point as the origin of coordinates, we

can write in its neighborhood the following

χ(x) = xk0/L0, (8)

where L0 is the scale of plasma or pumping wave hetero-

geneity. To a strong sound wave dissipation approximation,

the equation (6) will be as follows

b1 =
µ1 cos(θ/2)b2

(

γ1 + iχ(x) cos(θ/2)/2
) ,

cos θ
∂b2

∂x
+ sin θ

∂b2

∂y
+

(

γ2 +
i
2
cos θχ(x)

−
µ2µ1 cos(θ/2)

(

γ1 + iχ(x) cos(θ/2)/2
)

)

b2 = 0. (9)

Proceed to a new coordinate system, where

x = η cos θ + ξ sin θ, y = η sin θ − ξ cos θ. (10)

Inverse transformation is as follows

η = x cos θ + y sin θ, ξ = x sin θ − y cos θ. (11)

And the equation (8) reduces to:

1

b2

∂b2

∂η
= −

(

γ2 +
i
2
cos θχ

(

x(ξ, η)
)

−
µ2µ1 cos(θ/2)

(

γ1 + i cos(θ/2)χ
(

x(ξ, η)
)

/2
)

)

.

Thus, the equation contains a derivative with respect

to only one coordinate (η), the second coordinate (ξ)
is included in the equation only as a parameter. Along

the wave propagation direction, dη = dx/ cos θ is satisfied.

To achieve the result, divide the interaction region into

two parts. When −L1A + y tg(θ) < x < L1B (region I),
the initial wave emission enters the region across the

boundary y = 0, when the inverse condition is satisfied

−L1A < x < −L1A + y tg(θ) (region II) the initial wave

emission enters the region across the boundary x = L1B .

Integration of the equation including the boundary condi-

tions results in (here and below x̃ , ỹ are the observation

point coordinates, ξ1 = (x̃ sin θ − ỹ cos θ))

b2(x̃ , ỹ)=b2

(

x1

(

ξ(x̃ , ỹ)
)

, y1

(

ξ(x̃ , ỹ)
)

)

exp

( x̃
∫

x1

(

ξ(x̃,ỹ)
)

dx ′

cos θ

×

(

µ2µ1 cos(θ/2)
(

γ1 + i cos(θ/2)χ
(

x ′(ξ, η)
)

/2
) − γ2 −

i
2

× cos θχ
(

x ′(ξ, η)
)

))

.
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Coordinate ξ is defined from coordinates x̃ , ỹ of the

observation point (where the field is calculated). The lower

limit of integration x1 — coordinate x of the point through

which the scattered wave beam enters the scattering region

is calculated using the following relations (Fig. 1):
in region I

ỹ > (L1A + x̃) tg θ, x1 = −L1A, (12)

and in regions II and III

ỹ < (L1A + x̃) tg θ, x1 = x̃ − ỹ/ tg θ,

ỹ > (L1A + x̃) tg θ, x1 = −L1A. (13)

When θ → π/2, the integral remain finite because the

distance between the integration points tends to zero. The

scattered wave field amplitude a2(x , y) in the initial point

is defined using relations (7), then we obtain

b2(x̃ , ỹ) = C exp
(

−iϕ
(

x1(x̃ , ỹ)
)

/2
)

exp

( x̃
∫

x1(x̃,ỹ)

dx ′

cos θ

×

(

µ2µ1 cos(θ/2)
(

γ1 + i cos(θ/2)χ
(

x ′(ξ, η)
)

/2
) − γ2 −

i
2

× cos θχ
(

x ′(ξ, η)
)

))

.

The sound wave amplitude may be calculated as

b1(x̃ , ỹ) = µ1 cos(θ/2)b2(x̃ , ỹ)/
(

γ1 + iχ(x̃) cos(θ/2)/2
)

.

Finally, the equations (5) enable to obtain the final ex-

pression for the wave amplitudes in the interaction region

(including the boundary):

a2(x̃ , ỹ) = C exp
(

i
(

ϕ(x̃) − ϕ
(

x1(x̃ , ỹ)
))

/2
)

× exp

( x̃
∫

x1(x̃ ,ỹ)

dx ′

cos θ
×

(

µ2µ1 cos(θ/2)
(

γ1 + i cos(θ/2)χ
(

x ′(ξ, η)
)

/2
)

− γ2 −
i
2
cos θχ

(

x ′(ξ, η)
)

))

,

a1(x̃ , ỹ) = µ1a2(x̃ , ỹ)/
(

γ1 + iχ(x̃) cos(θ/2)/2
)

× exp
(

−iϕ(x̃)
)

. (14)

Further simplification consists in the assumption that χ(x̃)
is rather monotonic therefore the linear approximation (8)
may be used. Then

a2(x̃ , ỹ) = C exp
(

Q(x̃ , x1)/ cos θ
)

= C exp
(

(

Ŵ(x̃) − Ŵ(x1)
)

/ cos θ
)

,

a1(x̃ , ỹ) = µ1 cos(θ/2)a2(x̃ , ỹ)/
(

γ1

+ ik0 cos(θ/2)x̃/2L0

)

exp
(

−iϕ(x̃)
)

, (15)

Ŵ(x) =

(

−γ2L2

x
L2

+
2L0µ2µ1

k0

arctg

(

k0L2

2L0γ1

x
L2

cos(θ/2)

)

− i
L0µ2µ1

k0

ln

(

1 +
k2
0L

2
2

4γ2
1L2

0

x2

L2
2

cos2(θ/2)

))

.

The last expression may be simplified by introducing the

following dimensionless parameters: A = 2L0γ1/k0L2 which

characterizes the relative role of wave heterogeneity and

damping in plasma, P = µ2µ1/γ1γ2 which when P = 1,

the intensity of the wave propagating along axis 0X
in homogeneous medium remains unchanged). Having

written the product of the wave amplification coefficient

at convective instability in homogeneous medium and the

lateral dimension L2 at back scattering and underdamping

of electromagnetic wave G = µ2µ1L2/γ1, we obtain

Ŵ(x)

cos θ
=

G
cos θ

(

A arctg

(

x
AL2

cos(θ/2)

)

− P−1 x
L2

− i
A
2

ln

(

1 +
x2

A2L2
2

cos2(θ/2)

))

.

In a medium which is close to a homogeneous medium,

x cos(θ/2)/AL2 ≪ 1, and the last equation is simplified:

Ŵ(x)

cos θ
=

G
cos θ

(

(

cos(θ/2)−P−1
) x

L2

−i
1

2A
x2

L2
2

cos2(θ/2)

)

.

(16)

In the limiting case of strong heterogeneity,

|x | cos2(θ/2)/AL2 ≫ 1, we have

Ŵ(x)

cos θ
=

G
cos θ

(

A
π

2
sign(x) − P−1 x

L2

− i
A
2

× ln

(

1 +
x2

A2L2
2

cos2(θ/2)

))

.

Now obtain the final expressions for the wave amplitude.

At the boundary y = L2 with x̃ < −L1A + L2 ctg θ

Q(x̃ , y = L2)

cos θ
=

G
cos θ

(

A

(

arctg

(

x̃
AL2

cos(θ/2)

)

+ arctg

(

L1A

AL2

cos(θ/2)

)))

− P−1

(

x̃
L2

+
L1A

L2

)

− i
A
2

× ln

((

1+
x̃2

A2L2
2

cos2(θ/2)

)/(

1+
L2
1A

A2L2
2

cos2(θ/2)

))

,

(17)
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at x̃ > −L1A + L2 ctg θ

Q(x̃ , y = L2)

cos θ
=

G
cos θ

(

A

(

arctg

(

x̃
AL2

cos(θ/2)

)

− arctg

(

x̃ − L2 ctg θ

AL2

cos(θ/2)

)))

− P−1 ctg θ − i
A
2

× ln

((

1+
x̃2

A2L2
2

cos2(θ/2)

)/(

1+
(x̃ − L2 ctg θ)

2

A2L2
2

× cos2(θ/2)

))

,

(18)

At the boundary x = L1B with y < (L1A + L1B) tg θ

Q(x̃ = L1B , y)

cos θ
=

G
cos θ

(

A

(

arctg

(

L1B

AL2

cos(θ/2)

)

− arctg

(

L1B − y ctg θ

AL2

cos(θ/2)

)))

− P−1 y tg θ

L2

− i
A
2

× ln

((

1+
L2
1B

A2L2
2

cos2(θ/2)

)/(

1+
(L1B − y tg θ)2

A2L2
2

× cos2(θ/2)

))

,

(19)

at y > (L1A + L1B) tg θ

Q(x̃ = L1B , y)

cos θ
=

G
cos θ

(

A

(

arctg

(

L1B

AL2

cos(θ/2)

)

+ arctg

(

L1A

AL2

cos(θ/2)

)))

− P−1 L1B + L1A

L2

− i
A
2

× ln

((

1+
L2
1B

A2L2
2

cos2(θ/2)

)/(

1+
L2
1A

A2L2
2

× cos2(θ/2)

))

. (20)

We will also give limits for expressions (18) and (19) when

θ → π/2 which demonstrate the absence of singularity:

Q(x̃ , y =L2)

cos θ
=G

(

cos(θ/2)

sin θ

/

(

1+

(

x̃
AL2

cos(θ/2)

)2
))

−
sin θ

P
− i

A
2

2x̃L2 sin θ

A2L2
2

cos2(θ/2)

/(

1 +
x̃2

A2L2
2

× cos2(θ/2)

)

,
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Figure 2. Wave amplification coefficient U vs. emission

exit point, dimensionless heterogeneity length A = 0.2 (a),
1 (b); scattering region and pumping wave parameters

L1A/L2 = L1B/L2 = 2.5, X = x/L2, P = 10, G = 1.

Q(x̃ = L1B , y)

cos θ
=G

(

y cos(θ/2)

L2 sin θ

/

(

1+

(

L1B

AL2

cos(θ/2)

)2
))

−
y

PL2 sin θ
− i

A
2

ln

((

1 +
L2
1B

A2L2
2

cos2(θ/2)

)

/(

1 +
(L1B − y tg θ)2

A2L2
2

cos2(θ/2)

))

.

According to the obtained equations, the qualitative form

of the obtained relations depends on the dimensionless

parameters L1A/L2, L1B/L2 which characterize the system

geometry, A the system heterogeneity, P the threshold

crossing in a homogeneous infinite medium.

Parameter G, which determines the signal amplification,

characterizes the curve range without affecting its qualitative

behavior. The results of calculations of the dimensionless

parameter U(x , y) = Q(x , y = L2)/G cos θ depending on

the dimensionless coordinate of the emission exit point

X = x/L2 are shown in Fig. 2. For short characteristic

heterogeneity lengths L0. (A < 1, Fig. 2, a), the scattered

waves passing through point x = 0 on the symmetry line
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y = L2/2 are amplified as much as possible. For the

angle θ close to π/2 (distance along axis 0Y ), the half-

width of the coordinate region where scattering takes place

is close to L0. Reduced scattering angle caused the

increase in the coordinate region where the amplification

takes place, however, the scattered wave amplification

decreases. Increased characteristic heterogeneity length

(and coefficient A (Fig. 2, b, A = 1)) causes widening of the

maximum amplification region and shifting of the maximum

amplification towards the right boundary of the interaction

region. Since the optical path covered by the beam in

the field amplification region grows with the reduction

of the angle θ, then the signal amplification also grows.

For A ≫ 1 when L2 < L1A + L1B is satisfied, the simplified

equation (16) is valid, and the main emission portion exits

through the boundary x = L1B .

Breaks of the curves in Fig. 2 are associated with the

test wave entrance through the boundary x = −L1A or the

boundary y = 0. The squared absolute value of emission

amplitude is expressed as follows

|a2(x̃ , ỹ)|2 = C exp(2ReQ(x̃ , ỹ)/ cos θ). (21)

It should be noted that the angular dependence of the

scattered wave intensity in a heterogeneous medium de-

pends heavily on the amplification threshold crossing at

the the given pumping wave amplitude. This is because

of the fact that the wave propagating at small scattering

angles θ passes consecutively the amplification region (near

the origin of coordinates) and damping region (near the

boundaries). Therefore, when the threshold is exceeded to

a minor extent, the integral amplification may be suppressed

due to absorption in the region where no interaction is

present (Fig. 2, a). For low damping and large A, scattering
at small angles is more intensive (Fig. 2, b).

It should be noted that since scattering is deter-

mined by several parameters with length dimension

(L0, L1A, L1B , L2), the choice of dimensionless parame-

ters A, G, P to describe the process is ambiguous. In some

cases, Ã = 2γ1/k0 and G̃ = µ2µ1L0/γ1 may be more conve-

nient. Then the expression for Ŵ(x) will be as follows

Ŵ(x) = G̃

(

Ã arctg

(

Ã−1 x
L0

cos(θ/2)

)

− P−1 x
L0

− 2iÃ ln

(

1 + Ã−2 x2

L2
0

cos2(θ/2)

))

.

Scattered emission intensity calculation

The experimental study of BSS are focused on the

scattered field intensity at the wave interaction region

exit rather that on the scattered field amplitude [19–21].

According to the findings in the previous section, the
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Figure 3. Scattered emission intensity S vs. scattering angle θ

at different pumping wave heterogeneities A, spatial amplification

coefficient in a homogeneous medium G = 1, instability threshold

crossing in a homogeneous medium P = 1 (a), 5 (b), Scattering
region dimensions L1A/L2 = L1B/L2 = 2.5.

scattered wave intensity is

IS(θ, L0, L1A, L1B , L2) =

{ +L1B
∫

−L1A

|a2(x , y = L2)|
2 sin θdx

+

L2
∫

0

|a2(x = L1B , y)|2 cos θdy

}

.

(22)

By substituting (21) in (22), after integration ,we obtain the

explicit form of the scattered emission intensity vs. the test

wave intensity:

S(θ, L0, L1A, L1B , L2) = IS(θ, L0, L1A, L1B , L2)/|C|2.
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At L2 < (L1B + L1A) tg θ

S(θ, L0, L1A, L1B , L2) =

{ −L1A+L2 ctg θ
∫

−L1A

exp
(

2
(

G(x)

− G(−L1A)
)

)

sin θdx +

−L1B
∫

−L1A+L2 ctg θ

exp
(

2
(

G(x)

− G(x − L2 ctg θ)
)

)

sin θdx +

L2
∫

0

exp
(

2
(

G(L1B)

− G(L1B − y ctg θ)
)

)

cos θdy

}

.

At L2 > (L1B + L1A) tg θ

S(θ, L0, L1A, L1B , L2) =

{ L1B
∫

−L1A

exp
(

2
(

G(x) − G(−L1A)
)

)

× sin θdx +

(L1A+L1B ) tg θ
∫

0

exp
(

2
(

G(L1B) − G(L1B

− x ctg θ)
)

)

cos θdy +

L2
∫

(L1A+L1B ) tg θ

exp
(

2
(

G(L1B)

− G(L1A)
)

)

cos θdy

}

.

The calculation example for the scattered emission intensity

as function of the scattering angle at different heterogeneity

lengths is shown in Fig. 3. At low pumping wave intensities

(P = 1, Fig. 3, a), the signal is attenuated higher than

for propagation along axis 0X (θ → 0), and the degree

of attenuation is determined by the amplification regions

dimensions (L0) vs. the total plasma length (L1A and

L1B). Since (L1A + L1B > L2), for propagation across

the scattering region (θ → π/2), the signal attenuation at

small A is lower and the test wave intensity amplification is

observed at large A.
When the convective instability threshold is exceeded to

a high extent (P = 10, Fig. 3, b) and dimensions L0 and

L2 are close to each other, the angular dependence is very

low. When A < 1, the scattered energy increases with the

scattering angle, and when A > 1, it grows.

A similar calculation of the scattering intensity as function

of coefficient A at several scattering angles is shown in

Fig. 4. When the convective instability threshold is exceeded

to a great extent, the emission intensity grows with an

increase in the characteristic heterogeneity size. Curve

saturation in Fig. 4 is associated with the fact that the

characteristic heterogeneity size exceeds the interaction

region size. As discussed above, when the threshold is

exceeded to a low extent, electromagnetic wave damping

plays a significant role causing qualitative change in the

angular dependence of the scattered emission.

Either the scattered emission power IS vs. the pumping

wave power I0, W1 = IS/I0 at the pre-defined test wave

amplitude I2, or the power IS vs. the test wave power I2
at the pre-defined I0, W1 = IS/I0 is of physical significance.

The pumping wave intensity is

I0 = |ε0|
2L2,

and the test wave intensity is

I2 = |C|2(L2 cos θ +
(

L1A + L1B) sin θ
)

.

To assess the applicability of the findings, we will show

the results of the experiments with laser emission BSS.

In experimental conditions [21], where laser emission BSS

was studied in low-density gas target plasma with the

following parameters ωLe = (3.1−8.9) · 1013 s−1, ω0=
=2 · 1014 s−1 (CO2-laser)→ λ0∼=10−3 cm, Te =
= 50− 100 eV energy flux density in a beam,

p = (1011−1013)W/cm2; Ve/VTe
∼= 0.3, the instability

threshold P = 1 is achieved at the energy flux

density plimit = (1.5 · 108 ÷ 2.6 · 1010)W/cm2, and

amplification coefficient q = G/L2 is calculated as

G/L2
∼= (4.5 · 102 ÷ 4.2 · 103) cm−1. Since in these

experiments p > plimit, then the scattered emission

growth as exp(qx) shall be expected, where the

maximum x is determined by the acoustics length

and is equal to L1 = λ0(L2/2λ0)
2 ∼= (1.6 · 10−2 ÷ 10) cm

and G ∼= (7.2÷ 4.2 · 104).
In our numerical calculations, q is equal to

≈ 2 · 102 cm−1. Hence, the wave amplification coef-

ficients coincide by the order of magnitude. If the

experimental value is assumed for L1, then we obtain

G(L1A + L1B)/L2
∼= (3.2−2 · 103), which almost coincides
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Figure 4. Scattered emission intensity vs. pumping wave

heterogeneity A at different scattering angles θ; pumping

wave parameters G = 1, P = 5; scattering region parameters

L1A/L2 = L1B/L2 = 2.5.
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with the experimental data. The difference shows that

additional factors are present in the experiments which

influence BSS and have not been included in the theoretical

model.

Conclusions

The study was focused on the BSS process in a 2D

localized and heterogeneous pumping wave field at an

arbitrary scattering angle using reduced equations for the

scattered and sound wave amplitudes in plasma. Accurate

solutions have been obtained for spatial distribution of the

scattered wave amplitude and scattered emission intensity.

The equations have been written in such a way as to ensure

the most obvious comparison with an infinite medium.

1. It has been found that, when the instability threshold

was exceeded to a great extent, the highest scattering

occurred in the direction along which the wave interaction

region has the largest size. In particular, for the scattering

region extended in direction 0X , the most intense scattering

shall take place in this direction.

2. When the scattered electromagnetic wave amplification

region size is limited by heterogeneity, scattering takes place

in direction 0X when the instability threshold is exceeded to

a great extent, provided that the characteristic heterogeneity

size is larger than the lateral dimension of the interaction

region. Otherwise, scattering takes place in lateral direction

(lower curves in Fig. 3, b).

3. When the instability threshold is exceeded to a low

extent and the electromagnetic wave amplification in the

interaction region is comparable with damping in the

neighborhood, the scattering emission dependence becomes

more complicated.

4. Comparison of the calculations of scattered emission

intensity at BSS using the obtained equations with the exper-

imental data has demonstrated their qualitative agreement.
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