19,11

Кристаллическая структура и термодинамические свойства германата CuEu₂Ge₂O₈

© Л.Т. Денисова¹, М.С. Молокеев^{1,2}, Л.А. Иртюго¹, Н.В. Белоусова¹, В.М. Денисов¹

 ¹ Сибирский федеральный университет, Красноярск, Россия
² Институт физики им. А.В. Киренского ФИЦ КНЦ СО РАН, Красноярск, Россия
E-mail: Idenisova@sfu-kras.ru

Поступила в Редакцию 19 августа 2022 г. В окончательной редакции 19 августа 2022 г. Принята к публикации 21 августа 2022 г.

> Из исходных оксидов CuO, Eu₂O₃ и GeO₂ с использованием твердофазного синтеза обжигом на воздухе в интервале температур 1223–1273 К получен германат меди-европия CuEu₂Ge₂O₈. Определена его кристаллическая структура (пр. гр. *Cm*). Методом дифференциальной сканирующей калориметрии исследовано влияние температуры на высокотемпературную теплоемкость синтезированного германата. Установлено, что на зависимости теплоемкости от температуры имеется экстремум, связанный с фазовым переходом. На основании экспериментальных данных по теплоемкости рассчитаны термодинамические свойства.

> Ключевые слова: германат меди-европия, твердофазный синтез, кристаллическая структура, термодинамические свойства.

DOI: 10.21883/FTT.2022.12.53667.460

1. Введение

Сложные соединения, содержащие оксиды германия и редкоземельных элементов, привлекают внимание исследователей и практиков возможностями их практического применения [1-4]. Наряду с исследованиями физико-химических свойств уже известных германатов, продолжаются работы по синтезу и поиску новых соединений. Так, например, в 2006 г. были получены германаты $CaY_2Ge_3O_{10}$ и $CaY_2Ge_4O_{12}$ [5]. Несколько ранее были синтезированы оксидные соединения $CuY_2Ge_2O_8$ и CuY₂Ge₄O₁₂ [6]. Заменой иттрия на редкоземельные элементы авторами последней работы получены германаты состава $CuR_2Ge_2O_8$ (R = La-Yb (за исключением Се и Lu)) [7]. К настоящему времени имеется не так уж много работ, посвященных исследованию свойств таких соединений. Авторы работы [7] считают, что структура германата CuY2Ge2O8 является моноклинной с возможными пространственными группами С2/m, Ст и С2. Имеются данные о том, что $CuY_2Ge_2O_8$, $CuLa_2Ge_2O_8$ [8] и $CuR_2Ge_2O_8$ (R = Pr, Nd, Sm, Eu) [9] имеют пространственную группу I1m1. По данным [7-10], германаты одинакового состава CuR2Ge2O8, а так же одни и те же соединения могут иметь различные пространственные группы. Имеются отрывочные данные по измерению оптических (R = Sm-Tm [11], Nd [10]) и магнитных свойств (R = La, Nd, Y [8], Pr, Nd, Sm, Eu [9]). Высокотемпературная теплоемкость (350-1000 К) измерена только для CuSm₂Ge₂O₈ [12]. Сведения о теплоемкости $CuY_2Ge_2O_8$ [8] и $CuR_2Ge_2O_8$ (R = Pr, Nd, Sm, Eu) [9] приведены только для очень низких температур. Принимая во внимание сказанное выше, представлялось

необходимым провести синтез $CuEu_2Ge_2O_8$, уточнить кристаллическую структуру и установить влияние температуры на его теплоемкость.

2. Эксперимент

Германат CuEu₂Ge₂O₈ синтезировали твердофазным методом из исходных оксидов (CuO — Alfa Aesor 99.9995%, Eu₂O₃ — 99.96%, GeO₂ — 99.999%). Предварительно прокаленные оксиды смешивали в стехиометрическом количестве и перетирали в агатовой ступке. Порошок прессовали в таблетку и отжигали в тигле с крышкой при температурах 1223, 1248 (по 10 h) и 1273 К (200 h). Через 10 h спеченный образец перетирали и снова прессовали. Фазовый состав полученного образца контролировали методом рентгеновской дифракции на дифрактометре Bruker D8 ADVANCE (СиК_α-излучение с графитовым монохроматором в области углов $2\theta = 11 - 90^{\circ})$ с линейным детектором VANTEC. Шаг сканирования по углу составлял 0.016°, а время экспозиции на каждый шаг 2s. Уточнение Ритвельда проведено в программе TOPAS 4.2 [13].

Зависимость теплоемкости от температуры германата $CuEu_2Ge_2O_8$ исследовали с использованием термоанализатора STA 449 C Jupiter (NETZSCH, Германия). Методика экспериментов описана нами ранее [12,14]. Погрешность измерения теплоемкости не превышала 2%.

3. Результаты и обсуждение

Почти все пики синтезированного $CuEu_2Ge_2O_8$ были проидицированы моноклинной ячейкой (пр. гр. Cm) с па-

Рис. 1. Кристаллическая структура CuEu₂Ge₂O₈.

Рис. 2. Экспериментальный (1), расчетный (2) и разностный (3) профили рентгенограмм CuEu₂Ge₂O₈ после уточнения Ритвельда; штрихи указывают расчетные положение рефлексов.

раметрами близкими к CuNd₂Ge₂O₈. Поэтому структура этого кристалла взята в качестве стартовой модели для уточнения. Для преобразования позиция Nd была замещена на ион Eu (рис. 1).

Тепловые параметры всех атомов уточнены в изотропном приближении. Уточнение шло стабильно и дало низкие величины *R*-факторов (табл. 1, рис. 2).

Координаты атомов и основные длины связей для исследованного германата приведены в табл. 2 и 3 соответственно.

На рис. З показано влиянии температуры на теплоемкость германата меди-европия. Видно, что молярная теплоемкость с ростом температуры от 350 до 1000 К увеличивается немонотонно. На зависимости $C_P = f(T)$ имеется небольшой экстремум с $T_{\rm max} = 548.7$ К. Следует отметить, что подобное наблюдалось и при исследовании температурной зависимости теплоемкости CuSm₂Ge₂O₈ ($T_{\rm max} = 498.5$ K) [12]. При этом на кривой дифференциального термического анализа наблюдается очень маленький размытый экстремум в области 475–518 К, который был отмечен и для $CuLa_2Ge_2O_8$ [7]. Согласно [12], наличие экстремума на кривой $C_p = f(T)$ не связано с термической нестабильностью $CuSm_2Ge_2O_8$. В то же время исследование влияния температуры на параметры элементарной ячейки $CuLa_2Ge_2O_8$ показало наличие плавного перехода моноклинной структуры в орторомбическую, который заканчивается при 548 К [7]. По данным последней работы объемно-центрированная орторомбическая ячейка достаточно просто получается из гранецентрированной моноклинной ячейки, а возможные моноклинные про-

странственные группы являются подгруппами орторомбических. Можно предположить, что подобная картина наблюдается и для CuEu₂Ge₂O₈. В этом случае, учитывая близость структур этого германата до и после

Таблица 1. Основные параметры съемки и уточнения CuEu₂Ge₂O₈

CuEu ₂ Ge ₂ O ₈
Cm
9.8613(2) 15.3679(3)
8.3523(2)
148.4658(6)
662.00(3)
4
4.11
3.12
2.43
1.69
1.23

Примечание. a, b, c, β — параметры ячейки; V — объем ячейки, Z — число формульных единиц в ячейке; факторы недостоверности: R_{wp} — весовой профильный, R_p — профильный, R_{exp} — ожидаемый, R_B — интегральный; χ^2 — качество подгонки.

Таблица 2. Атомные координаты и изотропные тепловые параметры $(Å^2)$ кристалла $CuEu_2Ge_2O_8$

Атом	x	у	z	$B_{\rm iso}$
Eu1	0.452(4)	0.1202(4)	0.203(5)	0.2(3)
Eu2	0.447(4)	0.1202(4)	0.712(5)	0.2(3)
Ge1	0.446(5)	0.5	0.444(6)	0.2(6)
Ge2	0.509	0.6	0.0106	0.2(5)
Ge3	0.452(5)	0.2877(8)	0.468(7)	0.2(4)
Cu1	0.448(5)	0.2977(11)	0.920(6)	1.9(6)
01	0.20(3)	0.5	0.06(3)	0.3(4)
O2	0.23(2)	0	0.40(3)	0.3(4)
O3	0.23(2)	0	.05(3)	0.3(4)
04	0.201(19)	0.05	0.37(2)	0.3(4)
05	0.128(11)	0.089(4)	0.628(13)	0.3(4)
06	0.143(11)	0.333(4)	0.160(11)	0.3(4)
07	0.318(11)	0.412(4)	0.803(12)	0.3(4)
08	0.312(12)	0.167(3)	0.344(14)	0.3(4)
09	0.180(11)	0.244(3)	0.540(13)	0.3(4)
O10	0.165(11)	0.234(3)	0.852(13)	0.3(4)

Eu1-O3	2.23(4)	Ge1-O4	1.94(3)
$Eu1-O4^i$	2.35(4)	$Ge1-O5^i$	1.66(6)
Eu1–O5 ⁱⁱ	2.71(6)	Ge1-O6	3.01(5)
$Eu15i-O6^{i}$	2.31(3)	$Ge2-O2^i$	1.79(10)
$Eu1-O7^i$	2.75(6)	$Ge2-O3^i$	1.95(2)
Eu1-O8	2.57(3)	Ge2–O7 ⁱⁱ	1.68(6)
$Eu1-O9^i$	2.55(6)	$Ge2-O8^i$	3.01(5)
$Eu1-O10^{ii}$	2.35(5)	$Ge3-5^i$	2.11(6)
Eu2–O1 ⁱⁱⁱ	2.39(8)	Ge3-O6	1.74(5)
Eu2-O2	2.31(7)	Ge3-O8	2.00(5)
Eu2-O5	2.62(2)	$Ge3-O9^i$	1.83(2)
Eu2–O6 ⁱⁱⁱ	2.44(5)	$Ge3-O10^i$	1.82(6)
$Eu2-O7^i$	3.08(3)	Cu1–O6 ⁱⁱⁱ	2.28(6)
Eu2-O8	2.18(5)	Cu1–O7	1.89(6)
Eu2-O9	2.49(5)	Cu1–O8 ⁱⁱⁱ	2.01(6)
$Eu2-O10^i$	2.60(4)	Cu1-O9	1.85(6)
Ge1-O1	1.72(12)	Cu1-O10	2.53(2)
Ge1–O3 ⁱⁱⁱ	3.03(10)	$Cu1-O10^i$	2.68(2)

Таблица 3. Основные длины связей (Å) в CuEu₂Ge₂O₈

Примечание. Элементы симметрии: (i) x + 1/2, -y + 1/2, z; (ii) x, y, z - 1; (iii) x + 1/2, -y + 1/2, z + 1.

фазового перехода, температурная зависимость теплоемкости в области 350–1000 К может быть описана уравнением Майера–Келли [15]:

$$C_p = a + bT - cT^{-2}, (1)$$

которое без учета фазового перехода для $CuEu_2Ge_2O_8$ имеет следующий вид:

$$C_p = (311.3 \pm 0.95) + (29.5 \pm 1.0) \cdot 10^{-3}T$$
$$- (31.92 \pm 0.86) \cdot 10^5 T^{-2} (I/mol \cdot K)$$
(2)

Коэффициент корреляции для уравнения (2) равен 0.9992, а максимальное отклонение от сглаживающей кривой — 0.54%.

Рис. 3. Температурная зависимость теплоемкости $CuEu_2Ge_2O_8(I, 2)$ и $Eu_2Ge_2O_7(3)$. I — данные рассчитанные по Нейману–Коппа, 2 — эксперимент.

На рис. З для сравнения приведены данные по температурной зависимости $Eu_2Ge_2O_7$ [16]. Видно, что в этом случае значения C_p имеют меньшие значения. Расчет теплоемкости CuEu_2Ge_2O_8 методом Неймана– Коппа [17], как сумма молярных теплоемкостей CuO [18] и $Eu_2Ge_2O_7$ [16] показывает, что значения C_p близки к экспериментальным (за исключением экстремума). Это можно было ожидать, так как на кривых $C_p = f(T)$ для оксида меди и германата европия подобные экстремумы отсутствуют.

С использованием температурной зависимости теплоемкости $CuEu_2Ge_2O_8$ (уравнение (2)) по известным термодинамическим соотношениям рассчитаны его термодинамические свойства (без учета фазового перехода). Эти результаты приведены в табл. 4. Можно отметить, что значения C_p при температуре > 350 превышают классический предел Дюлонга-Пти 3Rs, где R — уни-

<i>Т</i> , К	C_p , J/(K mol)	$H^{\circ}(T) - H^{\circ}(350 \mathrm{K}),$ kJ/mol	$S^{\circ}(T) - S^{\circ}(350 \mathrm{K}),$ J/(K mol)	$-\Delta G/T^*$, J/(K mol)
350	303.1	_	_	_
400	308.8	14.98	39.99	2.54
450	313.3	30.28	76.03	8.74
500	317.0	45.84	108.8	17.13
550	320.1	61.60	138.8	26.85
600	322.9	77.53	166.5	37.35
650	325.4	93.60	192.3	48.29
700	327.7	109.8	216.3	59.45
750	329.9	126.1	238.8	70.67
800	332.0	142.6	260.1	81.85
850	33.9	159.1	280.1	92.93
900	335.8	175.8	299.2	103.9
950	337.6	192.5	317.3	114.6
1000	339.4	209.4	334.5	125.2

Таблица 4. Термодинамические свойства CuEu₂Ge₂O₈

Примечание. * — $\Delta G/T = [H^{\circ}(T) - H^{\circ}(350 \,\mathrm{K})]/T - S^{\circ}(T) - S^{\circ}(350 \,\mathrm{K})].$

версальная газовая постоянная, *s* — число атомов в формульной единице германата.

4. Заключение

Синтезирован германат CuEu₂Ge₂O₈ и определена его кристаллическая структура. Установлено, что на температурной зависимости $C_p = f(T)$ в области T = 548.7 К имеется экстремум, связанный с фазовым переходом. На основании экспериментальных результатов по теплоем-кости рассчитаны термодинамические функции исследованного сложного оксидного соединения.

Благодарности

Авторы благодарят Красноярский региональный центр коллективного пользования ФИЦ КНЦ СО РАН.

Финансирование работы

Работа выполнена при частичной финансовой поддержке в рамках государственного задания на науку ФГАОУ ВО "Сибирский федеральный университет", номер проекта FSRZ-2020-0013.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Л.Н. Демьянец, А.Н. Лобачев, Г.А. Емельяненко. Германаты редкоземельных элементов. Наука, М. (1980). 152 с.
- [2] И.А. Бондарь, Н.В. Виноградова, Л.Н. Демьянец, Ж.А. Ежова, В.В. Илюхин, В.Ю. Кара-Ушанов, Л.Н. Комиссарова, Е.В. Лазаревски, Б.Н. Литвин, П.П. Мельников, Д.А. Мурашов, В.П. Орловский, К.К. Палкина, М.А. Петрова, И.А. Розанов, Н.Н. Чудинова, А.А. Фотиев. Соединения редкоземельных элементов. Силикаты, германаты, фосфаты, арсенаты, ванадаты. Наука, М. (1983). 288 с.
- [3] E.A. Juarez-Arellano, J. Campa-Molina, S. Ulloa-Godinez. Mater. Res. Soc. Symp. Proc. 848, FF6.15.1 (2005).
- [4] В.М. Денисов, С.А. Истомин, О.И. Подкопаев, Н.В. Белоусова, Э.А. Пастухов, Л.И. Серебрякова, Т.О. Квасова. Германий, его соединения и сплавы. УрО РАН, Екатеринбург (2002). 600 с.
- [5] H. Yamane, R. Tinimura, T. Yamada, J. Takahashi, M. Shimada. J. Solid State Chem. 179, 289 (2006).
- [6] U. Lambert, W. Eysel. Powder. Diff. 1, 2, 45 (1986).
- [7] U. Lambert, W. Eysel. Powder. Diff. 1, 3, 256 (1986).
- [8] H. Cho, M. Kratochvilova, H. Sim, K.-Y. Choi, C.H. Kim, C. Paulsen, M. Avdeev, D.C. Peets, Y. Jo, S. Lee, Y. Noda, M.J. Lawler, J.-G. Park. Phys. Rev. B 95, 144404-1 (2017).
- [9] H. Cho, M. Kratochvilova, N. Lee, H. Sim, J.-G. Park. Phys. Rev. B 96, 224427-1 (2017).
- [10] J.A. Campa, E. Gutiérez-Puebla, M.A. Monge, C.R. Valero, J. Rivas, I. Rasines. J. Solid State Chem. **120**, *2*, 254 (1995).
- [11] E.J. Baran, C. Cascales. J. Raman. Spectrosc. 30, 77 (1999).
- Физика твердого тела, 2022, том 64, вып. 12

- [12] Л.Т. Денисова, М.С. Молокеев, Ю.Ф. Каргин, Л.А. Иртюго, Н.В. Белоусова, В.М. Денисов. ЖНХ 66, 12, 1700 (2021).
- [13] Bruker AXS TOPAS V4: General profile and structure analysis softwere for powder diffraction data. User's munual. Bruker AXS Karsruhe, Germany (2008).
- [14] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин, В.В. Белецкий, В.М. Денисов. Неорган. материалы 53, 1, 71 (2017).
- [15] C.G. Maier, K.K. Kelley. J. Am. Chem. Soc. 54, 8, 3234 (1932).
- [16] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин, В.В. Белецкий, Н.В. Белоусова, В.М. Денисов. Неорган. материалы. 54, 2, 181 (2018).
- [17] J. Leitner, P. Chuchvalec, D. Sedmidubský. Thermochim. Acta 395, 27 (2003).
- [18] J. Laitner, D. Sedmidubský, B. Doušova. Thermochim. Acta 345, 49 (2000).

Редактор Д.В. Жуманов