^{13.1} Определение концентрации донорной примеси в тонких слоях *i*-InGaAs

© М.С. Аксенов^{1,2}, Е.Р. Закиров¹, А.П. Ковчавцев¹, А.Е. Настовьяк¹, Д.В. Дмитриев¹

¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия ² Новосибирский государственный университет, Новосибирск, Россия E-mail: aksenov@isp.nsc.ru

Поступило в Редакцию 24 августа 2022 г. В окончательной редакции 21 сентября 2022 г. Принято к публикации 21 сентября 2022 г.

Описана методика, позволяющая путем анализа вольт-фарадных характеристик структур металл—диэлектрик—полупроводник или металл—полупроводник определять концентрацию фоновой донорной примеси в нелегированных слоях *i*-In_{0.53}Ga_{0.47}As с толщиной меньше ширины области пространственного заряда в приповерхностной области полупроводника в режиме сильной инверсии.

Ключевые слова: InGaAs, МДП-структура, вольт-фарадная характеристика, легирующая примесь, область пространственного заряда.

DOI: 10.21883/PJTF.2022.21.53712.19348

Нелегированные (собственные) слои тройного соединения *i*-In_{0.53}Ga_{0.47}As используются в различных типах и конструкциях дискретных фотодиодов, а также в фотодиодных матрицах [1–3] в качестве активного слоя поглощения фотонов для регистрации светового излучения в ближнем ИК-диапазоне (1.1–1.7 μ m). Одним из основных требований, предъявляемых к слою *i*-InGaAs, который, как правило, имеет *n*-тип проводимости, является низкая ($\leq 10^{15}$ cm⁻³) концентрация фоновой донорной примеси (N_d) [1].

Для определения и контроля величины N_d (распределения N_d по глубине) в полупроводниковых пленках с высоколегированным подслоем преимущественно используются емкостные методы: анализируются высокочастотные вольт-фарадные (С-V) характеристики структур металл-диэлектрик-полупроводник (МДП) в режимах обеднения и инверсии или барьеров Шоттки (контакт металл-полупроводник) при обратных напряжениях смещения. Стандартно N_d определяется исходя из величины плато емкости в режиме сильной инверсии или при отрицательных смещениях для МДП-структур [4] или барьеров Шоттки [5] соответственно. С-Vхарактеристики МДП-структур на основе InGaAs анализировались в работах [6-10]. Однако данная методика не позволяет определять величину N_d в слоях с толщиной меньше, чем максимальная толщина слоя обеднения ширина области пространственного заряда (ОПЗ), в режиме сильной инверсии. Это связано с тем, что величина емкости в этом случае в основном определяется толщиной полностью обедненного полупроводникового слоя и не зависит от N_d в нем.

В настоящей работе описаны методика и особенности определения N_d в слоях *i*-In_{0.53}Ga_{0.47}As с толщиной меньше ширины ОПЗ на основе анализа C-V-характе-

ристики МДП-структур в совокупности с теоретическими расчетами.

В экспериментах использовались гетероэпитакструктуры $i-In_{0.53}Ga_{0.47}As$ $(500 \text{ nm})/n^+$ сиальные Ga_{0.53}Al_{0.47}As (300 nm), выращенные на epi-ready полуизолирующих подложках InP (001) методом молекулярнолучевой эпитаксии. После выращивания слоев и обработки пластин в смеси HCl: $H_2O = 1:10$ в течение 60 s для удаления остаточных окислов на поверхности образцов синтезировались слои SiO₂ толщиной 75 nm при температуре 195°С. Круглые контакты площадью $2 \cdot 10^{-3} \text{ cm}^2$ изготавливались путем напыления металлических слоев Ti (20 nm)/Au (200 nm) через маску. Омический контакт к *n*⁺-слою формировался путем впаивания In после соответствующих фотолитографических операций и травления слоев SiO₂ и *i*-In_{0.53}Ga_{0.47}As с края образца. *С*-*V*-характеристики МДП-структур измерялись с помощью анализатора импеданса Keysight B1500A и термостатированной зондовой станции в темноте.

На рис. 1 представлены температурные зависимости *C*-*V*-характеристик, измеренных на частоте переменного сигнала 1 MHz. В диапазоне температур 270-330 K С-V-кривые растянуты по оси напряжений за счет закрепления уровня Ферми на интерфейсных состояниях с плотностью $D_{it} > 10^{13} \,\mathrm{eV}^{-1} \cdot \mathrm{cm}^{-2}$ и ближе к середине запрещенной зоны [9,10]. В связи с этим режим сильной инверсии не достигается и концентрацию остаточной легирующей примеси определить невозможно. При понижении температуры ниже 200 К происходит постепенное вымораживание интерфейсных состояний [11], что приводит к откреплению уровня Ферми и появлению плато на С-V-кривых при отрицательных напряжениях смещениях. Отметим, что уменьшение величины емкости в режиме обогащения (при положительных смещениях $\sim 1 \, V$) в основном связано с уменьшением

Рис. 1. Температурные зависимости C-V-характеристик МДП-структур Au/Ti/SiO₂/*i*-In_{0.53}Ga_{0.47}As, записанные при частоте переменного сигнала 1 MHz.

Рис. 2. Теоретические C-V-характеристики МДП-структуры на основе In_{0.53}Ga_{0.47}As с $N_d = 1 \cdot 10^{15}$, $5 \cdot 10^{15}$ и $1 \cdot 10^{16}$ сm⁻³ при температуре 78 К. Точками отмечена величина емкости плоских зон (FB).

относительной диэлектрической проницаемости окисла SiO_2 с понижением температуры. При температурах ниже 140 К вид C-V-кривых существенно не изменяется.

На рис. 2 представлены теоретические C-V-кривые МДП-структур Au/Ti/SiO₂/*n*-In_{0.53}Ga_{0.47}As при температуре 78 K и различных значениях концентрации N_d (в диапазоне $10^{15}-10^{16}$ cm⁻³), однородно распределенной по глубине слоя In_{0.53}Ga_{0.47}As. Теоретическая максимальная ширина ОПЗ при температуре жидкого азота (77 K) составляет около 2.5 и 0.7 μ m для концентраций донорной примеси 10^{15} и 10^{16} cm⁻³ соответственно, что больше толщины слоя *i*-In_{0.53}Ga_{0.47}As, равной 0.5 μ m. Таким образом, величина емкости на плато при отрицательных смещениях определяется толщиной слоя *i*-In_{0.53}Ga_{0.47}As и незначительно меняется с из-

Методика расчета теоретических C-V-кривых в предположении отсутствия интерфейсных состояний подробно описана в работе [12]. При расчетах использовалась статистика Ферми–Дирака, учитывались непараболичность закона дисперсии и квантование энергии электронов в области пространственного заряда. Параметры In_{0.53}Ga_{0.47}As, используемые в расчетах, представлены в [13]. Толщина и диэлектрическая проницаемость слоя SiO₂ в расчетах полагались равными 75 nm и 4.8 (при 78 K) соответственно.

Таким образом, для МДП-структур с толщиной слоя $n-In_{0.53}Ga_{0.47}As$ меньше ширины ОПЗ в приповерхностной области полупроводника концентрацию доноров из измерений емкости МДП-структуры в инверсии определить не представляется возможным, поскольку влияние N_d на плато при отрицательных смещениях пренебрежимо мало и сопоставимо с точностью измерений величины емкости.

Однако, как видно из рис. 2, крутизна перехода на C-V-кривых из режима обогащения (положительные напряжения смещения) в режим инверсии (отрицательные напряжения смещения) сильно зависит от величины N_d . Отметим, что влияние интерфейсных состояний на емкость в этом случае отсутствует, поскольку теоретические кривые рассчитывались в предположении их отсутствия.

На рис. З показаны экспериментальные частотные зависимости C-V-характеристик МДП-структур Au/Ti/SiO₂/*i*-In_{0.53}Ga_{0.47}As, измеренные при температуре 78 К. На экспериментальных C-V-кривых можно выделить четыре характерные области. Первая область

Рис. 3. Слева — экспериментальные частотные зависимости C-V-характеристик МДП-структур Au/Ti/SiO₂/*i*-InGaAs. Справа — теоретические C-V-характеристики при частоте переменного сигнала 1 kHz без учета последовательного сопротивления (*I*) и при частоте переменного сигнала 1 MHz с учетом последовательного сопротивления 500 Ω (*2*).

соответствует положительным напряжениям смещения, где величина емкости уменьшается с увеличением частоты переменного сигнала, что связано в основном с влиянием пограничных ловушек на границе раздела SiO₂/*i*-In_{0.53}Ga_{0.47}As [14] и частично с сопротивлением омического контакта и *n*⁺-слоя.

Вторая область связана с резким уменьшением величины емкости при напряжениях смещения от -0.1 до -0.3 V (вблизи емкости плоских зон), практически не имеет заметной частотной дисперсии, что обусловлено низкой $D_{it} < 10^{11} \, {\rm eV}^{-1} \cdot {\rm cm}^{-2}$ (78 K) вблизи дна зоны проводимости [9,10]. Данная область крайне важна для определения концентрации донорной примеси с хорошей точностью. Совпадение наклона теоретических C-V-кривых (рис. 3, кривые 1, 2) с экспериментальными в данной области достигается при значениях $N_d = (1.2 - 1.4) \cdot 10^{15} \, \mathrm{cm}^{-3}$. Просадка емкости в режиме обогащения с увеличением частоты при расчетах компенсировалась за счет добавления последовательного сопротивления. Сдвиг экспериментальной С-V-кривой относительно теоретической по оси напряжения на величину $\sim 0.6 \, V$ связан с влиянием встроенного в SiO₂ заряда.

В третьей области в диапазоне напряжений смещения от -0.3 до -0.8 V наблюдается хорошо выраженная частотная дисперсия емкости, связанная с влиянием интерфейсных состояний вблизи середины запрещенной зоны [6–10]. Плотность интерфейсных состояний, определенная на основе анализа наклона условно высокочастотной экспериментальной C-V-кривой и теоретической высокочастотной C-V-кривой (рис. 3, кривая 2) в рамках метода Термана, составляет величину $(4.5-5) \cdot 10^{11} \text{ eV}^{-1} \cdot \text{сm}^{-2}$ (78 K). Данная область ограниченно годна для определения концентрации донорной примеси. Достаточно хорошее совпадение наклона с наклоном теоретических кривых (рис. 3, кривые I, 2) наблюдается только для высокочастотной (1 MHz) экспериментальной кривой.

Четвертая область (плато при отрицательных напряжениях до -2 V), как отмечалось ранее, определяется в основном толщиной слоя i(n)-In_{0.53}Ga_{0.47}As.

образом, в работе проведен Таким анализ температурных (78–330 K) и частотных (1 kHz–1 MHz) зависимостей С-V-характеристик МДП-структур Au/Ti/SiO₂/*i*-InGaAs/*n*⁺-InGaAs. Показано, что при толщине слоев InGaAs меньше толщины области пространственного заряда концентрацию донорной примеси в активном слое можно определить на участках крутого падения емкости (режим обеднения и слабой инверсии), наклон которых существенным образом зависит от концентрации легирующей примеси. При этом необходимым условием для применения данной методики является отсутствие существенного вклада в емкость составляющей, связанной с перезарядкой интерфейсных состояний, что может достигаться 1) путем увеличения частоты переменного сигнала, 2) за счет пассивации границы раздела и уменьшения D_{it} в верхней половине

запрещенной зоны до значений $\leq 10^{12} \, \mathrm{eV}^{-1} \cdot \mathrm{cm}^{-2}$ (300 K) либо 3) за счет уменьшения температуры C-V-измерений (вымораживание интерфейсных состояний).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] A. Rogalsky, *Infrared detectors*, 2nd ed. (CRC Press, Boca Raton, 2020).
- [2] K.S. Zhuravlev, A.L. Chizh, K.B. Mikitchuk, A.M. Gilinsky, I.B. Chistokhin, N.A. Valisheva, D.V. Dmitriev, A.I. Toropov, M.S. Aksenov, J. Semicond., 43, 012302 (2022). DOI: 10.1088/1674-4926/43/1/012302
- [3] V.V. Preobrazhenskii, I.B. Chistokhin, M.A. Putyato, N.A. Valisheva, E.A. Emelyanov, M.O. Petrushkov, A.S. Pleshkov, I.G. Neizvestny, I.I. Ryabtsev, Optoelectron. Instrum. Data Proc., 57, 485 (2021). DOI: 10.3103/S8756699021050125
- [4] E. O'Connor, K. Cherkaoui, S. Monaghan, B. Sheehan, I.M. Povey, P.K. Hurley, Appl. Phys. Lett., 110, 032902 (2017). DOI: 10.1063/1.4973971
- [5] Ş. Karataş, A. Türüt, Physica B, 381, 199 (2006).
 DOI: 10.1016/j.physb.2006.01.412
- [6] S. Eom, M.-W. Kong, K.-S. Seo, in *Recent advances in nanophotonics: fundamentals and applications* (IntechOpen, 2020), ch. 7. DOI: 10.5772/intechopen.92424
- [7] S.K. Kim, D.-M. Geum, J.-P. Shim, C.Z. Kim, H.-J. Kim, J.D. Song, W.J. Choi, S.-J. Choi, D.H. Kim, S. Kim, D.M. Kim, Appl. Phys. Lett., **110**, 043501 (2017). DOI: 10.1063/1.4974893
- [8] C.-Y. Chang, C. Yokoyama, M. Takenaka, S. Takagi, IEEE Trans. Electron Dev., 64, 2519 (2017).
 DOI: 10.1109/TED.2017.2696741
- M.S. Aksenov, N.A. Valisheva, D.V. Gorshkov, G.Y. Sidorov, I.P. Prosvirin, A.K. Gutakovskii, J. Appl. Phys., 131, 085301 (2022). DOI: 10.1063/5.0078405
- [10] P.K. Hurley, É. O'Connor, V. Djara, S. Monaghan, I.M. Povey, R.D. Long, B. Sheehan, J. Lin, P.C. McIntyre, B. Brennan, R.M. Wallace, M.E. Pemble, K. Cherkaoui, IEEE Trans. Dev. Mater. Rel., 13, 429 (2013). DOI: 10.1109/TDMR.2013.2282216
- [11] F. Palumbo, F.L. Aguirre, S.M. Pazos, I. Krylov, R. Winter, M. Eizenberg, Solid-State Electron., 149, 71 (2018). DOI: 10.1016/j.sse.2018.07.006
- [12] A.P. Kovchavtsev, A.V. Tsarenko, A.A. Guzev, M.S. Aksenov, V.G. Polovinkin, A.E. Nastovjak, N.A. Valisheva, J. Appl. Phys., **118**, 125704 (2015). DOI: 10.1063/1.4931772
- [13] http://www.ioffe.ru/SVA/NSM/Semicond/GaInAs/index.html
- [14] Y. Yuan, L. Wang, B. Yu, B. Shin, J. Ahn, P.C. McIntyre, P.M. Asbeck, M.J.W. Rodwell, Y. Taur, IEEE Electron Dev. Lett., **32**, 485 (2011). DOI: 10.1109/LED.2011.2105241