07.3

Получение анизотипных гетероструктур для фотоэлектрического преобразователя на основе GaSb за счет твердофазных реакций замещения

© Г.С. Гагис, В.И. Кучинский, Д.Ю. Казанцев, Б.Я. Бер, М.В. Токарев, В.П. Хвостиков, М.В. Нахимович, А.С. Власов, В.И. Васильев

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: galina.gagis@gmail.com

Поступило в Редакцию 12 июля 2022 г. В окончательной редакции 12 июля 2022 г. Принято к публикации 29 августа 2022 г.

Продемонстрирована возможность изготовления структур фотоэлектрического преобразователя за счет твердофазных реакций замещения атомов Sb в полупроводниковых пластинах GaSb атомами As или P с одновременной диффузией Zn.

Ключевые слова: твердофазные реакции замещения, фотоэлектрические преобразователи, широкозонное окно, *p*-*n*-переход, легирование.

DOI: 10.21883/PJTF.2022.21.53702.19304

В технологии полупроводниковых приборов наряду с эпитаксиальными методами [1] также используются методы диффузии, например, для создания за счет диффузии Zn структуры с p-n-переходом на основе *n*-GaSb для фотоэлектрических преобразователей (ФЭП) [2]. Однако диффузионные методы позволяют создавать структуры не только с разным типом легирования, но и с приповерхностными областями, различающиеся по составу матричного материала, например, при изовалентном замещении в кристаллической решетке $A^{III}B^V$ элемента пятой группы B^V элементом C^V , что было продемонстрировано нами ранее [3]. Элементы пятой группы можно поставлять к полупроводниковой пластине $A^{III}B^V$ в виде паров подобно тому, как поставляется цинк при диффузионном процессе легирования.

Основными факторами, определяющими протекание реакции твердофазного замещения, являются температура в реакторе, длительность процесса и величина давления паров элемента C^{V} . В настоящей работе исследовались процессы замещения атомов Sb атомами As или P в пластинах GaSb. Замещение осуществлялось при температурах 570–585°C в течение 27–35 min.

В качестве источников паров элементов C^{V} использовались растворы-расплавы, поскольку давление насыщенного пара P_{C0} над чистым веществом C^{V} , как правило, крайне высоко. Так, при температуре 580°С давление P_{C0} над чистым веществом C^{V} для мышьяка составляет $5 \cdot 10^4$ Ра [4], а для красного фосфора — $4 \cdot 10^6$ Ра [5]. Над растворами-расплавами с атомной концентрацией компонента x_C^L давление паров компонента P_C может быть описано выражением [6]:

$$P_C = P_{C0} (x_C^L \gamma_C^L)^n,$$

где γ_C^L — коэффициент активности компонента в растворе-расплаве, n — количество атомов в молекуле

пара $C_n^{\rm V}$. Для As и P пары представляют собой смесь молекул $C_2^{\rm V}$ и $C_4^{\rm V}$, что усложняет выражение для P_C [6]. Однако в настоящей работе мы использовали допущение, что при $x_C^L < 0.1$ вероятность образования молекул $C_4^{\rm V}$ крайне низка и можно считать, что пар целиком представлен молекулами $C_2^{\rm V}$.

Растворы-расплавы типа $Ga-C^V$, содержащие As и P, обеспечивают слишком малую растворимость элемента С^V. Так, согласно [7], при 580°С растворимость Р и As в Ga составляет $x_P^L = 4 \cdot 10^{-5}$ и $x_{As}^L = 6 \cdot 10^{-3}$, что ограничивает давления паров $P_{\rm P}$ до $\sim 1 \cdot 10^2$ Pa, $P_{\rm As}$ до ~ 2 Pa. Расширить диапазон доступных давлений паров позволяет использование растворов-расплавов Sn-ZnSn C_2^V , в которых растворимость элементов пятой группы x_P^L , x_{As}^L достигает $\sim 5\cdot 10^{-2}$ [8,9], что расширяет диапазон доступных давлений паров на два порядка: РР до $\sim 1 \cdot 10^4$ Ра и $P_{\rm As}$ до $\sim 1 \cdot 10^2$ Ра. При этом одновременно с доставкой паров C^V обеспечивается доставка паров Zn. Таким образом, происходит одновременное формирование приповерхностного слоя твердого раствора $GaSb_{1-x}C_x^V$ и p-n-перехода, если пластина GaSb имеет *п*-тип легирования, как в случае использованных в настоящей работе GaSb: Te(001). Проникновение атомов C^{V} и Zn может происходить на разную глубину, что демонстрируют исследования методом вторичной ионной масс-спектрометрии (ВИМС) (рис. 1, а). Формирование тройного твердого раствора GaP_xSb_{1-x} в приповерхностных областях пластин GaSb подтверждается спектрами рамановского рассеяния (рис. 1, b). Как видно из рис. 1, b, в спектре рамановского рассеяния присутствуют полосы в диапазоне $350-390 \,\mathrm{cm}^{-1}$, соответствующие колебаниям GaP-типа. Данные о дисперсии фононных мод твердых растворов GaP_xSb_{1-x} в литературе отсутствуют, однако, исходя из общих соображений и опираясь на данные дисперсии фононов для твердых

Рис. 1. Измеренный методом ВИМС профиль зависимости объемной концентрации компонентов c от расстояния от поверхности d (a) и спектр рамановского рассеяния (b) для полупроводниковых пластин GaSb, обработанных в парах фосфора и цинка.

растворов GaAs_{1-y}P_y [10], можно сделать вывод, что состав образовавшегося твердого раствора GaP_xSb_{1-x} соответствует $x \sim 0.7$. Колебания GaSb-типа твердого раствора GaP_xSb_{1-x} нельзя выделить на фоне сигнала подложки GaSb, однако в пользу образования твердого раствора свидетельствует присутствие акустических мод DATA и DALA. Структуры, показанные на рис. 1, были изготовлены при обработке GaSb:Te(001) в парах P и Zn, полученных из растворов-расплавов Sn-ZnSnP₂ с $x_P^L = 5 \cdot 10^{-2}$ (рис. 1, *a*) и $4 \cdot 10^{-2}$ (рис. 1, *b*).

формирования Способ гетероструктур $p-A^{III}B_{1-x}^{V}C_{x}^{V}/n-A^{III}B^{V}$ с одновременной диффузией элемента пятой группы C^V и Zn может быть использован для получения ФЭП с широкозонным окном (ШО). Ранее ШО изготавливалось у ФЭП на основе GaAs и представляло собой слой Al_zGa_{1-z}As (z = 0.7 - 0.8),сформированный эпитаксиальным методом [11]. Как было показано в [11], оптимальная толщина ШО до 100 nm достаточна для предотвращения туннелирования носителей заряда и при этом не препятствует прохождению коротковолновой части преобразуемого излучения. Упомянутые в [11] толщины

ШО сопоставимы с толщинами приповерхностных областей $GaSb_{1-x}C_x^V$, которые могут быть получены методом твердофазных реакций замещения [3].

В настоящее время структуры ФЭП на основе GaSb, используемые для преобразования инфракрасного излучения, изготавливаются без ШО, а p-n-переход, как правило, формируется методом двухстадийной диффузии цинка. В конечном счете p-n-переход под контактами залегает на глубине до $1-1.5 \mu$ m [2], что сравнимо с результатами, показанными на рис. 1, *a*.

В настоящей работе при изготовлении тестовых структур для ФЭП в качестве источников паров использовались растворы-расплавы Sn-ZnSnP₂ с $x_P^L = 4 \cdot 10^{-2}$ или Sn-ZnSnAs₂ с $x_{As}^L = 3 \cdot 10^{-2}$. Зависимость внутренней квантовой эффективности Q_{in} от длины волны λ вычислялась на основе данных измерений коэффициента отражения R и внешней квантовой эффективности Q_{ex} . Максимальная $Q_{in} \sim 40\%$ наблюдалась на длинах волн $\lambda = 800-1600$ nm у образца GaP_xSb_{1-x}/GaSb, полученного при 570°C (рис. 2, *a*), и у образца GaAs_xSb_{1-x}/GaSb, полученного при 584°C (рис. 2, *b*). Данные результаты сравнимы с результатами для ФЭП на основе GaSb, полученными за счет двухстадийной диффузии цинка [2].

Рис. 2. Зависимость квантовой эффективности Q и коэффициента отражения R от длины волны λ для структур, полученных обработкой пластин GaSb в парах Zn и P (a) и Zn и As (b).

Результаты настоящей работы позволяют полагать, что при дальнейшей оптимизации технологий твердофазных реакций замещения предложенная методика станет одним из направлений по улучшению характеристик ФЭП на основе GaSb.

Финансирование работы

Исследования методом ВИМС проводились с использованием оборудования ЦКП "Материаловедение и диагностика в передовых технологиях" (ФТИ им. А.Ф. Иоффе), поддерживаемого Министерством науки и высшего образования России.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M. Razeghi, MOCVD challenge. Survey of GaInAsP-InP & GaInAsP-GaAs for photonic and electronic device applications, 2nd ed. (Taylor and Francis/CRC Press, 2010), p. 773. DOI: 10.1201/9781439807002
- В.П. Хвостиков, С.В. Сорокина, О.А. Хвостикова, М.В. Нахимович, М.З. Шварц, ФТП, 55 (10), 956 (2021). DOI: 10.21883/FTP.2021.10.51454.9686
 [V.P. Khvostikov, S.V. Sorokina, O.A. Khvostikova, M.V. Nakhimovich, M.Z. Shvarts, Semiconductors, 55, 840 (2021). DOI: 10.1134/S1063782621100134].
- [3] В.И. Васильев, Г.С. Гагис, В.И. Кучинский, В.Г. Данильченко, ФТП, **49** (7), 984 (2015). https://journals.ioffe.ru/articles/41976 [V.I. Vasil'ev, G.S. Gagis, V.I. Kuchinskii, V.G. Danil'chenko, Semiconductors, **49**, 962 (2015). DOI: 10.1134/S1063782615070234].
- [4] D.W. Green, R.H. Perry, Perry's chemical engineer's handbook. Section 2. Physical and chemical data, 8th ed. (The McGraw-Hill Companies, Inc., N.Y., 2008).
- [5] A. Smits, S.C. Bokhorst, Z. Phys. Chem., 91U (1), 249 (1916).
 DOI: 10.1515/zpch-1916-9114
- [6] Н.Д. Роенков, Неорган. материалы, 11 (6), 985 (1975).
- [7] R.N. Hall, J. Electrochem. Soc., 110 (5), 385 (1963).
 DOI: 10.1149/1.2425770
- [8] H. Borchers, B.G. Maier, Metall., 17 (8), 775 (1963).
- [9] А.С. Борщевский, М.Г. Высотина, Неорган. материалы, 12 (4), 615 (1976).
- [10] O. Pagés, J. Souhabi, A.V. Postnikov, A. Chafi, Phys. Rev. B, 80 (3), 035204 (2009). DOI: 10.1103/PhysRevB.80.035204
- [11] В.М. Андреев, А.А. Воднев, В.Р. Ларионов, Т.П. Пруцких, В.Д. Румянцев, К.Я. Расулов, В.П. Хвостиков, ФТП, 23 (4), 597 (1989).