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The article shows that in a magnetic system with a thin-walled balanced winding close to a force-free one,

a significant increase in the parameter θ = WMγ/MσM , is possible, which, according to the virial theorem,

characterizes the ratio of the energy of the magnetic system WM to the weight of equipment with a material

density γ , where under the action of electromagnetic forces there appears a mechanical stress σM . In a quasi-force-

free magnetic system, the main part of the winding is in a state of local equilibrium, and only a relatively small

part of the equipment is subject to stress. This part determines the weight of the entire system, and this weight can

be minimized. The configurations of balanced thin-walled windings are developed, at the boundaries two boundary

conditions are fulfilled simultaneously — the absence of the induction component normal to the boundary and

the constancy of the product of induction and radius. The authors consider an example of a system consisting

of a main part - a sequence of balanced
”
transverse“ modules in the form of flat discs and end parts, consisting

of a combination of
”
transverse“ modules and

”
longitudinal“ ones, having the form of rings elongated along the

axis with balanced end parts. It is shown that in the system under consideration, the characteristic dimensionless

parameter θ with an unlimited increase in the number of elements of the main part can reach a value of about 24,

and when the number of these elements changes within 20−40, it changes from 6 to 9.

Keywords: Quasi-force-free magnetic field, field energy, mass of a magnetic system, virial theorem, minimization

of the ratio of mass to energy.
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Introduction

The bulk force, equal to the sum of the electromagnetic

force and divergence of the elastic stress tensor, is zero in

a magnetic system being in equilibrium. The calculations

given in papers [1–3] provide the following expression that

relates magnetic system field energy WM to the integral of

elastic stress tensor Sii (virial theorem):

WM =

∫

B2

2µ0
dV = −

∫

V

Sii dV. (1)

The first integral here is taken for the whole unlimited

region. The second one covers region V where the

components of the elastic stress tensor are different from

zero. Magnetic system cross-section and, consequently,

volume and mass are determined by the level of permissible

mechanical stresses in magnetic system elements loaded by

electromagnetic forces.

Equation (1) is used in the Longmire’s book [2] and in

other papers for estimating the magnetic system’s energy to

mass ratio. Such estimates in the simplest case are based

on the assumption that a load caused by electromagnetic

forces is perceived only by current-carrying conductors that

generate the field. If the material of all conductors in this

case has identical density γ , the ratio of magnetic field

energy to winding mass M = γV follows from the given

equality (1):

W
M

= θ
σ

γ
, (2)

where σ — quantity characterizing the stressed state of

the winding material, θ — typical dimensionless parameter

(virial coefficient).

The energy to mass ratio in particular systems is

calculated taking into account their design features. For

instance, calculations of a torque-free thin-walled winding,

where the value of the tangential stress component was

used as σ , yield the value θ = 0.61 [4]. The generally

held opinion is that virial coefficient θ does not exceed

the unity. This assumption in general terms is given in

book [2]. It was confirmed by calculations of particular

systems in [5–7] and the data given in the ample survey [8].
Japanese researchers [9–12] have demonstrated that integral

equilibrium in the axial or radial direction can be achieved

by placing the conductors at a certain angle on a toroidal

surface. Local equilibrium is not present in the considered

systems, the load is perceived by conductors, and virial

parameter θ is close to unity.
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Magnetic system mass in the general case is determined

both by current-carrying conductors and by other structural

elements that ensure its strength, e.g. reinforcements.

Several recent papers have studied the possibilities of

constructing locally balanced (quasi-force-free) thin-walled

windings. A survey of these papers is given in book [13].
The application of such windings makes it possible to

construct magnetic systems with a decreased mass of loaded

elements. A strictly force-free system is perfect. However,

it was demonstrated in [2,3] that a magnetic system of finite

dimensions with a force-free system shall have boundaries

exposed to electromagnetic forces. Therefore, the task of

increasing the energy to mass ratio in systems with quasi-

force-free windings comprises two parts. The first one is

creation of a magnetic system as close as possible to the

force-free one. The second one is minimization of the mass

of elements that remain loaded by electromagnetic forces.

The goal of this paper is show possible ways to construct

magnetic systems with quasi-force-free windings that allow

for increasing the energy to mass ratio of a magnetic field

and achieving values of virial coefficient θ much larger than

unity.

1. Background. Problem of minimization
of mass of the magnetic system’s
unbalanced part

Thin-walled quasi-force-free windings in the local equi-

librium state, when absolute values of magnetic field

density take on equal values B = |B| on both winding

sides, are close to strictly force-free windings. Residual

equivalent stress in such a winding, calculated using the

Mises formula, is characterized by value σM = ηB2/(2µ0).
Strength coefficient η in a locally balanced thin-walled

winding can take on a value much smaller than unity.

Thereat, number η does not depend on winding thickness 1,

but is determined by ratio 1/R, where R is curvature radius

of the surface where the winding is located. In particular,

we have η ≈ 0.2 [14] in a single-layer cylindrical winding on

condition of 1/R ≈ 0.1. Cross-section and, consequently,

mass of balanced conductors in a locally balanced winding

is determined not by material strength, but by other factors,

e.g., by critical current density. A limit case in this paper

will be a system with a quasi-force-free winding where

the conductor thickness is so small that mass of such a

winding can be neglected as compared to mass of the

system elements exposed to electromagnetic forces.

An example of an axially symmetrical magnetic system

with a partially balanced boundary is the configuration

in Fig. 1 in the form of a module extended along the

axis (
”
longitudinal“), in the shape of a cylinder with

inner radius R1 and outer radius R2 with a thin winding

placed thereon [13]. The azimuthal component of the

electromagnetic force must be equal to zero at its whole

boundary, consequently, the normal component of poloidal

field density must be absent. This is true if the condition is

z
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Figure 1. Semi-infinite partially balanced thin-walled winding

with external reinforcement T .

met

ψP = rAφ = const = C1, (3)

where ψP — flux function of poloidal field, Aϕ — azimuth

component of vector potential. Absolute values of poloidal

field density on the balanced part of the thin-walled

boundary abc (Fig. 1) at point M and azimuthal field

density at point N must be equal to

BP(M) = BP(N) = µ0|iP |/(2πr) = µ0|ψi |/r, (4)

where iP — poloidal current in the winding,

ψi = µ0iP/2π — poloidal current function, r — radial

coordinate of point N. Thus, the second boundary condition

shall be met at this area:

rBP = µ0|ψi | = const = C2. (5)

Plotting of a field with the above-mentioned two bound-

ary conditions is an example of a nonlinear problem, since

a boundary shape is not assigned but is generated during

solving. Similar problems are considered in electrostatics, in

the theory of perfect liquid jets. Their difference consists

in the fact that values of the rB p product are constant in

the considered problem on the computational region bound-

aries, while constancy of electric field intensity on a part

of the boundary is assigned in electrostatics problems, and

constancy of flow velocity — in the theory of jets. Many

papers and several monographs, e.g. [15–19], are dedicated

to describing free-boundary flows in hydromechanics and

construction of electrodes with a constant field intensity in
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Figure 2. a — fully balanced thin-walled winding of great length (longitudinal module), located in the gap between two coaxial

shields; b — dependences characterizing the parameters of the longitudinal balanced module located between two coaxial shields: 1 —
(Re−R0)/(R i−R0) = f (R0/R1), 2 — Re/R i = f (R0/R1).

electrostatics. The conformal mapping method is efficiently

used in solving such plane field problems. Results of such

calculations can be used in calculations of axisymmetrical

systems with force-free windings at boundary areas located

away from the axis, where the field is close to a plane one.

The method described in [19] was used in this paper

to construct winding configurations meeting the specified

conditions. The procedure for constructing free-boundary

shapes by the iteration method is briefly described in the

Appendix.

The example in Fig. 1 demonstrates the aforesaid typical

feature of magnetic systems with a force-free field: such a

system cannot be completely force-free [2,3]. In particular,

analytical solutions of plane problems show that in the

general case both boundary conditions can occur only

on a part of the boundary. For instance, electric field

intensity can be constant on the area in the vicinity of the

electrode edge [16,17]. A shape on whose boundary both

conditions are met can be constructed only in a few cases.

An additional factor in axially symmetrical two-dimensional

configurations is a different law of intensity decrease of the

poloidal and azimuthal fields in case of radius increase: 1/r2

in the first case and 1/r in the second case.

Boundary formation by the iteration method has shown

that the shape with a balanced area shown in Fig. 1 can be

constructed if the ratio of outer radius R2 to inner radius R1

does not exceed the value A = R2/R1 ∼ 1.64. For a long

magnetic length system we have the following expression

for the total energy of poloidal and azimuthal fields per unit

length: W ′

M ∼ πR2
1(1/2 + lnA)B2

0/µ0, where B0 is density

of a homogeneous poloidal field on the axis of a long

magnet. The balanced boundary abc , which comprises a

part of the internal cylindrical boundary and its end area,

adjoins the unbalanced outer cylindrical part of winding cd,
where the condition of constancy of functions ψP and ψi

is met, but condition (4) is not met. Neglecting the

magnetic pressure of a poloidal field, we can assume that

the unbalanced part of the winding is exposed to magnetic

pressure PM = (1/2µ0)B2
ϕ where Bφ = B0/A is azimuthal

field density. Cylindrical reinforcement T is required for

holding this winding part (Fig. 1). The action of magnetic

pressure in a thin reinforcement with thickness 1≪ R2,

which holds the thin winding, gives rise to azimuthal

mechanical stress σM ≈ σφ = PMR2/1. From here we find

the reinforcement thickness and mass (per unit length)
1r = PMR2/σM , M ′ = 2πR21γ = 2πR2

2PMγ/σM . Then we

find the energy to mass ratio

W ′

M

M ′
≈
σM

γ

(

1

2
+ lnA

)

. (6)

According to formula (2), the virial coefficient takes

on value θ = γW ′

M/σMM ′ ∼ 1/2 + lnA. The limit value

of this parameter for the system shown in Fig. 1 is

θ ∼ 0.5 + ln 1.64 ∼ 1.

Book [14] gives the results of configuration calculations

for a semi-infinite module located in the gap between two

coaxial cylinders with radii R0 and R1 with a zero magnetic

potential specified on them (Fig. 2, a). The calculations

by the iteration method (Appendix) showed that at the

specified value of R1/R0 ratio there is only one shape having

inner radius Ri and outer radius Re , on the whole boundary

of which the rAϕ and rB p products are maintained constant.

Fig. 2, b shows the dependences of the (R1−R0)/(Ri−R0)
ratio and the A=Re/Ri aspect ratio on parameter R0/R1.

In the limit case R0/R1 = 0, when the balanced winding is

in a coaxial cylindrical shield, the said boundary conditions

can be met on the entire boundary only in case of a

certain radius ratio: Ri/Re/R2 ∼ 1/2.12/2.57 [14]. Thereat,
R2
1 = R2

e + Ri Re . Magnetic field energy of this system

per unit length is W ′

M = πR2
0[1 + 1/A + 2 lnA]B2

0/2µ0. The
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unbalanced element in this system is the short-circuited

diamagnetic shield.1 It is exposed to magnetic pres-

sure of a poloidal field with density B(R1) = R0Ri/Re .

Mass of the thin-walled external reinforcement that

perceives the magnetic pressure onto the shield is

M ′ = πR2
i (1 + 1/A)(B2

0/µ0)/(γ/σM). Parameter θ is deter-

mined using the formula

θ =
1 + 1/A + 2 lnA

2(1 + 1/A)
∼ 1, (7)

where A ∼ 2.12. As in the previous example, θ ∼ 1. In

the limit case, when condition R1−R0 ≪ R0 is met, and

the field in the gap is close to a plane one, the following

ratios hold true to the equilibrium configurations in Fig. 2:

Ri−R0 = R1−Re = (R1−R0)/4, (R1−R0) = 2(Re−R1).
A configuration of current lines on the modules’ bound-

aries can be calculated within the framework of the model

of the thin-walled force-free winding. It has been shown

in [20] that, when the value of the ratio of azimuthal

and poloidal field densities on both winding sides are

known, current lines are described by an equation that

relates the increment of the azimuthal coordinates of a point

on a current line upon a change in its radial coordinate

from value r1 to value r2 and an offset by segment dlp

in plane r−z :

1ϕ =

r 2
∫

r 1

B pdlp

Bϕr
. (8)

On the balanced areas, the angle between the vector of

linear current density and a tangent line to the outline of

the thin winding’s longitudinal cross-section at each point

is 45◦ . In this case the vector of linear current density is

parallel to the sum of poloidal and azimuthal field density

vectors which are equal in magnitude. Formula (8) in this

case is as follows

1ϕ =

r 2
∫

r 1

dlp

r
. (9)

Current lines on straight-line segments of equilibrium

boundaries of the longitudinal module with radius R have a

spiral shape: 1z = R1ϕ. Boundaries dlp = dr and current

lines on the plane part are described by the logarithmic

spiral equation

1ϕ =

r 2
∫

r 1

dr
r

= ln
r2
r1
. (10)

An unbalanced system element in the form of a cylinder

(reinforcement or shield) is present in all the considered

examples with longitudinal modules. Length of such a

1 The short-circuited diamagnetic shield is a conducting cylinder on

whose surface the condition of a zero magnetic flux is met. In a practical

implementation, the shield current distributed in compliance with the

adopted model can be generated by external sources.

cylinder is little different from length of a balanced module.

Therefore, virial parameter θ in such systems is close to

unity. A drastic way to increase this parameter is an

abrupt reduction of the mass of the elements perceiving

the unbalanced radial force. This requires a reduction of the

length of these elements and the forces acting on them.

2. Energy to mass ratio in a system of
balanced transverse modules

An abrupt decrease of the mass of unbalanced elements

is possible in a magnetic system consisting of a set of

alternating transverse modules. Two variants of this system

are shown in Fig. 3 and 4. Each transverse module is

a thin-walled locally balanced winding having the shape

of a rotation body whose axial size is much smaller than

the outer radius. In a system of unlimited length they

form a periodic structure with pitch h. A real finite-length

system, in addition to a set of alternating transverse module,

comprises two end parts of the magnetic system. Section

3 shows that these parts can be constructed so that the

boundary conditions in a system with a finite number of

transverse modules remain the same as in a system of

unlimited length. According to boundary condition (2),
the flux function of the poloidal field on the surface of

each module takes on a constant value which is equal

in absolute magnitude for each modules and changes its

sign upon transition from each module to the next one.

Thereat, condition ψP = 0 is met on the planes being the

boundaries of system elements. Then we will consider

the configurations where the pitch of the system of plane

modules is several times smaller than their outer radius.

Therefore, the form of equilibrium shapes in the vicinity of

the inner radius is determined by choosing a R0/h ratio,

where h is the system pitch (Fig. 3). The modules of two

types shown in Fig. 3, 4 differ only in the configurations of

the right-hand parts located away from the axis. Azimuthal

and poloidal field densities on the edge (nearest to the

axis) of each of these modules at point C (r = R0) take

on absolute values B(C) = µ0|i|2πR0 = µ0|ψi |/R0, while

at the other points of the balanced part of the boundary

we have the following according to condition (3)

B p = Bϕ = G0/r, (11)

where G0 = B(C)R0. Taking a randomly selected value of

the flux function at the module boundary |ψP | = ψ0, we

must calculate the configuration of a module on a part of

whose boundary the constancy of the rB = G0 product is

maintained. As distance from the axis increases, the module

becomes a flat disk having thickness t0, separated by gaps

d0 = (h−t0) from the adjacent modules. This ratio takes on

value t0/h = 1/2 in the limit case of a plane field, when

condition R0/h ≫ 1 is met. Dependence B p = 2ψ0/rd0

occurs in the middle of the transverse module’s boundary,

away from its edge, so that:

G0 = 2ψ0/d0. (12)

6 Technical Physics, 2022, Vol. 67, No. 2
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Figure 3. Two elements of a sequence of transverse modules (having unlimited length) with a partially balanced thin-walled winding

and reinforcement T0 . Values of dimensionless quantity Brh/ψ0 are plotted on the color scale.
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Figure 4. Two elements of a sequence of transverse modules (having unlimited length) with a fully balanced thin-walled winding,

short-circuited ring (ring) S0 and reinforcement T0 .

Fig. 3 shows the modules of the first type where the

local equilibrium condition is met on the boundary except

a ring-shaped area having width l = ab with radius Re .

The equilibrium conditions on this area are not met, mag-

netic pressure of the azimuthal field is higher than that of the

poloidal one, and a dielectric reinforcement with thickness 1

is required to hold the winding. Relative sizes being

unchanged, the whole magnetic system under consideration

(including the set of transverse modules and the end parts)

is characterized by two initial parameters: flux function ψ0

Technical Physics, 2022, Vol. 67, No. 2
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and pitch h. Magnetic field energy of one module W1 can

be calculated with a certain error (disregarding the edge

effects) using a formula based on the assumption that a

change in poloidal and azimuthal field densities in region

R0 < r < Re corresponds to dependence (11):

W1 =

Re
∫

R0

G2
0πhrdr
µ0r2

= W0

(

h
d0

)2

ln
Re

R0

, (13)

where W0 = (4πψ2
0)/(µ0h) = 107ψ2

0/h is the typical energy

of the magnetic system.

The exact energy value can be conveniently presented

as W1 = λW0(h/d0)
2 ln(Re/R0). Correction factor λ close

to unity can be found by a numerical calculation of the

field. Magnetic pressure of an azimuthal field with density

B(Re) = G0/Re on an unbalanced area of the boundary in

the form of a ring with width l and length 2πRe gives

rise to radial force Fr . Neglecting the action of a weaker

poloidal field on this area, we can calculate the absolute

value of force per unit length of the ring, while assuming

that azimuthal field density decreases according to (11):

F ′ = Fr/2πRe = QlB2(C)R2
0/2µ0R2

e = 2Q
ψ2
0 l

µ0d2
0R2

e

. (14)

Q in this formula is a dimensionless factor determined

by relative dimensions of the magnetic system. Reinforce-

ment T0 (Fig. 3) with cross-sectional area S must be used to

hold the winding with an unbalanced boundary area. Stress

σϕ ≈ F ′Re/S occurs in the reinforcement when Re ≫ S1/2.

In the case under consideration it is close to equivalent

stress σM calculated using the von Mises formula. Then we

calculate the mass of the reinforcement made of a material

having the specified mechanical stress σM

M1 = 2πγReS =
2πγR2

e

σM
= M0Q

(

h
d0

)2( l
h

)

, (15)

where γ is reinforcement material density,

M0 = (4πψ2
0/µ0h)(γ/σM) is typical mass of the magnetic

system. Mass of a reinforcement in case of the specified

length of area l, which receives magnetic pressure, does

not depend on radius Re and its cross-section area similarly

to an identical example given in Longmire’s book [2].
Formulas (12), (14) are used to find an approximate value

of the virial coefficient of the transverse module

θ1 =
W1γ1

M1σM
= 3 ln

Re

R0

. (16)

Dimensionless parameter 3 = λh/lQ in a system of

the first type (Fig. 3) is determined by system’s relative

sizes characterized by parameter R0/h. Adopting λ = 1

and Q = 1, we find an estimated value of number 3 = h/l .
The configuration of the equilibrium shape is formed

during a numerical calculation. Parameters ψ0 and h drop

out of from the formula for the energy to mass ratio.

Therefore, they can be chosen at random during a numerical

calculation. In the considered examples they were taken

equal to unity. It should be noted that as the R0/h ratio

increases, the equilibrium shape becomes all the closer

to the one calculated for a plane field. Thickness of this

shape t0 is equal to half the pitch h, while length l of the

unbalanced area is equal to zero [16,17]. Thus, when the

said ratio increases, reinforcement mass becomes arbitrarily

small, while coefficient θ1, calculated for an element of

an unlimited-length system, can be arbitrarily large. This

assumption becomes void for systems with an unlimited

number of elements, for which mass in the limiting case is

determined by the end parts of the magnetic system.

Construction of equilibrium shapes by the iteration

method, described in the Appendix, makes it possible to

meet both conditions on the module’s external boundary

with an acceptable accuracy. This is confirmed by an

example of a module of the first type given in Fig. 3.

The ratio of equilibrium shape’s radii for the chosen value

R0/h = 0.75 is Re/R0 = 2.86. Condition B pr = 4.2ψ0/h
is met on the balanced area of the boundary with an

error less than 3%. Construction can be more precise,

but it little affects the results of calculation of magnetic

field energy and mass of the short-circuited conductor that

perceives the load. The calculation has made it possible

to find module thickness t0, half the inter-module gap

d0 = h−t0, length of balanced area l, flux density at point C .

The values of the corresponding dimensionless parameters

are: d0/h = 0.42, t0/h = 0.58, l/h = 0, B(C) = 6.35ψ0/h2.

Thereat, the estimated value of parameter T = h/l = 2.94.

It corresponds to the virial parameter value θ1 ∼ 8.4. A

field and force calculation using the Comsol Multiphysics

program allows for determination of the numerical values of

dimensionless energy and mass of one module of the first

type: W1 ∼ 5W0, M1 ∼ 0.62M0, which yields a close value

of the virial coefficient: θ1 ∼ 8.06.

The second type of equilibrium shapes occurs when a

quasi-force-free winding with outer radius Re is in the field

of a coaxial short-circuited loop (diamagnetic shield). Such
a loop can be, for instance, a thin ring of rectangular

cross-section S0 with reinforcement T0 (Fig. 4). In this

case the winding is fully balanced, a load is perceived

by the material of the reinforcement that holds the ring.

Calculations for this system have been performed using the

boundary condition ψP = 0 on the ring surface. In a pulse

field this corresponds to the condition of a pronounced skin

effect. With a greater ratio of radii Re/R0 and the chosen

value R0/h = 0.75, the configuration of the left part of the

equilibrium shape and the d0/h ratio remain the same as

in the system in Fig. 3. For the given module we have

constructed configurations of a balanced boundary in the

presence of shields having different radius RS and different

lengths g , have calculated magnetic field energy W2, total

radial force Fr , reinforcement mass

M2 = γFr RS, σM , (17)

6∗ Technical Physics, 2022, Vol. 67, No. 2
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and have found the virial coefficient value for one element

θ2 =
W2

RSFr
. (18)

The module in the example shown in Fig. 4 is balanced

if RS = 3.2h, c = 0.18h, g = 0.05h. Small variations of the

given dimensions do not greatly affect the numerical value

of energy and mass. They take on values W2 ∼ 4.3W0 and

M2 ∼ 0.18M0 . Reinforcement mass in the second type of

the magnetic system is considerably smaller than in the first

one. This is due to the fact that, even in case of a small

cross-section of a short-circuited shield, its presence allows

for constructing a boundary with the required boundary

conditions (after appropriate selection of radius RS). The

virial coefficient for the module of the second type in this

example takes on a much higher value than in the first one:

θ2 ∼ 23.8.

3. Construction of the magnetic system
end parts

Rational construction of the end part is important because

it ensures overall equilibrium of the magnetic system. At the

same time, a significant part of the magnetic field energy

and magnetic field mass can be concentrated in this region.

The end part configuration is shown in Fig. 5. It is a

combination of same-type elements. Each n-th element

consists of a longitudinal and a transverse module with

numbers n′ and n′′. Fig. 5 shows an example of a system

with three such elements. The longitudinal and transverse

modules of each element are separated by narrow gaps.

These gaps virtually does not affect the field the force

lines of which pass round the module boundaries. Each

longitudinal module is characterized by inner radius Rn and

outer radius R′

n. The end part boundary should be plane Y
that divides the extreme module from a system of alternating

transverse modules with number 0 into two equal parts.

A half of the extreme module can be included into the

end element. The poloidal field flux function on the given

boundary can be taken equal to zero.

Distances between modules of adjacent elements, form of

end sections and configuration of
”
rounded“ boundaries at

the junction of longitudinal and transverse modules of each

element must be calculated so that the above-mentioned

conditions of constancy of flux function ψi and the B pr
product are met on the boundaries.

The first step in construction of a balanced end part of

the system is calculation of the inner radius of the first

longitudinal module R1 and construction of a configuration

of the region between the extreme element of the sequence

of transverse modules and transverse module 1
′′ (Fig. 5).

Then we will proceed from the assumption that the radial

size of these modules is much greater than the width of

the gap between them d1. Due to this, the values of

poloidal field density BP at points m0 and n1 having identical

radial coordinates r in the middle of the gap d1 can be

considered as equal. Parameter G = B pr at both points

takes on the equal value G0 = 2ψ0/d0. A difference of

poloidal field flux functions at the given points can be

represented as ψ0−ψ1 = B p(M0)rd1 = G0d1 = 2ψ0d1/d0.

The flux function at point a on the boundary of the

longitudinal module 1′, located in the region where the

poloidal field is virtually homogeneous, takes on the

value ψ1 = −(1/2)B1R2
1 = −(1/2)G0R1 = −ψ0R1/d0. It is

taken into account that magnetic field vector B1 in the

specified region has a different direction than vector B0,

while parameter G0 retains the same values as in the

adjacent element. Expressions for the inner radius of

longitudinal module 1′ and flux function ψ1 follows from

the given equations: R1 = 2d1−d0, ψ1 = ψ0(1−2d1/d0).
The value of gap d1 is varied during construction of a

boundary in the iteration process. Taking the determined

value of d1 and the corresponding values of radius R1

and flux function ψ1, we generate a shape on whose

boundary the second boundary condition R1B1 = G0 is

met, along with condition ψ = const = ψ1. Fig. 5 shows

the result of such construction. For the found values

d0/h = 0.42, d1/h = 0.49, Ri,1/h = 0.56, the flux function

at the boundary of the first module and flux density in the

gap take on values ψ1 = −1.33ψ0, B1 = −8.5ψ0/h2.

Cylindrical and flat thin-walled short-circuited shields Sn,

in addition to longitudinal and transverse modules, are lo-

cated in the end part. If the shields are absent, condition (4)
cannot be met on the entire boundary of the gap between

the adjacent modules. Indeed, the values of flux density at

points mn and nn+1, located at the same distance from the

axis and lying on the boundaries of the adjacent transverse

modules with numbers n and n + 1, are equal. At the same

time, the values of the B pr products are also equal on these

parts of the boundaries. However, with equal flux densities

at points en and f n+1, located at the boundaries of the

adjacent longitudinal modules with numbers n and n + 1,

the values of the given product at these points are different,

since the said points are at different distances R′

n and Rn+1

from the axis. Consequently, a system must be created

with differing values of flux densities at the boundaries of

the adjacent longitudinal modules. To do so, short-circuited

thin-walled cylinders (shields) Sn were placed between the

specified modules. They are shown by the heavy lines

in Fig. 5. Calculations of the magnetic system end part

were performed on the assumption that the flux function of

the poloidal field at the boundaries of all shields is constant

and takes on value ψp = 0. Magnetic flux passes round each

module. Thereat, the flux function of the poloidal field and

parameter Gn are determined by the following expressions:

ψn =
Gn

2Rn

[

R2
n − R2

S,n−1

]

=
Gn

2R′

n

[

R2
S,n − R′2

n

]

, (19)

where Rn — inner radius, R′

n — outer radius of the

longitudinal module, RS,n−1, RS,n — radii of the shields

between which the given module is located. The ratios

between the radii of the adjacent modules and shield radii
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Figure 5. End part of a finite-length magnetic system with a combination of longitudinal and transverse modules and the adjoining part

with a sequence of transverse modules.

must match the conditions of existence of configurations

where the equilibrium conditions are met at the whole

boundary of each longitudinal module, including its end

part. In the considered example of a system composed

of three two-module elements, given the chosen value of

radius of the first longitudinal module R1 = 0.56h, the

outer radius of this module R′

1 and shield radius RS,1 are

determined by the above-mentioned ratios for a balanced

thin-walled winding in a shield: R′

1 = 2.12R1 = 1.19h,
RS,1 = 2.57R1 = 1.44h. The next longitudinal module is

located between two shields with radii RS,1 and RS,2 . The

longitudinal modules are examples of equilibrium shapes

located between two coaxial shields — the inner and outer

ones (Fig. 2, a). With the given value for the ratio of inner

radius of n-th winding to radius of inner shield Rn/RS,n−1, a

configuration of the module with a constant value of the flux

function and the B pr product can be constructed only with

quite a well-defined value for the ratios of inner, outer radii

of the module and the radius of the external shield RS,n

to the radius of the internal shield RS,n−1. The values of

Technical Physics, 2022, Vol. 67, No. 2



March 2, 2023 0:14 1st draft

246 G.A. Shneerson, S.L. Shishigin

these ratios are given in Fig. 2, b. Thicknesses of the second

and third modules in the considered example in the first

approximation are taken equal, while gaps between these

modules and shields are taken equal to half the module

width. These dimension ratios take place in a plane field.

Their selection in this case is due to the fact that the

gap thicknesses are small as compared to the inner radii

of the said modules. This selection was used as the first

approximation. Then an updated construction of the module

boundaries using the iteration method is performed.

Axial forces in the system end part must be balanced. The

configuration of the longitudinal modules satisfies this con-

dition, while equilibrium of the shields is maintained using

additional short-circuited thin-walled plane conductors Pn

located between the transverse modules. Arrangement of

these conductors makes it possible to avoid an axial force

acting on the cylindrical shields, but a small axial force is

generated and acts on the plane part of conductor Pn and

its edge part (Fig. 6).

The said force can be balanced by magnetic pressure of

the field in the gap between the transverse module and the

said conductor. This can be achieved through appropriate

selection of a value for the flux function of the poloidal

field at the module boundary. Together with the cylindrical

shields, the plane conductors break the computational region

into autonomous fragments with a weak magnetic coupling

between them. The signs of the flux function at the

boundaries of the adjacent modules and the values of

product B pr = Gn = const are different.
”
Rounded“ areas

of the boundaries at junctions of longitudinal and transverse

modules are constructed in each fragment by the iteration

method, condition (4) being maintained on the same areas.

Cylindrical shields Sk in the system construction in the

above-mentioned way are not balanced and must be held

by reinforcements Tk , thickness of which are determined by

the permissible value of mechanical stress determined by

the difference of magnetic pressure on both shield sides.

Lengths of cylindrical shields and, consequently, masses of
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Figure 6. Fragment of the magnetic system end part located

between the second and third modules. The arrows show the

directions of the forces acting on plane conductor P2. Fr,2 —
force acting on the cylindrical shield S2 and transmitted by

reinforcements T2 .
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Figure 7. Angular element of the end part of the magnetic system

with shields Sk , plane rings Pk and reinforcements Tk .

reinforcements can be sufficiently small in case of a rational

selection of modules configuration. In an idealized system

we can disregard the mass of the plane conductors released

from integral axial forces. With such an assumption, only

the mass of the reinforcements, which hold the cylindrical

shields, is included in calculation of the virial coefficient for

the end parts. The energy and mass of the end part also

includes the energy and mass of a half of the extreme one

from the above-mentioned system of transverse modules

marked with 0 in Fig. 5.

The radial boundaries of transverse modules 1′′, 2′′, 3′′

shown in Fig. 5 are balanced by selecting their configuration.

Another element of the end part is a fragment that

includes two short longitudinal modules 4 and 5, short-

circuited cylindrical shields S3 and S4, plane short-circuited

conductors P3−P5 (Fig. 7). Trial calculations are performed

to choose an arrangement of these conductors which allows

for construction (by the iteration method) of modules 4

and 5 on whose boundary the boundary conditions (3)
and (5) are met. Cylindrical shields S3 and S4 and

plane short-circuited conductors P3−P5 are exposed to axial

electromagnetic forces. These forces are perceived by a

dielectric body consisting of two flat disks and connecting

ring K. The upper disk receives axial forces F4 and F5 acting

on conductors P4 and P5. The resultant of these forces is

applied to the ring top and is directed along the z axis in the

positive direction. The ring bottom is exposed to force F6

acting on conductor P3 and the lower disk. The flux

function at the boundary of the third module ψ3 = −0.84ψ0

in the considered example was calculated so that this force

is in the negative direction and is numerically equal to sum

F4 + F5. Thus, the whole set of the conductors shown in

Fig. 7 is balanced in the axial direction. Tension stress

originates in ring K with cross-sectional area S. Its absolute
value in case of uniaxial tension is |σ z | = σM = F6/S. It

determines the ring cross-section area. The radial forces

acting on flat disks P3, P4, P5 are negligible. Disregarding
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Table 1. Normalized values of forces acting on the shields and

the products of forces by shield radii

Shield number 0 1 2 3 4

(µ0h2/4πψ2
0)Fr,k 0.19 2.20 0.73 3.08 0.78

(µ0h/4πψ2
0)Rr Fr,k 3.20 1.39 1.92 7.07 2.51

the mass of these bodies, mass of the dielectric body can

be taken equal to the mass of ring K:

MK ≈ γSlK =
γF6lK

σM
, (20)

where lK is length of ring K.

Subsequent calculation was performed for a system

where all the short-circuited conductors, exposed to radial

forces, are held by dielectric reinforcements. Dielectric

material density γ is taken equal for all the cylindrical

reinforcements of the system and for ring K. The reinforce-

ments are shown in some figures (Fig. 1−4, 6, 7). When

calculating the mass of the loaded elements in the end part

of magnet M3, we can neglect the mass of the conductors

if their thickness is small as compared to thickness of the

dielectric reinforcements, and use formula (17):

M3 =
γ

σM

(

∑

RkFr,k + F6lK

)

, (21)

where Rk — radii of all thin-walled cylindrical shields,

Fr,k — radial forces acting on them.

The poloidal and azimuthal fields of the magnetic system

end part were calculated using the Comsol Multiphysics

program, the energy of the poloidal and azimuthal fields of

the end part W3 and the forces included in formula (21)
were found. As in the calculation of system A, boundary
conditions ψ0 = 1 and h = 1 were adopted. The results

of calculation of dimensionless forces (µ0h2/4πψ2
0)Fr,k are

given in Table 1.

The typical parameters for the holding system of angular

modules 4 and 5 are (µ0h2/4πψ2
0)F6 = 0.28, lK/h = 0.6.

This data was used to calculate the energy, mass and virial

parameter of the magnetic system end part:

(µ0h/4πψ2
0)W3 ∼ 38.2, (σMµ0h/γ4πψ2

0)M3 ∼ 16.2,

θ3 =
γW3

σMM3

∼ 2.35. (22)

The virial coefficient for a complete system, comprising

N alternating transverse modules of the first or second type,

can be calculated using the formula

θ6 =
γ[(N − 1)W1,2 + 2W3]

σM [(N − 1)M1,2 + 2M3]
. (23)

The number of transverse modules in this formula was

reduced by one since the energy and mass of one of them

Table 2. Virial coefficient for a system with a different number

of transverse modules

N (number of modules) 1 10 20 30 40

θ6 (the first module type) 2.35 3.81 4.75 5.35 5.76

θ6 (the second module type) 2.35 4.32 6.09 7.51 8.83

are taken into account in the calculation of the end parts.

The minimum value of this parameter, θ6 equal to θ3,

occurs at N = 1. The limit values of virial coefficients

θ6 = θ1 ∼ 8.06 and θ2 ∼ 23.8 are achieved in a system

of unlimited length (N ≫ 1) for the two above-mentioned

kinds of transverse modules.

The data of Table 2 shows that values of θ6, considerably

greater than unity, for the chosen dimensions of the

magnetic system elements are achieved when number N
is approximately several tens.

Conclusion

Mass of a magnetic system with conductors released

from electromagnetic forces is chiefly determined not by

the winding but by the elements exposed to the action of

these forces. Such elements are reinforcements that hold

the unbalanced parts of the windings and additional short-

circuited shields. The possibility to reduce the mass of

these elements has been considered within the framework

of a perfect system with a thin force-free winding. The

performed construction and calculations have demonstrated

the efficiency of using a system with many alternating

modules in combination with multi-module end parts of

a special configuration. Application of a combination of

longitudinal and transverse modules makes it possible to

minimize the mass of elements loaded by electromagnetic

forces. This can result in a considerable increase of values

of the virial coefficient that characterizes the energy to

mass ratio. The described methods for construction of

equilibrium shapes can be used in subsequent optimization

of similar magnetic systems. A key aspect in their

construction is the use of a combination of longitudinal

and transverse modules. Along with that, the suggested

configurations provide a basis for construction of magnetic

systems with quasi-force-free windings and calculation of

the virial coefficient taking into account the mass of the

balanced conductors.

Appendix

Construction of a free boundary by the iteration method

The iteration method is used to solve a problem with two

boundary conditions (2), (4), specified at the boundary with

an unknown configuration (the free boundary problem [19]).
Radii-vectors of boundary points can be conveniently pre-

sented as complex numbers: p(s) = z (s) + ir(s), where s
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is the parameter — arc length counted from the beginning

of the free boundary with specified coordinate p(0) = p0.

The magnetic field vector for poloidal field B(s) at this point
is also written in the complex form. The iteration process

consists of two stages.

Stage 1. Each iteration step includes a calculation of

the magnetostatic problem with the specified boundary

condition (2) through solving of an integral equation of

the first kind. The boundary is assigned at the first step

by an initial approximation, the boundary calculated at the

previous step is used at each subsequent step. Magnetic

field vector B1(s) = B1(s) exp(iα1) is directed along a

tangent line towards the conductor boundary, where α1
is the tangle line direction angle. Then, according to

the equilibrium condition, we adopt |Bϕ(s)| = B1(s) and

calculate constant C2 by averaging the function r |Bϕ(s)| at
a boundary with length l :

C2 =
1

l

∫

l

r |Bϕ(s)|dl(s).

Stage 2. The integral equation of the second kind is

solved to calculate the magnetostatic field with boundary

condition (4), where constant C2 was determined at the

first stage. The magnetic field vector at the boundary takes

on a new value B2 = B2 exp(iα2) and changes its direction

by angle 1α = α2−α1
A change of the angle means a violation of boundary

condition (2), according to which the magnetic field

vector must be directed along a tangent line towards the

boundary. To meet condition (2), we choose a new

value for the angle of tangent line slope at each point of

boundary α′ = α + λ1α, where λ is the iteration parameter

that accelerates process convergence: 1 < λ < 2 A new

coordinate for a free boundary node with number k + 1

at the given value of the angle of tangent line slope towards

boundary d p/ds = exp
(

iα′(s)
)

can be calculated using

the trapezoid formula: pk+1 = pk + hk exp[0.5i(α′

k + α′

k+1)],
k = 0, . . . , N − 1, where N is number of free boundary

elements, α′

k , α
′

k+1 is tangent line slope angle at the initial

and final point of each element, hk is its length. hk was

chosen so that the node points displaced in the given

direction (usually in parallel to one of the coordinate axes).
The iteration process is continued until the following

condition is met with the specified accuracy: α2−α1 = 0.

The examples of plane problem, which allow a comparison

with an analytical solution, have confirmed the convergence

of the iteration process on the basis of on an initial

approximation which is far from the final one [20].
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