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Excitation and ionization of a particle in a one-dimensional potential well

of zero radius by an extremely short light pulse
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The Migdal sudden perturbation approximation is used to solve the problem of excitation and ionization particles

in a one-dimensional potential of zero radius with an extremely short pulse. There is only one energy level in such

a one-dimensional the delta-shaped potential well. It is shown that for pulse durations shorter than the characteristic

period of oscillations of the wave function of the particle in the bound state, the population of the level (and the

probability of ionization) is determined by the ratio of the electric area of the pulse to the characteristic
”
scale“ of

the area inversely proportional to the size of localization of the particle in a bound state.
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Introduction

In recent years, possibility of obtaining unipolar electro-

magnetic pulses with non-zero electric area, defined as

SE ≡
∞
∫

−∞

E(t)dt,

E(t) — electric field strength at a given point in space (see
review [1] and cited literature) has been actively studied.

Such pulses can have many different applications, e.g., for

ultra-fast and efficient control of the dynamics of wave pack-

ets in matter, as compared to conventional bipolar pulses,

acceleration of charges, and other applications, see [1].

As the results of various studies demonstrate, the effect

of unipolar pulses on microobjects is determined by pulse

electrical area, rather than its energy, if the pulse duration

is less than the characteristic oscillation period of the wave

packet in matter [2–7]. Some methods for experimental

determination of radiation unipolarity and its electrical area

were first proposed relatively recently [8].

When excitation pulse duration is shorter than the char-

acteris.tic time T associated with the energy of the ground

state the standard Keldysh photoionization theory becomes

inapplicable [7]. And definition of some physical quantities,

such as Keldysh parameter, which sets the criterion of a

strong and weak field, requires revision.

To specify the degree of unipolar pulses effect on

quantum objects, a new physical quantity has recently been

introduced — an atomic scale of electric pulse area inversely

proportional to the characteristic size of the system [4].
As shown in this paper, the ground state population in

the simplest multilevel quantum systems (hydrogen atom,

quantum oscillator, etc.) is determined by the ratio of the

electrical pulse area to its atomic scale.

In the paper [7] the ionization of 3D quantum systems

(hydrogen atom, spherical quantum point, 3D potential of

zero radius) by a extremely short pulse was considered. It

was shown that ionization probability is also determined by

the ratio of the electric area of the pulse to its atomic scale,

which is inversely proportional to the characteristic size of

the system in the ground state.

Theoretical description of interaction between extremely

short and unipolar pulses and multilevel quantum systems

is a difficult problem. To model real quantum systems,

model of the zero-radius potential is attractive. This model

is actively used to study various processes in nuclear and

atomic physics, to describe the behavior of ions in external

fields, see [9–11] and the cited literature.

The problem of ionization from a 3D δ-pit by a circu-

larly polarized monochromatic wave has been considered

in [12–14]. In paper [15], the 3D zero-radius potential model

was applied to the analysis of electron ejection from negative

ions by unipolar pulses.

The simplest model is the 1D model of the zero-radius

potential. Despite its simplicity, it has also been used to

model various systems, such as water-like atoms, two-atom

molecules, ions, and more complex systems [16–19].

A number of papers have considered problems of interac-

tion of powerful laser radiation with atomic systems, which

have been modeled by a 1D zero-radius potential [20–22].
See more details about use of this model in various

problems in review [23] and cited literature.

As it was already noted above, recently it was demon-

strated that the probability of ionization of a wide class

of 3D quantum systems with extremely short pulses is

determined by the ratio of the electric area of the pulse to
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the recently introduced atomic scale of electric area, which

is inversely proportional to the specific size of the system [7].
This paper studies probability of conserving the ground

state and ionization of a particle in a 1D potential pit of zero

radius under the action of an extremely short pulse with

duration shorter than the characteristic time T associated

with the energy of the ground state, T = 2π~/E (E is the

energy of the particle in the ground state).
A comparison is made with the case of a 3D potential of

zero radius. It is shown that the probabilities of conserving

the bound state in the 1D and 3D cases are very different in

form. However, in 1D case it is also possible to introduce a

characteristic measure of the area S0, inversely proportional

to the area of electron localization in the bound state.

Theoretical consideration and discussion
of results

The Schrödinger equation with a delta potential in the 1D

case has the appearance of

ψ′′ +
2m
~2

(E −U(x))ψ = 0, (1)

U(x) = −V0δ(x).

Such pit has only one energy level E = − m
2~2V 2

0 . The

normalized wave functions of the bound state are given by

the expression [24]

ψ0(x) =
√
αeαx , x < 0,

ψ0(x) =
√
αe−αx , x > 0,

α ≡ m
~2

V0. (2)

In these expressions, the characteristic size of the electron

localization region is present

x0 =
1

2α
=

~
2

2mV0

. (3)

The duration of the excitation pulse τ is assumed to

be shorter than the bound state
”
oscillation period“ T ,

τ ≪ T = 2π~/E . For example, in the case of ion H−, for

which the zero-radius potential model is actively used, time

T = 5.4 fs in the 3D consideration [15]. Therefore, optical

pulses of attosecond duration can be actively used in similar

problems [25–27].
The wave function of the particle after the pulse in

the Migdal sudden approximation has the well-known

form [6,7,28]:

9+(x) = ψ0(x)ei q
~

SE x , (4)

where q — particle charge.

Amplitude of the bound state after the pulse is defined

by the equation

a0 =

∞
∫

−∞

ψ2
0(x)ei q

~
SE x dx .

By integration, from equations (2) and (4) we can find

the population of the particle bound state in the pit after the

end of the pulse:

w0 = |a0|2 =
1

(1 + S2
E/S2

0)
2
. (5)

Population of the bound state in (5) decreases with

increasing electric area, at least as S−4
E . This equation

introduces characteristic scale of the electric pulse area

S0 ≡ 2α~

q = ~

qx0
, inversely proportional to specific size of

electron localization region x0. It has the meaning of

characteristic value of the electric pulse area, when effective

emptying of the system bound state is possible.

Thus, the population is determined by the ratio of

the electric pulse area to its characteristic scale SE/S0.

Accordingly, the probability of ionization w ion = 1− w0 is

also determined by electric area of pulse with characteristic

scale S0, inversely proportional to size of system x0.

In the case of 3D potential of zero radius, however,

equation for the probability of conserving the bound state

differs in form from the equation in 1D case (5) and has

the appearance of an arctangent [7,15]:

w0 = a2
00, w ion = 1− w0,

a00 = (S0/SE) arctan(SE/S0). (6)

However, in 3D case as well, the characteristic scale of

area S0 in this equation is also inversely proportional to the

region of localization of the electron in the bound state in

the pit [7].
Note the similarity (5) with the probability of conserva-

tion of the main state of hydrogen atom [7,29]

w0 =
[

1 + (SE/Sat)
2
]

−4
. (7)

It is only that in this case probability diminishes faster as

S−8
E . And value of atomic scale of area Sat = 2~

qa0
is also

inversely proportional to radius of the first Bohr orbit a0,

i. e. characteristic size of the system.

Conclusion

Thus, in the case of the 1D zero-radius potential model,

the probability of preserving the bound state of the particle

and its ionization is determined by the ratio of the electric

pulse area to its characteristic scale, SE/S0. This scale of

area S0 is inversely proportional to the characteristic size of

the localization region of the particle in the bound state x0.

The concept of area scale, first introduced in [4,7], is

valid for a wide class of quantum systems, both 1D and 3D

ones. It can be used to estimate the value of the electric

pulse area required to effectively excite and ionize quantum

systems using unipolar and subcyclic pulses.

The value of the area scale must be taken into account

when analyzing the interaction of extremely short pulses

with quantum objects, when the pulse duration is shorter

than the characteristic time T associated with the energy of

the ground state.
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