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An analytical method for calculating the parameters of the electroneutral vacancies formation and self-diffusion of

atoms in a single-component crystal is proposed. The method is based on the 4-parameters pairwise Mie–Lennard-
Jones interatomic interaction potential. The method allows calculating all the activation processes parameters: Gibbs

energy, enthalpy, entropy and volume for both the vacancy formation process and the self-diffusion process. The

method is applicable at any pressure (P) and temperature (T ). The temperature dependencies of the activation

processes parameters for gold are calculated from T = 10K to 1330K along two isobars P = 0 and 24GPa. It is

shown that at low temperatures, due to quantum regularities, activation parameters strongly depend on temperature,

and the entropy of activation processes in this region has a negative value. In the high temperature region, the

probability of vacancy formation and the self-diffusion coefficient pass into classical Arrhenius dependencies with

a weakly temperature-dependent enthalpy and with a positive value of the activation process entropy. Good

agreements were obtained with the estimates of activation parameters for gold known from the literature. The

values of activation parameters at T = 0K were discussed.
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1. Introduction

Studies of activation processes (i.e. formation of elec-

troneutral vacancies and self-diffusion) in a crystal of a

single-component substance are carried out for long, and

the results of these works are outlined in reviews [1–6]. The
enthalpies of vacancy formation (hv) and self-diffusion (hd)
were measured by different methods, which made it possible

to objectively estimate these energy parameters of activation

processes.

But these processes were studied experimentally only

in the region of high temperatures (T ≫ 2) and low

pressures (P = 1 atm), where these activation processes

exert the maximum impact on crystal properties and,

therefore, the magnitude of activation parameters can

be estimated experimentally. Here 2 is Debye tem-

perature. Along with that, while enthalpy of vacancy

formation and self-diffusion (hi) can be reliably measured

in the region of high temperatures, activation process

volume (v i) is estimated very approximately even at

T ≫ 2 [7]. There are yet no experimental methods for

estimation of entropy (s i ) of activation processes [8,9]
(i = v, d).
As regards the theoretical study of activation pro-

cess parameters, many models were suggested both

for the formation of electroneutral vacancies and for

self-diffusion in a crystal [8–10]. However, none

of the suggested calculation procedures (neither the

analytical not the computer one) made it possible

to describe both the isobaric temperature dependence

and the isothermal baric dependence of all activation

parameters in a crystal of a single-component sub-

stance.

Meanwhile, many fundamental questions have still not

been clearly answered:

How does a transition from high-temperature diffusion

(described by the Arrhenius formula) to quantum diffusion

occur at low temperatures, where the Arrhenius equation

does not work?

What is the isobaric (at P = 1 atm) temperature depen-

dence of functions s i(T ) and v i(T ), starting from T = 0K

and up to the crystal melting temperature?

How do these isobaric dependences of functions s i (T )

and v i(T ) change at a pressure increase on the isobar?

In this respect, this paper suggests an analytical method

for studying the thermal and baric dependences of activation

processes in a crystal of a single-component substance. By

the example of a gold crystal, this method was used for

the first time to calculate the temperature dependences of

all activation parameters, starting from T = 10K and up

to the melting temperature. Thereat, all the calculations

were performed along two isobars: at P = 0GPa ∼= 1 atm

(where the experimental estimates were obtained) and at

P = 24GPa.
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2. Method for calculation of vacancy
formation probability

Let us represent a single crystal of a single-component

substance from N atoms as a structure of N + Nv cells

having the same size, where Nv cells are vacant and

uniformly distributed across crystal volume V . We will

assume that atoms in the system can be in two states:

localized (L-) and delocalized (D-). The atom in the L-state

is localized in a cell formed by the nearest neighbors and

has only the oscillatory degrees of freedom. The atom in

the D-state has access to the whole system volume and has

only the translational degrees of freedom. Atoms in the L-

and D-state will be called L- and D-atoms for brevity.

The system volume is equal to the sum of volumes va,

falling on one (occupied or vacant) atomic cell the shape of

which is considered to be spherical

V =
π

6kp

(N + Nv) · c3 =
va

kp

N
(1− φv)

, (1)

va =
π

6
· c3 =

V
N

· kp · (1− φv),

co =

(

6kpV
πN

)1/3

=

[

6va(φv = 0)

π

]1/3

. (2)

Here φv = Nv/(N + Nv) — probability of finding a vacant

cell in the system, c = co(1− φv)
1/3 — distance between

centers of the nearest cells, kp — packing coefficient for a

structure of N + Nv spherical cells, co — distance between

centers of the nearest cells in the initial (not relaxed into the

vacancy-activated state) vacansion-free (at Nv = 0) virtual

lattice (this is indicated by index
”
o“).

The following expression can be used when there are no

different gradients for the probability of atom detection in

a ball layer with thickness dr at distance r from the cell

center

φc(r)dr = Cc · exp

(

−
r2

2〈r2〉

)

dr,

where Cc — normalization constant, 〈r2〉 — root-mean-

square deviation of the atom from the cell center.

Let us divide the ball layer into ko
n sections, where ko

n is

the number of all cells (both occupied and vacant) nearest

to the given atom. Representing the atom as a cluster

of probability density and considering quantity φc(r)dr as

the probability of simultaneous atomic displacement in all

ko
n/2 radial directions, the following can be adopted for the

probability of atomic displacement in one j-th direction

φ j(r)dr =
2

(πko
n〈r2〉 j)1/2

· exp

(

−
r2

2〈r2〉 j

)

dr.

We will assume that an atom can leave a cell if the

amplitude of its oscillation in a cell exceeds c jo/2, where

c jo is distance between the centers of the nearest cells

in j-th direction in an initial vacansion-free virtual lattice

(therefore the index
”
o“). Then we can determine the

vacancy formation probability as the arithmetic mean from

the probabilities of escape from a cell in any of ko
n/2

directions. For an isotropic model, this gives the following

expression [11,12]:

φv(ρ, T ) =
Nv(ρ, T )

N + Nv

=
2

π1/2

∞
∫

co/[2(ko
n〈r 2〉)1/2]

exp(−t2)dt

= 1− erf

(

c
2(ko

n〈r2〉)1/2

)

, (3)

where ρ = N/V is density of atom quantity; the probability

integral has the form [13]:

erf(x) =
2

π1/2

x
∫

0

exp(−t2)dt. (4)

While determining function 〈r2〉 for a system of L- and

D-atoms, their different motion pattern must be taken into

account. Since L-atoms have only oscillatory degrees of

freedom, while D-atoms have (by definition) only transla-

tional degrees of freedom, we will present the function 〈r2〉
as

〈r2〉 = (1− xd)〈r
2〉L + xd〈r

2〉D. (5)

Here 〈r2〉L and 〈r2〉D — root mean square atomic

displacement in the L- and D-state, respectively, xd — share

of atoms in the D-state.

Defining the function 〈r2〉L using the harmonic oscillator

model [14] and considering that all L-atoms oscillate with

the same frequency (the Einstein model), we obtain

〈r2〉L =
~
2kBT

m(kB2Eo)2 f y (2Eo/T )
, (6)

where ~ — the Planck constant, kB — the Boltzmann

constant, m — atomic mass, 2Eo — Einstein temperature in

a vacansion-free lattice (therefore the index
”
o“), function

f y (yw) arises due to accounting of quantum effects and has

the form

f y (yw) =
2

yw

·
[1− exp(−yw)]

[1 + exp(−yw)]
, yw =

2Eo

T
. (7)

In order to determine quantity 〈r2〉D, we must know the

size of the accessible region for motion of a D-atom in

the lattice within the time equal to the L-atom oscillation

period. Since the system is homogeneous and its whole

volume is accessible for a D-atom, the configuration integral

for a D-atom in the lattice of equal-sized N + Nv cells can

be presented as

In =
1

V

∫

V

exp

(

−
U

kBT

)

dV

=
N + Nv

V

∫

V/(N+Nv)

exp

(

−
U

kBT

)

4πr2dr,

where U is the potential energy of interaction of the

considered D-atom with its environment.
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Proceeding to variable t = r/co, we obtain the following

taking into account (2)

In = 24kp ·

α3
∫

0

exp

(

−
U

kBT

)

t2dt,

Here the upper limit of integration α3 defines the radius

(in relative units) of the region for motion of a D-atom

in a lattice of N + Nv identical spherical cells. We will

find it from the boundary condition which must be met by

function In:
lim

U/(kBT)=0
In = 1.

The following value is obtained: α3 = 0.5/k1/3
p . There-

fore, the diameter of the accessibility region for a D-atom

in the lattice structure within the L-atom oscillation period

will be equal to

λ3 = 2coα3 = co/k1/3
p . (8)

On the other hand, an atom goes over from the L- to the

D-state when its velocity ensures its covering (within a half-

period of oscillation in the L-state (τ /2)) a distance equal

to the accessibility region radius for a D-atom in the initial

vacansion-free (not relaxed into the activated state) lattice

structure: λ3/2. Thus, atom velocity at a transition from

the L- to the D-state must exceed vmin = (λ3/2)/(τ /2).
Since only a third part of displacements take place in the

chosen direction due to model isotropy, the following can

be adopted for root mean square displacement of a D-atom

as the time of a full oscillation period of a L-atom

〈r2〉D =
(vminτ )2

3
=

1

3

(

co

k1/3
p

)2

. (9)

Formulas (3)−(9) give an expression for the vacancy

formation probability in the form [11,12]:

φv = 1− erf

(

co

2(ko
p〈r2〉)1/2

)

= 1− erf

[

(

Ev

kBT

)1/2
]

= erfc

[

(

Ev

kBT

)1/2
]

. (10)

Here Ev is energy of vacant cell creation in a vacansion-

free lattice, defined by the expression

Ev =
EL

1 + xd[(CDEL/kBT ) − 1]
, (11)

where the following is introduced

EL =
c2
okBT

4ko
n〈r2〉L

=
m
ko

n

(

c2
okB2Eo

2~

)2

f y

(

2Eo

T

)

, (12)

CD =
4ko

n

3k2/3
p

. (13)

If T > 2Eo, the function EL does not depend on tempe-

rature, and Ev > kBT is true up to the melting temperature.

Then expression (10) can be with good accuracy substituted

by an exponential Arrhenius dependence [13]:

φv = 1− erf

[

(

Ev

kBT

)1/2
]

∼=

(

kBT
πEv

)1/2

exp

(

−
Ev

kBT

)

. (14)

However, when T < 2Eo, the functions EL and Ev

have a linear temperature dependence, which violates

the Arrhenius temperature dependence for the vacancy

formation probability. It can be easily seen from (14) that

the inequality is fulfilled

φv(ρ, T = 0K) > 0.

3. Determining the probability of atom
delocalization in a crystal

We determine the share of D-atoms using the Maxwell

distribution for atom kinetic energy, which is true not only

for gas, but also for the liquid, amorphous and crystalline

phases [15,16]. The share of D-atoms is determined as the

share of atoms having a kinetic energy above the threshold

value Ed — atom delocalization energy

xd(ρ, T ) =
Nd(ρ, T )

N
=

2

π1/2

∞
∫

Ed/(kBT)

t1/2 exp(−t)dt

= 2

(

Ed

πkBT

)1/2

· exp

(

−
Ed

kBT

)

+ 1− erf

[

(

Ed

kBT

)1/2
]

,

(15)

where Ed is the required energy for atom transition from

the L- to the D-state.

For atom transition from the L-state to the D-state, its

velocity must be not less than vmin = λ3/τ , where τ is the

oscillation period of a L-atom in a cell. Starting with this

velocity, an atom may leave a cell. Since the period of atom

oscillation in a cell for the Einstein crystal model is equal

to [14]:

τ =
2π~

kB2Eo

=
8π~

3kB2o

, (16)

the function Ed can be defined as [17]:

Ed =
3

2
mv2

min · f y(yw) =

(

3

8π2

)

m

(

cokB2Eo

~k1/3
p

)2

f y (yw)

= CLDEL = Ed1 f y (yw). (17)
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Here the following is introduced

Ed1 = Ed

(

f y (yw) = 1
)

=
3m

8k2/3
p

(

3cokB2o

4π~

)2

,

CLD =
3ko

n

2π2k2/3
p

=

(

9

8π2

)

CD, (18)

here 2 is the Debye temperature, related to the Einstein

temperature by a relation: 2 = (4/3)2E [18, Chap. 13;

19, Chap. 2].
Inequality Ed > Ev > kBTm is true for most substances

(except quantum crystals) up to the melting tempera-

ture (Tm). Therefore, the incomplete gamma-function

in (15) in the whole temperature range from T = 0K to

Tm can be approximated by an Arrhenius formula [13]:

xd(ρ, T ) = 2

(

Ed

πkBT

)1/2

exp

(

−
Ed

kBT

)

[

1 +
kBT
2Ed

−

(

kBT
2Ed

)2

+ . . .

]

∼= 2

(

Ed

πkBT

)1/2

exp

(

−
Ed

kBT

)

.

(19)

The function Ed in (19), like Ev in (14), at T < 2Eo

has a linear temperature dependence, which violates the

Arrhenius temperature dependence for the atom delocaliza-

tion probability. Thereat, an inequality follows from (14):
xd(ρ, T = 0K) > 0.

Our papers [11,12,17,20–22] showed that the above-

mentioned formalism from (10)−(19) makes it possible

to study the activation parameters from T = 0K and up

to a transition to the liquid phase. It can be easily seen

that the formalism from (10)−(19) makes it possible to

study the change in functions φv(ρ, T ) and xd(ρ, T ) both

in case of an isochoric temperature change and in case of

an isothermal change of crystal density.

4. Thermodynamic parameters
of activation processes

Thermodynamic determination of activation (vacancy
formation and self-diffusion) parameters, based on the

formulas of equilibrium and reversible thermodynamics [1–
6,19], is as follows

g i = −kBT ln(Ai),

hi = −

(

∂ ln(Ai)

∂[1/(kBT )]

)

P

= g i + Ts i ,

s i = −

(

∂g i

∂T

)

P

= −

(

∂g i

∂T

)

V

− αPV

(

∂g i

∂V

)

T

=
hi − g i

T
,

v i = −

(

∂g i

∂P

)

T

= −
V
BT

(

∂g i

∂V

)

T

. (20)

Here g i, hi, s i , v i are Gibbs energy, enthalpy, entropy and

volume of an activation process (index i = v or d for

vacancy formation (Ai = φv) or for self-diffusion (Ai = xd)),
respectively. Function αP = (1/V )(∂V/∂T )P is isobaric

coefficient of thermal expansion, BT = −V (∂P/∂V )T is

isothermal elastic modulus.

Supposing that the characteristic temperature does not

change under isochoric heating (i.e. under condi-

tion (∂2o/∂T )V = 0), and assuming approximations (14)
and (19), we can obtain from (10)−(19) the expressions for
Gibbs energy, enthalpy, entropy and volume of the activation

process in the form [11,12,17]:

for the vacancy formation process

gv = −kBT · ln(φv) = Ev

[

1 +

(

kBT
2Ev

)

ln

(

πEv

kBT

)]

,

hv = kBTφE

{

1− ty + αPT

[

(2− ty )γo −
2

3

]}

,

sv
kB

=
hv − gv

kBT
,

vv

v0

=
kBT
BTv0

φE

[

(2− ty )γo −
2

3

]

, (21)

for the self-diffusion process

gd = −kBT · ln(xd) = Ed

[

1−

(

kBT
2Ed

)

ln

(

4Ed

πkBT

)]

,

hd = Ed

{

1− ty + αPT

[

(2− ty )γo −
2

3

]}

,

sd
kB

=
hd − gd

kBT
=

Ed

kBT

{

(

kBT
2Ed

)

ln

(

4Ed

πkBT

)

− ty

+ αPT

[

(2− ty )γo −
2

3

]

}

,

vd

v0

=
Ed

BTv0

[

(2− ty )γo −
2

3

]

. (22)

Here γo = −[∂ ln(2Eo)/∂ ln(V )]T — the first Grüneisen

parameter for a vacansion-free crystal, v0 — volume per

atom at P = 0 and T = 0K,

ty (yw) = −
∂ ln( f y)

∂ ln(yw)
= 1−

2yw exp(yw)

[exp(2yw) − 1]
,

φE =

(

Ev

kBT

) [

1 + xdCD

(

Ev

kBT

)

Ed

kBT
Gd

]

,

Gd = 1−
kBT

CDEL

−
kBT
Ed

. (23)

Expressions (11), (21)−(23) show that the consideration

of D-atoms (i.e. function xd) reduces quantities Ev and gv

and increases the values of hv, sv and vv/v0. This is due to

the fact that the necessary energy for isobaric generation

of a vacancy is greater if the formation of D-atoms is

considered, because a part of energy is consumed in atom

delocalization. This fact was not taken into account in any

of the current analytical theories, and these theories were

unable to correctly estimate the vacansion parameters in the

melting region where the share and role of D-atoms become

considerable [21,22].
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5. Method for calculating the
self-diffusion coefficient of a crystal

Diffusion coefficient D f is equal to the number of atoms

carried over through a unit area, perpendicular to the chosen

direction, in unit time, at a unity concentration gradient in

the given direction. Thus, the number of atoms carried

over through area Skr within time t at concentration gradient

grad(Conc), is equal to

M tr = −D f Skrt grad(Conc). (24)

This is the first Fick’s Law for a stationary flow [2–4,19].
The minus sign indicates that the substance flow vector is

opposite to the vector of concentration scalar field gradient.

For simplicity, let us consider the case of
”
flat self-

diffusion“ in the bulk of a single-component crystal, i.e.

when the atom flow is in one direction perpendicular to

the cross-section plane. Then the following expression

can be adopted for the gradient of vacancy concentration

at the distance of the accessibility region for a D-atom:

λ3 = co/k1/3
p :

−grad(Conc) =
1

λ3

[

(

1

λ3

)3

− φv

(

1

λ3

)3
]

=
1− φv

λ43
=

(1− φv)k
4/3
p

c4
o

. (25)

Thus, expression (24) is reduced to

M tr = Skrk
4/3
p D f ·

τ (1− φv)

2c4
o

. (26)

For the Einstein crystal model, the atom oscillation

period in a vacansion-free (because λ3 is determined for

this system) lattice is determined by formula (16). The

crystal cross-section area is equal to Skr = Ncell scell/k2/3
p ,

where Ncell is number of cells (both occupied by atoms and

vacant), being in the cross-section plane; coefficient k2/3
p

takes into account the density of spherical atom packing in

the cross-section plane; scell is average area of one cell (both
occupied by an atom and vacant), which, according to (1),
is determined as follows:

scell = π
(c
2

)2

=
π

4

[

co(1− φv)
1/3
]2 ∼=

π

4
c2
o.

Therefore, we obtain from (11)−(16) the following num-

ber of atoms [12,17] carried over through area Skr within

time t = τ /2 and with vacancy concentration gradient (25):

M tr = Ncell

πc2

4
D f ·

4π~k2/3
p (1− φv)

3kB2oc4
o

∼= NcellD f ·
π2

~k2/3
p

3kB2oc2
o

(1− φv). (27)

On the other hand, only Ncell (1− φv) from Ncell cells

in the cross-section plane are occupied by atoms. Only

Ncell(1− φv)xd from them are in the D-state. Only 1/6

from the specified Ncell(1− φv)xd atoms will be carried over

perpendicularly to the considered area along the considered

direction. It should be noted that multiplier 1/6 is true only

for equilibrium self-diffusion, because, if a motive force is

present, one of the six directions will have a higher priority

over the other directions. Thus, the following substance

amount will be carried over through the chosen area within

time τ /2 [12,17]:

M tr = xd · Ncell · f cor ·
(1− φv)

6
. (28)

Here f cor is ”
correlation factor“, arising due to conside-

ration of a nonzero probability that an atom, which escaped

to a vacancy, can return at once without contributing to the

diffusion [2,3,12].

Comparison of (27) and (28) yields an expression for the

coefficient of self-diffusion in the bulk of a single-component

crystal

D f (ρ, T ) = Dd(ρ) · xd(ρ, T ) = Dd(ρ) · exp

[

−
gd(ρ, T )

kBT

]

= Dd(ρ) · exp

[

sd(ρ, T )

kB

]

· exp

[

−
hd(ρ, T )

kBT

]

.

(29)

The following pre-exponential multiplier is introduced

here:

Dd(ρ) = f cor ·
kB2oc2

o

2π2~k2/3
p

. (30)

The physical sense of multiplier Dd(ρ) is that this is a

self-diffusion coefficient which can theoretically be in case

of isochoric (ρ = N/V = const) delocalization of all crystal

atoms (i.e. at xd(ρ, T → ∞) = 1):

Dd(ρ) = lim
T→∞,

ρ=const

D f (ρ, T )

xd(ρ, T )
= lim

T→∞,

ρ=const

D f (ρ, T ). (31)

It should be noted that dependence of the self-diffusion

coefficient on P−T -arguments in experiments is usually

described by an exponential Arrhenius dependence, which

is as follows [2,3,5]:

D f (P, T ) = Do(P) exp

[

−
hd(P)

kBT

]

. (32)

It is assumed that quantities Do and hd do not depend on

temperature.

Expressions (15)−(19) and (29), (30) make it possible

to calculate the dependence of the self-diffusion coefficient

on density and temperature D f (ρ, T ) for a crystal of a

monoatomic substance, based on its structure (ko
n), atomic

mass m and Debye temperature 2. It has been shown that

this method describes the function D f (ρ, T ) well, both at

melting temperatures [12,17] and at T = 0K [12,23].
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6. Calculations of the state equation
and properties of a gold crystal

Formulas (10)−(23) and (29), (30) include the following

functions: 2o — Debye temperature for a vacansion-free

crystal, γo = −[∂ ln(2o)/∂ ln(V )]T — the first Grüneisen

parameter, αP = (1/V )(∂V/∂T )P — isobaric coefficient

of thermal expansion, BT = −V (∂P/∂V )T — isothermal

elastic modulus. Previously, in [11,12,17], the activation

parameters for these functions were calculated using the

experimental temperature dependences obtained at P = 0.

This made it possible to obtain temperature dependences of

activation parameters at P = 0. But this method limited the

P−T -range of activation parameter calculation.

Hereafter we used the expressions for functions 2o and

γo obtained on the basis of a pairwise Mie−Lennard-Jones

potential of interatomic interaction, which is as follows [18]:

ϕ(r) =
D

(b − a)

[

a
(ro

r

)b
− b

( ro
r

)a
]

, (33)

where D and ro — depth and coordinate of the potential

minimum, b > a > 1 — parameters.

Then, as shown in [12,24], Debye temperature within

the framework of the
”
only nearest neighbors interaction“

approximation can be determined as follows

2o(k
o
n, co) = Aw(kn, co)ξ

×

[

−1 +

(

1 +
8D

kBAw(ko
n, co)ξ2

)1/2
]

, (34)

where function Aw(ko
n, co) arises due to the consideration of

energy of
”
zero vibrations“ of atoms in a crystal

Aw(ko
n, co) = KR ·

5ko
nab(b + 1)

144(b − a)

(

ro
co

)b+2

,

KR =
~
2

kBr2om
, ξ =

9

ko
n
. (35)

From (34) the expressions can be found for the first (γo),
second (qo) and third (z o) Grüneisen parameters. Their

form is as follows:

γo = −

(

∂ ln2o

∂ lnV

)

T

=
b + 2

6(1 + Xw)
,

qo =

(

∂ ln γo

∂ lnV

)

T

= γo ·
Xw(1 + 2Xw)

(1 + 2Xw)
,

z o = −

(

∂ ln qo

∂ lnV

)

T

= γo(1 + 4Xw) − 2qo

= γo ·

(

1 + 3Xw

1 + Xw

)

=
(b + 2)(1 + 3Xw)

6(1 + Xw)2
, (36)

where function Xw = Awξ/2o is introduced to define the

role of quantum effects.
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Figure 1. Isotherms of the gold state equation. The solid curve is

the experimental dependence for T = 300K from [29]. The other

curves show the results of our calculations: the bottom dashed

curve — for T = 100K, the middle dotted curve — at T = 300K,

the top dashed-dotted curve — at T = 1337K.

We used expressions (33)−(35) in papers [20,25] to

study the change of activation parameters’ energy cha-

racteristics under isothermal compression of the crystal

volume: V/V0 = (co/ro)3, up to V/V0
∼= 0. Here, according

to (2) and (33): V = N[π/(6kp)]c3
o — crystal volume at

P−T -arguments, V0 = N[π/(6kp)]r3o — crystal volume at

P = 0 and T = 0K.

The study of the dependence of all activation parame-

ters on P−T -arguments asked for an additional method,

allowing to calculate both the state equation P(T,V ) and

functions αP(T, P) and BT (T, P), based on the interatomic

potential parameters (33). Moreover, it was necessary

to self-consistently determine all four interatomic potential

parameters within the framework of the given calculation

method (33). These tasks were solved in [26–28] where

we developed an analytical method for calculating the

properties of a single-component crystal containing no

vacancies and delocalized atoms. Based on this method, the

interatomic potential parameters were determined in [28] for
15 single-component metals.

In the present paper we used the method

from [26–28] to calculate the properties of gold (Au,
m(Au) = 196.967 a.m.u., Tm(P = 0) = 1337.58K) which

has a face-centered cubic (FCC) structure (ko
n = 12,

kp = 0.7405). Gold is a low-oxidizable, inert and plastic

metal which experiences no polymorphic phase transitions.

The parameters of pairwise interatomic potential for

FCC-Au (33) were determined in [28], and have the

following values:

ro = 2.8700 · 10−10m, D/kB = 7446.04K,

b = 15.75, a = 2.79. (37)

Fig. 1 shows the isothermal dependences of the state

equation on volume P(T,V ) for gold. Fig. 2−4 shows
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the isobaric temperature dependences of various properties

of FCC-Au: Fig. 2 shows the dependence for elastic

modulus BT (P, T ), Fig. 3 — for thermal expansion co-

efficient αP(P, T ), Fig. 4 — for isobaric heat capacity:

C p(P, T ) = Cv(1 + γ αPT ), where Cv is isochoric heat

capacity.

As seen from Fig. 1−4, the suggested method makes it

possible to obtain correct isobaric temperature dependences

of gold properties both at P = 0 and at 24GPa. The

good agreement with the experimental dependences for
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Figure 2. Isobaric dependences of the isothermal elastic modulus

of gold on temperature. The bottom and top solid lines show our

calculations at P = 0 and 24GPa respectively. The symbols show

the experimental data at P = 0: solid circles — the data from [30],
the open triangles — the data from [29]. The bottom dashed line

shows the experimental dependence from [31], the top dashed line

shows the theoretical dependence obtained at P = 24GPa in [32].
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Figure 3. Isobaric dependences of the gold thermal expansion

coefficient on temperature. The top and bottom solid lines show

our calculations at P = 0 and 24GPa respectively. The solid circles

show the experimental data at P = 0 from [33]. The dashed

line merging with the bottom solid line shows the theoretical

dependence obtained at P = 24GPa in [32].
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Figure 4. Isobaric dependences of normalized isobaric heat

capacity of gold on temperature. The top and bottom solid lines

show our calculations at P = 0 and 24GPa respectively. The solid

circles show the experimental data at P = 0 from [33]. The dashed
line merging with the bottom solid line shows the theoretical

dependence obtained at P = 24GPa in [32]. The thin dotted lines

show our calculated dependences for Cv/(NkB) — the normalized

isochoric heat capacity at P = 0 and 24GPa respectively, which

according to the Dulong−Petit law merge at high temperatures

into the line Cv/(NkB) = 3.

gold at P = 0, shown in Fig. 1−4, indicates a very small

contribution of vacancies and delocalization of atoms to

the temperature dependences of the specified properties

at P = 0. As shown in [20,25], the contribution of

activation processes to the crystal lattice properties under an

isothermal pressure rise decreases even more considerably.

Along with that, as shown in [21,22], activation processes

are accountable for such effects as crystal sublimation and

melting, particularly at high pressures.

7. Temperature and baric dependence
of activation parameters

Temperature dependence of activation parameters for

gold was calculated from 10K to 1330K along two isobars:

P = 0 and 24GPa. Curves 1−6 in Fig. 5 show the calcu-

lated isobaric dependences on reciprocal temperature for the

activation parameters of gold. Curves 1 and 2 shows the log-

arithm of vacancy formation probability (10), curves 3 and 4

show the logarithm of atom delocalization (15), curves 5

and 6 show the logarithm of self-diffusion coefficient (29).

The solid curves 1, 3, 5 are isobars of P = 0, the dashed

curves 2, 4, 6 are isobars of P = 24GPa. The dashed-dotted

straight line 7 shows two experimental dependences for the

self-diffusion coefficient logarithm obtained at P = 0 using

the Arrhenius equation (32) at the temperature range of

Physics of the Solid State, 2022, Vol. 64, No. 4



488 M.N. Magomedov

0 0.02 0.04 0.06 0.08 0.10

–250

–200

–150

–100

–50

0

P = 24 GPa

P = 0 GPa

7 Makin 1957, Gilder 1965- -

6

5

4

3

2

P = 24 GPa

Au

P = 0 GPa1

1/ , 1/KT

lg( [cm /s])Df
2

lg( )xd

lg
(

)
X

lg( )fv

Figure 5. Isobaric dependences on reciprocal temperature for

the activation parameters of gold. Curves 1 and 2 shows the

calculation of the logarithm of vacancy formation probability (10),
curves 3 and 4 show the calculation of the logarithm of atom

delocalization (15), curves 5 and 6 show the calculation of the

logarithm of self-diffusion coefficient (29). The solid curves 1, 3, 5

are isobars of P = 0, the dashed curves 2, 4, 6 are isobars of

P = 24GPa. The dashed-dotted straight line 7 shows the ex-

perimental dependences for the self-diffusion coefficient logarithm

obtained at P = 0 in [34,35].

600 to 1320K in [34,35] with the following parameters:

Do = 0.091 ± 0.001 cm2/s, hd = 1.81 ± 0.01 eV, [34],

Do = 0.107 ± 0.002 cm2/s, hd = 1.834± 0.002 eV [35].

These dependences in the scale of Fig. 5 merge into line 7.

It can be seen from Fig. 5 that our dependence 5 at

high temperatures for function lg(D f /[cm
2/s]) is somewhat

steeper than the experimental straight line 7. This is due

to the fact that our dependence 5 was calculated for a

perfect crystal, while dependence 7 was measured for a real

crystal that contains both dislocations and grain boundaries

which considerably increase the self-diffusion coefficient at

high temperatures. For this reason, papers [36,37] suggested
presenting the experimental self-diffusion coefficient as two

terms:

D f = Dperf + Ddef, (38)

where Dperf is the coefficient of self-diffusion in the lattice

of a
”
perfect“ crystal, Ddef is the coefficient of self-diffusion

across defective places: across dislocations, across grain

boundaries etc.

Fig. 6−9 shows the temperature dependences for ther-

modynamic parameters of activation processes calculated

using formulas (20)−(23): Gibbs energy (g i), enthalpy

(hi = g i + T s i), entropy (s i ) and volume (v i) of an

activation process. The calculations were performed at

P = 0 (solid curves 1, 3, 5) and at P = 24GPa (dashed
curves 2, 4, 6).
Along with the parameters of self-diffusion (i = d,

curves 3 and 4) and the vacancy formation process (i = v,

curves 1 and 2), we also calculated the thermodynamic

parameters of migration (i = m, curves 5 and 6). They

were determined as the difference between self-diffusion

parameters and the corresponding parameters for vacancy

formation [1,4]:

gm = gd − gv, hm = hd − hv,

sm = sd − sv, vm = vd − vv. (39)

The dashed-dotted straight lines 7 in Fig. 6 and 7 show

the temperature dependences of Gibbs energy gv and
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Figure 6. Temperature dependences of activation process Gibbs

energy for gold. Curves 1 and 2 show the calculation of

Gibbs energy for vacancy formation (21), curves 3 and 4 show

the calculation of Gibbs energy for atom delocalization (22),
curves 5 and 6 show the calculation of Gibbs energy for atom

migration (39). The solid curves 1, 3, 5 are isobars of P = 0,

the dashed curves 2, 4, 6 are isobars of P = 24GPa. The dashed-

dotted straight line 7 shows dependence (40) from [1, p. 164].
The top plot shows dependences g i(T ) for the whole temperature

region, the bottom plot — for the region of low temperatures

(i = v, d, m).
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Figure 7. Temperature dependences of activation process

enthalpy for gold. Curves 1 and 2 show the calculation of

vacancy formation enthalpy (21), curves 3 and 4 show the

calculation of atom delocalization enthalpy (22), curves 5 and 6

show the calculation of atom migration enthalpy (39). The solid

curves 1, 3, 5 are isobars of P = 0, the dashed curves 2, 4, 6 are

isobars of P = 24GPa. The dashed-dotted straight line 7 shows

dependence (40) from [1, p. 164]. The top plot shows dependences

hi(T ) for the whole temperature region, the bottom plot — for the

region of low temperatures (i = v, d, m).

enthalpy hv for the vacancy formation process of form

gv, eV = 0.84− 0.2

(

T
Tm

)2

,

hv, eV = 0.84 + 0.2

(

T
Tm

)2

. (40)

Dependences (40) were plotted in [1, p. 164], as per

the experimental data for hv obtained at P = 0, on the

temperature range of 600 to 1320 K.

Fig. 6 shows that g i(P, T = 0K) = 0, and all the isobaric

dependences g i(T ) have the maxima which shift towards

higher temperatures with a pressure rise. The following

inequalities are fulfilled in the whole temperature range

gd(P, T ) > gm(P, T ) and gd(P, T ) > gv(P, T ).

But dependences gm(P, T ) and gv(P, T ) have an inter-

section point which shifts towards higher temperature with

pressure rise. All three functions g i(T ) in the region of

high temperatures linearly decrease with temperature rise.

Under isothermal pressure rise, all three Gibbs energies of

the activation process rise in the whole temperature range.

It can be seen from Fig. 7 that all isobaric dependences

hi(T ) increase monotonically, while hi(P, T = 0K) = 0.

The following inequalities are fulfilled in the whole tem-

perature range:

hd(P, T ) > hm(P, T ) > hv(P, T ). (41)

Under isothermal pressure rise, activation process en-

thalpy increases at high temperatures, which is physi-

cally clear. However, as seen from the bottom plot in

Fig. 7, below a certain temperature (which is individual

for the vacancy formation and self-diffusion process),

activation process enthalpy decreases under isothermal

compression. This is conditioned by a temperature-baric

dependence of activation process entropy in the function:

hi = g i + T s i .

Activation process enthalpy is the only measurable para-

meter from the 4 which characterize the activation process.

However, hi was determined experimentally only at high

temperatures (T ≫ 2), where activation processes exert

the maximum impact on crystal properties and, therefore,

quantity hi can be estimated experimentally. Thereat, an

exponential Arrhenius dependence of type (32) is used

and it is assumed that activation process enthalpy does not

depend on temperature.

Enthalpies of vacancy formation and self-diffusion for

gold were measured at P = 0 in the temperature range of

600 to 1320K by different methods. They are within

hv(T ≫ 2) = 0.89−1.02 eV [1],

hd(T ≫ 2) = 1.71−1.833 eV [5]. (42)

Our data for the given temperature range exceeds the

experimental estimates. This can be due both to the

difference of our model of a defect-free crystal from the real

crystal and due to the approximation of our calculations,

based only on 4 parameters (37) for the pairwise potential

of interatomic interaction (33).

Along with that, the modern computer modeling meth-

ods (first-principles density functional theory — DFT,

embedded-atom method — EAM, etc.) made it possible

to calculate the vacancy formation enthalpy only at T = 0K

and at an indefinite pressure. The following values were
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obtained for gold using these methods [38]:

hv(T = 0K), eV = 0.42−0.67 (DFT-PBE

(Perdew, Burke, Ernzerhof)) —

0.62−0.72 (DFT-LDA

(local density approximation)) —

0.71(EAM and LSGF

(locally self-consistent Green’s-function)) —

0.72 (DFT-HSE

(Heyd, Scuseria, Ernzerhof)) —

0.82 (FP-LMTO

(full potential linear muffin-tin orbital)) —

1.24 (TB (tight-binding method)).

In [39] the above-mentioned DFT-methods of computer

modeling were complemented with Posteriori surface error
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Figure 8. Temperature dependences of activation process entropy

calculated for gold. Curves 1 and 2 — vacancy formation

entropy from (21), curves 3 and 4 — atom delocalization

entropy from (22), curves 5 and 6 — atom migration entropy

from (39). The solid curves 1, 3, 5 are isobars of P = 0, the dashed

curves 2, 4, 6 are isobars of P = 24GPa. The top plot shows

dependences s i (T ) < 0 in the region of low temperatures, the

bottom plot — for the region of high temperatures (i = v, d, m).

correction, which made the results of the DFT-methods

closer to the experimental quantity hv(T ≫ 2) from (42):

hv(T =0K), eV=0.84 (DFT-LDA)−0.87 (DFT-PBE) —

0.92 (DFT-revTPSS (Tao, Perdew, Staroverov, Scuseria)) —

1.01 (DFT-PW91 (Perdew, Wang)).

Fig. 8 shows that all isobaric dependences s i(T ) at low

temperatures are in the negative region, and the following

relations are fulfilled

sd(P, T = 0K) < sm(P, T = 0K) < sv(P, T = 0K) < 0.

(43)

However, these relations in the region of high tempera-

tures change to the following form:

sd(P, T ≫ 2) > sm(P, T ≫ 2) > sv(P, T ≫ 2) > 0.

(44)

Under isothermal pressure rise, activation process entropy

decreases in the whole temperature range.

It should be noted that nowadays there are still no

experimental or theoretical methods for correct estimation

not only of temperature dependence s i(T ), but even the

magnitude of activation process entropy at P = 0 and

T ≫ 2 [8,9,33,40]. In this respect, the literature gives

different indirect estimates for s i (T ≫ 2), which are all

positive but considerably different. For instance, the

following values of vacancy formation entropy are used for

gold:

sv(T ≫ 2)/kB = 3.15 [1, p. 164], 0.5 [19],

1.03−1.26 [33], 0.5−3.1 [41], 0.5−0.7 [42].

We have still not found in the literature any experimental

or theoretical estimates of quantity sd(T ≫ 2) for gold.

It can be seen from Fig. 9 that all isobaric depen-

dences v i(T ) increase monotonically with temperature rise,

while v i(P, T = 0K) = 0. In our calculations we adopted

v0 = π · r3o/(6kp) is atom volume in a perfect crystal at

P = 0 and T = 0K. It can be seen from Fig. 9 that the

following relation is fulfilled in the whole temperature range:

vd(P, T ) > vm(P, T ) > vv(P, T ) > 0. (45)

Experimental deviation of activation process volume is

a very labor-intensive process, while theoretical estimates

for v i are very approximate [43,44]. The literature reports

the following estimates for the normalized value of gold

activation volume (the theoretical estimates are given in

brackets):

vv(T ≫ 2)/v0 = (0.63−0.73), 0.52 [1, p. 92];

0.50−0.59 [7]; 0.52−0.65 [33, 44];

(0.35−0.48), 0.45−0.59 [42]; 0.45−0.57 [43];

0.3−0.5(at T < 2), 0.5−0.7(at T > 2) [45];
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(0.73), 0.52−0.85 [46]; (0.73), 0.85 [47];

vd(T ≫ 2)/v0 = 0.706 [2] : 0.65−0.90 [7];

0.60−0.72 [43]; 0.73−0.77 [48].

Fig. 9 shows that the activation process volume decreases

under isothermal compression. A decrease of vacancy

formation volume under isothermal compression was also

noted in [49] for BCC-Ta and in [50] for FCC-Au, as follows:

vd(T = 953K)/v0 = 0.65 at P = 0.6GPa,

0.53 at P = 1.1GPa.

Moreover, the authors of [42,51] obtained the relation

vv(T ≫ 2) ≈ 81vm for single-component metals, where

1vm is specific volume leap during melting. Since quantity

1vm decreases with pressure rise, this relation also indicates

a decrease of quantity vv(T ≫ 2) with pressure rise.

8. Behavior of activation parameters
at low temperatures

At T ≪ 2 — the functions f y (T ) and ty (T ) from (7)
and (23) considerably vary with temperature, and the

following limit relations are fulfilled:

f y (T = 0K) = lim
T
20

→0
f y

(

20

T

)

=
8

3
lim
T
20

→0

(

T
20

)

= 0.

(46)

ty (T = 0K) = lim
T
20

→0
ty

(

20

T

)

= 1−
6

4
lim
T
20

→0

(

20

T

)

exp

(

−
320

4T

)

= 1, (47)

where 20 = 2o(T = 0K) is the Debye temperature calcu-

lated for a defect-free crystal at T = 0K.

Given the fact that the following is true at low temper-

atures: αP(T ) ∼ T 3 [14,18,19] (i.e. we have: αP(0) = 0),
formulas (3) and (15) provide the following expressions for

the activation process probability at T = 0K [12,23,52]:

φv(0) =
Nv(0)

N + Nv(0)
=

2

π1/2

∞
∫

(Mv)1/2

exp(−t2)dt

∼=
1

(πMv)1/2
exp(−Mv), (48)

xd(0) =
Nd(0)

N
=

2

π1/2

∞
∫

Md

t1/2 exp(−t)dt

∼= 2

(

Md

π

)1/2

exp(Md), (49)
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Figure 9. Temperature dependences of activation process

volume (normalized to the atom volume) calculated for gold.

Curves 1 and 2 show the calculation of vacancy formation volume

as per (21), curves 3 and 4 show the calculation of atom

delocalization volume as per (22), curves 5 and 6 show the

calculation of atom migration volume as per (39). The solid

curves 1, 3, 5 are isobars of P = 0, the dashed curves 2, 4, 6 are

isobars of P = 24GPa (i = v, d, m).

where parameters Mv and Md represent the following limit

relations

Mv = lim
T
20

→0

(

Ev

kBT

)

=
ML

1 + xd(0)(CDML − 1)
, (50)

Md = lim
T
20

→0

(

Ed

kBT

)

=
8Ed1(0)

3kB20

= CLDML. (51)

The following notations are introduced here:

ML = lim
T
20

→0

(

EL

kBT

)

=
8EL1(0)

3kB20

=
3mkB20

8ko
n

[

co(0)

~

]2

,

EL1(0) = EL(T = 0K, f y = 1) =
m
ko

n

[

3co(0)kB20

8~

]2

,

Ed1(0) = Ed(T = 0K, f y = 1) =
27m

128k2/3
p

[

co(0)kB20

π~

]2

.

(52)
Thus, at T = 0K the crystal has

”
zero vacancies“, while

the self-diffusion coefficient is non-zero: φv(0) > 0 and

xd(0) > 0. This effect occurs because the atoms have

”
zero vibrations“ and was predicted by Andreev and Lifshitz

in 1969 [53,54]. Accordingly, the activation Arrhenius

formula with temperature-independent activation energy at

low temperature cannot be applied to describe activation

processes.

The following limit relations are obtained for

thermodynamic parameters of activation processes at

T = 0K [12,23,52]:
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for the vacancy formation process

lim
T
20

→0

(

gv

kBT

)

= Mv + 0.5 ln(πMv), lim
T
20

→0

(

hv

kBT

)

= 0,

lim
T
20

→0

(

sv
kB

)

=
sv(0)

kB

= −Mv − 0.5 ln(πMv),

lim
T
20

→0

(

vv

va

)

=
vv(0)

va(0)
= 0,

lim
T
20

→0

(

vvBT

kBT

)

= φE0

[

γo(0) −
2

3

]

= Mv[1 + xd(0)CDMvMdGd0] ·

[

γo(0) −
2

3

]

,

φE0 = Mv[1 + xdCDMvMdGd0],

Gd0 = 1−
1

CDML

−
1

Md

. (53)

for the self-diffusion process

D f (0) = Dd(ρ)0 · xd(0), Dd(ρ)0 = f cor ·
kB2oco(0)

2

2π2~k2/3
p

,

lim
T
20

→0

(

gd

kB

)

= Md − 0.5 ln

(

4Md

π

)

, lim
T
20

→0

(

hd

kBT

)

= 0,

lim
T
20

→0

(

sd
kB

)

=
sd(0)

kB

= −Md + 0.5 ln

(

4Md

π

)

,

lim
T
20

→0

(

vd

va

)

=
vd(0)

va(0)
= 0,

lim
T
20

→0

(

vdBT

kBT

)

= Md ·

[

γo(0) −
2

3

]

. (54)

It follows from formulas (21) and (22) that functions

sv(T ) and sd(T ) are positive only under the following

conditions [55]:

(

kBT
2EL

)

ln

(

πEL

kBT

)

+ αPT

[

(2− ty )γo −
2

3

]

≥ ty , (55)

(

kBT
2Ed

)

ln

(

4Ed

πkBT

)

+ αPT

[

(2− ty )γo −
2

3

]

≥ ty , (56)

Since inequality Ed/EL = CLD = 3ko
n/(2π

2k2/3
p ) > 1 is

fulfilled, the equality in condition (56) is achieved at a lower

temperature (Tsd=0) than in condition (55) for positivity of

vacancy formation entropy. Thus, the following inequality is

fulfilled under isobaric heating: Tsv=0 > Tsd=0 > 0K.

It should be noted that Varotsos and Alexopoulos in 1979

showed in [56] that a negative value of vacancy formation

entropy (sv < 0) does not contradict the thermodynamic

conditions of vacancy formation. A negative value of

vacancy formation entropy at low temperatures was experi-

mentally found in BCC- and HCP-modifications of 3He and
4He crystals in [57–61].

Paper [8] showed theoretically, by the example of alu-

minum, that vacancy formation entropy will be negative if

vacancy formation enthalpy is considered as temperature-

dependent. Paper [62], dealing with theoretical study of

self-diffusion in BCC-Zr by the molecular dynamics method,

showed that vacancy formation entropy at temperatures be-

low 600K becomes negative. Thus, our result of transition

of the activation process entropy to the negative region

at temperature decrease agrees with the experimental and

theoretical papers of other authors who studied activation

processes at low temperatures.

It should be noted that the presence of vacancies and

D-atoms in a crystal at T = 0K does not violate the third

law of thermodynamics which states as follows: specific

(per atom) crystal entropy at T = 0K is equal to zero:

s(T = 0K) = 0. It follows from the entropy definition that

s(T, P) = −

(

∂g
∂T

)

P

= −

(

∂g
∂T

)

P,xd,φv

−

(

∂g
∂φv

)

P

(

∂φv

∂T

)

P

−

(

∂g
∂xd

)

P

(

∂xd

∂T

)

P

. (57)

where g(T, P) is specific (per atom) free Gibbs energy of a

crystal.

The first term in (57) is crystal entropy (per atom)
arising due to a temperature change while the share of

activation parameters remains unchanged. The first term

in (57) in case of the Einstein crystal model decreases

at T → 0K in proportion to the dependence [14,18,19]:
exp(−2/T ). The second and third terms in (57) are

contributions to entropy (per atom) arising only due to

a change in concentration of vacancies and D-atoms in a

crystal. As clearly seen from Fig. 5, at T = 0K functions

φv(T ) and xd(T ) have their minima. Therefore, the third

and second terms in (57) at T = 0K also disappear.

Since the activation process volume at T = 0K is equal

to zero, the presence of vacancies and D-atoms at T = 0K

does not affect the crystal thermal expansion coefficient.

Since functions sd(T ) and sv(T ) have a negative value

at 0K < T < Tsd=0 < Tsv=0, here heat equal to T sv or T sd
respectively is emitted under isobaric formation of a vacancy

or a D-atom in a crystal. This agrees with the conclusion

made in [53,54]: at T = 0K, it more profitable (from the

energy viewpoint) for a crystal to go over to a state in which

a part of the lattice nodes is vacant, while a part of the atoms

diffuse across the crystal. Atom delocalization and vacancy

formation at 0 < T < Tsd=0 < Tsv=0 lead to
”
ordering“ of

the crystal lattice. It should be noted that this property is

not a prerogative of quantum crystal. It is inherent in all

substances, but is most noticeable in 3He and 4He crystals,

due to a relatively large amplitude of
”
zero vibrations“ of

atoms in these substances.

At high temperatures (T/2Eo > 2) we can adopt f y
∼= 1

and ty
∼= 0. Therefore, activation process entropy in this

temperature region is always positive. Vacancies and
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D-atoms forming under these conditions set the crystal to a

more disordered state.

We would like to conclude by saying that the thermo-

dynamic definitions of activation parameters (21) and (22)
include two functions: αP — thermal expansion coefficient

and BT — elastic modulus. These functions are inconve-

nient due to their peculiarities under a first-order phase

transition (PT-I), e.g., in case of a crystal−liquid phase

transition (C−L PT). Function αP(T,V ) in the binodal

region of the S-loop of C−L PT has a discontinuity of

type II, i.e. the function extends to infinity. Due to

this, we obtain the following on the binodal of C−L PT:

hv, sv, hd and sd → ∞. On the other hand, BT = 0 is

fulfilled at points of the spinodal of the S-loop of C−L

PT, and BT < 0 in the inter-spinodal region. Due to this,

functions vv and vd at spinodal points have a discontinuity

of type II: vv and vd → ∞, and vv and vd < 0 the inter-

spinodal region. In this respect, the apparatus of equilibrium

and reversible thermodynamics is ineffective in the C−L

PT region (as well as in the region of the binodal of

the S-loop of any PT-I) as applied to activation process

description: vacancy formation or self-diffusion. Therefore,

it was impossible up to now to estimate the behavior of

functions hv, sv, vv, hd, sd and vd in the region of C−L

PT. In this sense, the method for calculation of functions

φv(P, T ) and xd(P, T ) from expressions (10)−(19) has a

wider application field. It was shown in [21,22], when

calculating the argon phase diagram.

9. Conclusion

1. We developed an analytical method for calculating the

dependence of activation parameters in a crystal of a single-

component substance on pressure and temperature.

2. The method was tried for a FCC-crystal of gold

in calculations of temperature dependence of activation

parameters along two isobars: P = 0 and 24GPa. The data

agrees well with the experimental and theoretical estimates

reported in literature.

3. It is shown that the temperature dependence of

activation parameters at low temperatures (T < 2) is quite

considerable due to quantum effects. The temperature

dependence of activation parameters at high temperatures

(T > 2) weakens and is almost linear.

4. It is shown that activation process entropy rises with

temperature, passing from the region of negative values to

the positive region at T ≫ 2.

5. It is shown that the use of the Arrhenius equation

for determination of energy parameters, both for vacancy

formation and for self-diffusion, is incorrect at low tem-

peratures. The use of the Arrhenius equation for gold is

incorrect already at T < 200K.

6. Gibbs energy increases under isothermal compression,

while activation process entropy and volume decrease in

the whole temperature range. Activation process enthalpy

increases with pressure rise only at high temperatures, while

below a certain temperature (which is individual for the

vacancy formation and self-diffusion process), activation

process enthalpy under isothermal compression decreases.

7. It is shown that the thermodynamic processes of the

activation process at T = 0K reach their minimum: Gibbs

energy, enthalpy and volume of the activation process

become zero, while the minimum of the activation process

entropy lies in the negative region.
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