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Detection of a chaotic signal with noise by quantization over several

amplitude levels in the model of a radio engineering chaos generator
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A method for detecting a continuous chaotic signal with a Gaussian noise by quantizing over four amplitudes

and comparing the parameters of the obtained discrete sequence with the parameters of a similar sequence for a

non−noisy chaotic signal is proposed. A quantization scheme is developed. It is determined by the structure of the

phase space of a dynamic system that generates a chaotic signal. The source of the chaotic signal is a model of a

radio engineering generator. The identified chaotic signal has a positive senior Lyapunov exponent and a continuous

power spectrum.
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Methods for applying chaotic oscillations in solving

problems of wireless transmission of information were

successfully developed during a few last decades [1,2]. The
theoretical and practical interest to the chaotic oscillations

is caused by their noise−likeness and related resistance to

multipath fading, which is extremely important for wireless

transmission of microwave−range information. At present,

such oscillations may be practically obtained in almost any

microwave frequency band [3]. What is important is that

chaotic signals have been included in the set of standards

for wireless communications [4].

The downside of noise−likeness of these signals is the

complexity of creating such methods for their reception

which could provide coherent accumulation of the signal

and its detection against the noise. This fact appeared to be

a reason for, e. g., developing techniques of chaotic signal

differential modulation [5–7], which make unnecessary

saving the signal copy in the receiver.

The goal of this work was to create a method for

the chaotic signal detection against noise, which is based

not upon the signal shape that cannot be reproduced in

the receiver but on the properties associated with the

phase−space structure of the dynamic system generat-

ing the chaotic signal. This approach enables discrete

description of the chaotic trajectory based on the laws

of the trajectory evolution in the dynamic system phase

space and then signal detection against noise by using

this description. Here the discretion of the method for

representing and utilizing a continuous chaotic signal is

similar to symbolic description of the chaotic trajectory [8]
but, strictly mathematically, is not identical to it since the

symbolic dynamics may be constructed only for a dynamic

system with hyperbolic chaos. Examples are known [9–11]
of specially synthesized generators possessing this property;

however, the possibility of their practical application is not

evident at present.

Here a ring−type radio engineering generator [12]
(Fig. 1, a) that has been practically tested in the process

of creating wired and wireless communication systems [1]
is considered as the chaos source.

A task has been set to determine the probability of

misdetection of a sum of the chaotic signal z (t) (with

dispersion σ 2
z ) and noise n(t) (with the unity dispersion)

(Fig. 1, b) T in length at the preset signal/noise ratio

SNR = 10 lg(σ 2
z /σ

2
n ).

cS(t j) = δ
(

z (t j ) + σnn(t j)
)

(1)

as compared with the pure noise fragment T in length

cN(t j+1) = δσnn(t j+1), (2)

where j is the fragment number: τ < t j 6 τ + T ,
τ + T < t j+1 6 τ + 2T . Noise n(t) is formed by filtering a

sequence of random Gaussian−distributed samples in such

a way that the signal n(t) frequency band coincides with

the chaotic signal z (t) frequency band (Fig. 1, c); τ is the

moment of the signal (1) fragment origin.

Occurrences of signals (1) and (2) at the detector input

are equiprobable.

At the preset SNR value relevant to the preset value

of σn, dispersion cS(t j) (1) will be normalized to the

dispersion of pure chaotic signal z (t) by multiplying by

coefficient δ = σz /
√

σ 2
z + σ 2

n so that signal cS(t j) (1)
obtains dispersion σ 2

z . When the signal/noise ratio SNR is

varied from minus infinity to plus infinity at constant chaotic

signal dispersion σ 2
z , σn varies from σz to zero.

Chaotic signal z (t) is generated by the dynamic system

simulating the radio engineering chaos generator (Fig. 1, a).
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The generator model comprises a piecewise−linear voltage

transformation

f (V ) = |V + E1| − |V − E1| +
1

2
(|V − E2| − |V + E2|)

(3)
and two lower−frequency filters representable by ordinary

differential equations

R1C1V̇C1 + VC1 = m f (VC2)

and

V̈C2 + (R2/L2)V̇C2 + VC2/(L2C2) = VC1/(L2C2),

where VC1, VC2 are the voltages at capacitances C1,

C2, respectively, E1 = VE/2, E2 = VE . Turning to

dimensionless voltage variables VC1 = VEx , VC2 = VEz ,
E1 = VEe1, E2 = VEe2, e1 = 1/2, e2 = 1 and time vari-

ables t = td
√

L2C2, d/dt = d/(
√

L2C2dtd) (td is the dimen-

sionless time), introducing coefficients β = R1C1/
√

L2C2,

α = R2

√
C2/L2, and excluding variable VC1, obtain a

piecewise−linear third−order equation

β
...
z + (1 + βα)z̈ + (α + β)ż + z = m f (z ). (4)

The phase space of set (4) in z (t) (Fig. 1, b) is subdivided

by nonlinearity (3) into five regions where function f (z )
retains its linearity

O1 : −∞ < z (t) 6 −e2, f
(

z (t)
)

= 0,

O2 : −e2 6 z (t) < −e1, f
(

z (t)
)

= −z (t) − e2,

O3 : −e1 6 z (t) < e1, f
(

z (t)
)

= z (t),

O4 : e1 6 z (t) < e2, f
(

z (t)
)

= −z (t) + e2,

O5 : e2 6 z (t) < ∞, f
(

z (t)
)

= 0. (5)

The nonlinearity (3) shape is similar to smooth non-

linearity f (z ) = z e−z 2

for which the ring−type generator

dynamics has been studied in detail in [12]. It was

established that such generators are able to form both

periodic and chaotic oscillations in a wide range of pa-

rameter values. The advantage of the piecewise−linear

transformation (3) is the possibility of its relatively easy

realization based on operational amplifiers. Solution of

equations (4) demonstrates both the periodic and chaotic

behavior. In further calculations we used parameter values

β = 3, α = 1/10, m = 10 (the step of the equation set (4)
Runge−Kutta integration was 1T = 0.05) corresponding

to the chaotic oscillation mode with a continuous power

spectrum (Fig. 1, c) and positive senior Lyapunov exponent.

Eigenvalues for the third−order equation set (4) may be

explicitly found in regions (5). Eigenvalues in region O3

look as follows:

λ
(3)
1 = Q − 2621

8100Q
− 13

90
,

λ
(3)
2,3 = −1

2

(

λ
(3)
1 +

13

90

)

±
√
3
(

2621
8100Q + Q

)

i

2
,

where

Q =

(

m
6

+

√

(

m
6
− 17 323

182 250

)2

+
18 005 329 061

531 441 000 000

− 17 323

182 250

)1/3

.

Eigenvalues in regions O2 and O4 are

λ
(2,4)
1 = R − 2621

8100R
− 13

90
,

λ
(2,4)
2,3 = −1

2

(

λ
(2,4)
1 ) +

13

90

)

±
√
3
(

2621
8100Q + R

)

i

2
,

where R =
(

Q3 − m
3

)1/3
. Real parts of all the speci-

fied eigenvalues are above zero, i. e. equilibrium states

in regions O2, O3, O4 are unstable, and the phase

trajectory leaves their vicinity during its evolution. In

regions O1, O5, real parts of eigenvalues λ
(1,5)
1 = −1/3,

λ
(1,5)
2,3 = −1/20±

√
399i/20 are negative; the equilibrium

position coincides with the coordinate origin, hence, the

trajectory from regions O1, O5 evolves into region O2 or

O4, and the equation set (4) oscillations as a whole are

always limited.

During its evolution, the z (t) trajectory crosses the

boundaries of regions z (±)
1 = ±e1 and z (±)

2 = ±e2 which

define four amplitude levels comparison with which allows

revealing to what phase−space region (5) the current z (t)

value belongs. Let us introduce symbolic designation Z(k)
i

indicating the belonginess of the z (t) trajectory sections to

phase−space regions (5):

Z(k)
i =































1, k = 1, z (t) ∈ O1,

2, k = 2, z (t) ∈ O2,

3, k = 3, z (t) ∈ O3,

4, k = 4, z (t) ∈ O4,

5, k = 5, z (t) ∈ O5.

(6)

Here index i is the symbol number in the sequence

generated by signal z (t) as per (6), while k is the symbol

type. After transformation (6) of continuous signal z (t),
obtain a discrete representation of the signal in the form of

a sequence of symbols

. . . Z(k
−1)

i−1 , Z(k0)
i , Z(k1)

i+1 , . . . , Z(kN−1)
i+N−1, Z(kN)

i+N . . . . (7)

For instance, sequence
”
5432121234321234345“ corre-

sponds to fragment (1) (Fig. 1, b) in section [0,25], while

sequence
”
32343“ corresponds to section [125,150].

The detection method presented here is based on

monitoring the sequence of regions (5) interchange and

comparing the frequencies of occurrence of single, double,

triple, and so on combinations of symbols (6) calculated for

pure chaotic signal z (t) with the frequency of occurrence of

symbol groups generated by signals (1) and (2).
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Figure 1. a— the chaos generator structure: 1 nonlinear transformation, 2, 3 filters of the first−order and second−order lower

frequencies, respectively; b— examples of realizing fragments of signals cS(t j) (1) (interval [0,125]) and cN(t j+1) (2) (interval [125,250])
at the signal/noise ratio SNR = 12 dB; the dashed lines indicate subdivision (5); c— power spectrum W( f ) of the non−noisy chaotic

signal z (t) (curve 1) and noise n(t) (curve 2).

Designate as S j(L) = Z(k0)
i , Z(k1)

i+1 , . . . , Z(kL−1)
i+L−1 the

j-th group (combination) consisting of L symbols

formed from sequence (7): if L = 1, they are single

symbols, if L = 2, they are pair combinations, etc.

Group ( j + 1) is formed by shifting by one symbol,

i. e. S j+1(L) = Z(k1)
i+1 , Z(k2)

i+2 , . . . , Z(kL)
i+L . The total number

of possible groups is Q(L) = 5L of any and all possible

rearrangements of L symbols. Let p(q)
C

(

Sq(L)
)

(where

q = 1, . . . , Q(L)) be the frequencies of occurrence of

groups Sq(L) for the pure chaotic signal and p(q)
N

(

Sq(L)
)

—

those for pure noise with the band and dispersion equal to

the band and dispersion of the chaotic signal. The sums of

the symbol group occurrence frequencies are normalized to

unity:
q=Q(L)
∑

q=1

p(q)
C =

q=Q(L)
∑

q=1

p(q)
N = 1.

Modeling shows that not all 5L possible symbol groups

come into effect, i. e., number NC(L) of permissible com-

binations L in length (Fig. 2) for the chaotic signal does

not exceed NN(L) for the noise, and their frequencies

are different: NC(L) 6 NN(L), p(q)
C

(

Sq(L)
)

6= p(q)
N

(

Sq(L)
)

,

q = 1, . . . , Q(L). This property is the basis of the signals

(1) and (2) classification method to realize which the

following norm expressed via the symbol group occurrence

frequencies (coinciding for both signals) was introduced:

D(L)(pS) =

max(NS,NC )
∑

q=1

∣

∣p(q)
C

(

Sq(L)
)

− p(q)
S

(

Sq(L)
)∣

∣, (8)

where NC is the number of different Sq(L) groups detectable
in the pure chaotic signal, while NS is that in the signal with

which it is compared (signal under classification); p(q)
S are
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Figure 2. Number NC of permissible groups of symbols Sq(L)
for the chaotic signal (diamonds), number NN for the noise in the

chaotic signal band (squares), and total possible number of groups

L in length (crosses).

the frequencies of the symbol groups occurrence in the

signal under classification. If the symbol combination is

absent in one of the signals, its occurrence frequency is

assumed to be zero for this signal. For signal (1) p(q)
S = p(q)

CS
,

for signal (2) p(q)
S = p(q)

CN
, where p(q)

CS
and p(q)

CN
are the

symbols Sq(L) occurrence frequencies for signals (1) and

(2), respectively.
Let norm D(L)(pCS ) be defined according to (8) for pair

”
pure chaos−signal (1)“ and norm D(L)(pCN ) be defined

for pair
”
pure chaos−signal (2)“. Based on ρCS

(

D(L)(pCS)
)

and ρCN

(

D(L)(pCN)
)

, determine for the preset SNR the

densities of the conditional probabilities of receiving signal

(1) and signal (2), respectively. If SNR → +∞, then

σn → 0 (in view of the signal and noise power nor-

malization), and mean values behave as 〈D(L)(pCS)〉 → 0,

〈D(L)(pCN )〉 → 1.

The test statistics for classifying an unknown signal of

type (1) or (2) with symbol group occurrence frequencies

p(q)
S is defined as D(L)

T = D(L)(pS) − γ0. The signal will be

classified as (1) if D(L)
T < 0 and (2) if D(L)

T > 0.

The threshold value γ0 that is to be calculated

a priori for the preset SNR will be found by minimiz-

ing sum
+∞
∫

γ0

ρCS dD(L) +
γ0
∫

−∞

ρCN dD(L) of frequencies of

false−negative and false−positive errors.

Examples of densities ρCS and ρCN are shown in

Fig. 3, a (SNR = 0 dB, L = 1). The probability densities

were calculated for the signal/noise ratio SNR ranging

from −8 to 3 dB with the step of 0.5 dB. For each

SNR value, threshold γ0 was determined a priori , and

the sum of empiric frequencies of classifying
”
signal (1)

as signal (2)“ and
”
signal (2) as signal (1)“ was calcu-

lated; this sum is presented in Fig. 3, b as a function of

SNR.

The method described was used to find an answer to

the question of great practical importance: whether it is
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Figure 3. Conditional probability densities ρCS

(

D(L)(pCS
)
)

(curve 1) and ρCN
)
(

D(L)(pCN
)
)

(curve 2) at SNR= 0 dB (a), and
sum PB of empiric frequencies of the

”
signal (1) as signal (2)“

and
”
signal (2) as signal (1)“ classifications at the signal/noise ratio

SNR ranging from −8 to 3 dB for different pulse lengths T and

different symbol numbers L in the group: 1 — T = 1032, L = 1;

2 — T = 1032, L = 2; 3 — T = 8256, L = 1; 4 — T = 8256,

L = 2. The calculation was performed for 104 classified examples.

possible using the given detection system to decrease the

misdetection frequency by increasing: (i) signals (1) and

(2) lengths; (ii) symbol number L in the group for detecting

(1) as compared with (2).

A positive answer was obtained for this question: with

increasing length T of signals (1) and (2), the accumulation

effect takes place, i. e., the misdetection frequency decreases

(Fig. 3, b). For instance, the eightfold increase in signal (1)

and (2) length T at the error frequency of 10−3 allows

worsening the signal/noise ratio by 5 dB. The increase in the

symbol number L in the group from one to two also reduces

the error probability by 2 dB.

Thus, this paper presents a method for detecting a chaotic

signal with noise, which enables distinguishing the chaotic

signal from noise over four levels of amplitude quantization,

which is practically attractive. The method does not require

knowing the signal phase or using timing.
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