05

Локальная структура аморфных пленок (GeTe)_x(Sb₂Te₃)

© А.В. Марченко,¹ Е.И. Теруков,^{2,3} Ф.С. Насрединов,⁴ Ю.А. Петрушин,¹ П.П. Серегин¹

1 Российский государственный педагогический университет им. А.И. Герцена,

191186 Санкт-Петербург, Россия

² Физико-технический институт им. А.Ф. Иоффе РАН,

194021 Санкт-Петербург, Россия

³ Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина),

197376 Санкт-Петербург, Россия

⁴ Санкт-Петербургский политехнический университет Петра Великого,

195251 Санкт-Петербург, Россия

e-mail: ppseregin@mail.ru

Поступило в Редакцию 20 июля 2022 г. В окончательной редакции 20 июля 2022 г. Принято к публикации 8 августа 2022 г.

Методом мессбауэровской спектроскопии на изотопе ¹¹⁹Sn показано, что примесные атомы олова в аморфных пленках (GeTe)_x(Sb₂Te₃) (где x = 0.5, 1, 2, 3) замещают четырехвалентные атомы германия, которые образуют тетраэдрическую систему химических связей, а в их локальном окружении находятся преимущественно атомы теллура. В кристаллических пленках (GeTe)_x(Sb₂Te₃) олово замещает двухвалентный шестикоординированный германий в позициях 4 *b* кристаллической решетки типа NaCl. Методом мессбауэровской спектроскопии на атомах ¹²¹Sb и ¹²⁵Te показано, что аморфизация пленок не изменяет локальное окружение атомов сурьмы и теллура.

Ключевые слова: аморфные пленки, фазовая память, мессбауэровская спектроскопия.

DOI: 10.21883/JTF.2022.11.53441.186-22

Введение

Халькогенидные сплавы $(GeTe)_x(Sb_2Te_3)$ (где x = 0.5, 1, 2, 3) считаются перспективными материалами для хранения и кодирования данных в устройствах энергонезависимой памяти [1]. Предпосылками этого являются существенный контраст в проводимости и отражательной способности между кристаллической и аморфной фазами, а также обратимость и малое время переходов из кристаллического в аморфное состояние [2]. Очевидно, что требования миниатюризации запоминающих устройств и повышения плотности записи информации в них наталкиваются на необходимость понимания деталей микроструктуры названных материалов в кристаллическом и аморфном состояниях.

Кристаллические структуры сплавов (GeTe)_x (Sb₂Te₃) подробно исследованы [3–8]. Что касается их аморфных модификаций, то было проведено много исследований с целью определения в них структуры ближнего порядка [9–15], однако сравнение всех экспериментальных данных показывает, что эти структуры все еще являются предметом обсуждения [2,3,15]. В частности, очевидны противоречия в интерпретации экспериментальных результатов, полученных при исследовании аморфных пленок Ge₂Sb₂Te₅ спектроскопией тонкой структуры поглощения рентгеновских лучей (X-ray absorption fine-structure spectroscopy, XAFS) [9–12]. Это указывает на необходимость использования дополнительных экспериментальных изменениям в локальной структуре и в заселенности

электронных оболочек атомов при переходе из аморфного в кристаллическое состояние.

Мессбауэровская спектроскопия (МС) является эффективным инструментом обнаружения изменений в локальном окружении атомов и их электронной структуры при аморфизации сплавов GeSbTe. В частности, это было продемонстрировано в работах [16,17], в которых методом MC на примесных атомах ¹¹⁹Sn обнаружено, что аморфизация сплавов GeAsTe (химических аналогов сплавов (GeTe)_x(Sb₂Te₃)) сопровождается изменением структуры ближнего порядка атомов германия.

Обычно упоминаемым недостатком МС является ограниченность числа зондов (мессбауэровских изотопов), которые могут быть использованы для подобных исследований. Однако в сплавах GeSbTe все атомы имеют мессбауэровские изотопы (⁷³Ge, ¹²¹Sb и 125Te) с удовлетворительными значениями ядерных параметров, так что все атомы в пленках типа GeSbTe без каких-либо ограничений могут быть объектом мессбауэровских исследований. В частности, это было проиллюстрировано в работе [18], посвященной исследованию перехода кристалл-аморфное состояние в пленках Ge₂Sb₂Te₅ методом MC на зондах ¹²¹Sb и ¹²⁵Te. Впрочем, авторы работ [18,19] продемонстрировали и возможность исследований соединений типа Ge₂Sb₂Te₅ методом MC на примесных атомах олова. Были использованы как абсорбционный вариант с изотопом ¹¹⁹Sn, так и эмиссионный вариант с материнскими атомами ¹¹⁹Sb и ^{119m}Te, когда реализуется априорная возможность вхождения мессбауэровского зонда ¹¹⁹Sn в любые узлы кристаллического и аморфного материала.

Однако кроме работ [18,19], а также работы [20], в которой приведены мессбауэровские спектры ¹²¹Sb кристаллических соединений GeSb₂Te₄, Ge₂Sb₂Te₅ и GeSb₄Te₇, отсутствуют мессбауэровские исследования тройных соединений (GeTe)_x(Sb₂Te₃). Дополнительно можно отметить работы [16,17,21-23], в которых методом MC на примесных атомах ¹¹⁹Sn исследована структура стеклообразных бинарных сплавов Ge_xTe_{1-x}. В частности, было показано, что при аморфизации изменяются координационное и валентное состояния атомов германия [16,17,22,23], и была описана локальная структура узлов германия в аморфных сплавах GexTe1х (x < 0.2) [21]. Те же сплавы $Ge_x Te_{1-x}$ в стеклообразном и кристаллическом состоянии были исследованы методами абсорбционной MC на изотопе ¹²⁵Te [24,25] и эмиссионной MC с материнскими атомами ¹²⁹Te [25,26]. Наконец, авторы [27] методом эмиссионной МС на изотопе ^{57m}Fe с материнскими ядрами ⁵⁷Mn, имплантированными в пленки аморфного и кристаллического GeTe, показали различие в структурах ближнего порядка указанных материалов.

Настоящая работа посвящена исследованию локальной структуры кристаллических и аморфных пленок $Ge_3Sb_2Te_6$, $Ge_2Sb_2Te_5$, $GeSb_2Te_4$ и $GeSb_4Te_7$ методом абсорбционной MC на изотопах ¹¹⁹Sn, ¹²¹Sb и ¹²⁵Te.

1. Методика эксперимента

Рентгеноаморфные пленки *a*-Ge₃Sb₂Te₆, *a*-Ge₂Sb₂Te₅, *a*-GeSb₂Te₄, *a*-GeSb₄Te₇ (обозначим их *a*-GeSbTe), *a*-Ge_{1.5}Te_{8.5} и легированные оловом рентгеноаморфные пленки *a*-Ge_{2.95}Sn_{0.05}Sb₂Te₆, *a*-Ge_{1.95}Sn_{0.05}Sb₂Te₅, *a*-Ge_{0.95}Sn_{0.05}Sb₂Te₄ и *a*-Ge_{0.95}Sn_{0.05}Sb₄Te₇ (обозначим их *a*-Ge(Sn)SbTe) и *a*-Ge_{1.45}Sn_{0.05}Te_{8.5} толщиной 3 μ m были получены методом магнетронного распыления поликристаллических мишеней аналогичного состава на постоянном токе в атмосфере азота на подложки из алюминиевой фольги. Затем пленки отжигали в интервале температур 150–200°C для получения кристаллических пленок. Для синтезов использовался изотоп ¹¹⁹Sn обогащения 96%. Состав пленок контролировался методом рентгенофлуоресцентного анализа.

Образцы германия, легированного оловом Ge(Sn), были получены путем сплавления металлического олова и германия. Для этой цели использовалась монокристаллическая пластина химически травленого германия (нелегированного, с концентрацией электронов менее 10^{14} cm⁻³) толщиной 200 μ m. На пластину напылялась пленка металлического олова (обогащенного до 96% изотопом ¹¹⁹Sn). Сплавление проводилось в вакуумированной кварцевой ампуле при 800°C, далее ампула медленно охлаждалась до 400°C и затем закаливалась на воздухе. После отжига образец промывался горячей

смесью HCl+HF для удаления остатков олова с поверхности. Согласно данным работы [28], растворимость олова в германии в этих условиях составляет около 1 at.%, что обеспечивает поверхностную плотность поглотителя $\sim 0.1~mg/cm^2$ по $^{119}Sn.$

Мессбауэровские спектры снимались на спектрометре CM 4201 ТегLab при 80 К. При измерении спектров ¹¹⁹Sn, ¹²¹Sb и ¹²⁵Te использовались источники Ca^{119mm}SnO₃, Ca¹²¹SnO₃ и Mg₃^{125m}TeO₆, соответственно. Изомерные сдвиги δ спектров ¹¹⁹Sn, ¹²¹Sb и ¹²⁵Te приводятся относительно поглотителей CaSnO₃, InSb и Mg₃Te₆, соответственно. Аппаратурные ширины спектральных линий для изотопов ¹¹⁹Sn, ¹²¹Sb и ¹²⁵Te составляли соответственно 0.79(2), 2.35(6) и 6.00(8) mm/s.

2. Экспериментальные результаты

Мессбауэровские спектры примесных атомов ¹¹⁹Sn в аморфных и кристаллических пленках Ge(Sn)SbTe и Ge_{1.45}Sn_{0.05}Te_{8.5} приведены на рис. 1 и 2. Все спектры представляют собой одиночные линии с шириной на полувысоте $G \sim 1.30-1.36$ mm/s (для спектра пленки *c*-Ge_{1.45}Sn_{0.05}Te_{8.5} получено G = 0.85 mm/s). Спектры аморфных пленок имеют изомерные сдвиги $\delta \sim 2.03-2.09$ mm/s, для кристаллических пленок получено $\delta \sim 3.49$ -3.54 mm/s.

Спектры ¹²¹Sb пленок *a*-GeSbTe (рис. 3) и пленок *c*-GeSbTe пленок (рис. 4), а также спектр соединения Sb₂Te₃ (рис. 4) представляют собой одиночные уширенные линии ($G \sim 5.4-5.7 \text{ mm/s}$), изомерные сдвиги которых лежат в пределах $\delta \sim 5.1-5.5 \text{ mm/s}$.

Спектры ¹²⁵Те пленок *a*-GeSbTe (рис. 5), *c*-GeSbTe (рис. 6), а также соединений GeTe и Sb₂Te₃ (рис. 7) представляют собой одиночные уширенные линии ($G \sim 6.90$ mm/s) с изомерными сдвигами $\delta \sim 1.32-1.39$ mm/s. Спектр ¹²⁵Te аморфной пленки *a*-Ge_{1.5}Te₈ представляет собой квадрупольный дублет (изомерный сдвиг $\delta = 1.65(4)$ mm/s, квадрупольное расщепление QS = 8.41(8) mm/s). Кристаллизация пленок Ge_{1.5}Te_{8.5} приводит к образованию двухфазной смеси теллура (параметры спектра: $\delta = 1.73$ mm/s, QS = 7.10 mm/s) и теллурида германия (параметры спектра: $\delta = 1.23$ mm/s, G = 6.90 mm/s).

3. Обсуждение экспериментальных результатов

3.1. Атомы германия в аморфных пленках

Германий и олово находятся в главной подгруппе IV группы таблицы Д.И. Менделеева и при интерпретации параметров мессбауэровских спектров примесных атомов ¹¹⁹Sn в кристаллических и аморфных пленках GeSb(Sn)Te и Ge_{1.45}Sn_{0.05}Te_{8.5} предполагалось изовалентное замещение германия на олово в структуре пленок.

Мессбауэровские ¹¹⁹Sn 1. спектры Рис. пленок a-Ge_{2.95}Sn_{0.05}Sb₂Te₆ *a*-Ge_{1.95}Sn_{0.05}Sb₂Te₅ (a),(b),a-Ge0.95Sn0.05Sb2Te4 (*c*), a-Ge0.95Sn0.05Sb4Te7 (d),*а*-Ge_{1.45}Sn_{0.05}Te_{8.5} (*e*) и кристаллического германия (f)при 80 К.

Изомерные сдвиги спектров примесных атомов ¹¹⁹Sn пленок *a*-Ge(Sn)SbTe и *a*-Ge_{1.45}Sn_{0.05}Te_{8.5} имеют значения, лежащие в интервале между значениями изомерных сдвигов спектра примесных атомов ¹¹⁹Sn в кристаллическом германии ($\delta = 1.80(1)$ mm/s, (рис. 1)) и спектра серого олова α -Sn ($\delta = 2.10(1)$ mm/s). Изомерные сдвиги двух последних спектров образуют область изомерных

сдвигов соединений четырехвалентного олова с тетраэдрической sp^3 -системой химических связей. Иными словами, примесные атомы олова в структуре пленок *a*-Ge(Sn)SbTe и *a*-Ge_{1.45}Sn_{0.05}Te_{8.5} изовалентно замещают четырехвалентные атомы германия, образующие тетраэдрическую систему химических связей с атомами в своем локальном окружении (т.е. координационное число атомов германия равно четырем).

Рис. 2. Мессбауэровские спектры ¹¹⁹Sn пленок c-Ge_{2.95}Sn_{0.05}Sb₂Te₆ (a), c-Ge_{1.95}Sn_{0.05}Sb₂Te₅ (b), c-Ge_{0.95}Sn_{0.05}Sb₂Te₄ (c), a-Ge_{0.95}Sn_{0.05}Sb₄Te₇ (d), c-Ge_{1.45}Sn_{0.05}Te_{8.5} (e) и соединения SnTe (f).

Рис. 3. Мессбауэровские спектры 121 Sb пленок *a*-Ge₃Sb₂Te₆ (*a*), *a*-Ge₂Sb₂Te₅ (*b*), *a*-GeSb₂Te₄ (*c*) и *a*-GeSb₄Te₇ (*d*).

Для того чтобы определить химическую природу атомов, находящихся в ближайшем окружении атомов германия в пленках *a*-GeSbTe, мы сравнили величины изомерных сдвигов спектров примесных атомов олова δ в пленках *a*-Ge(Sn)SbTe ($\delta \sim 2.03 - 2.07$ mm/s) с величинами δ в пленке *a*-Ge_{1.45}Sn_{0.05}Te_{8.5} ($\delta \sim 2.09$ mm/s, в локальном окружении германия находятся преимущественно атомы теллура) и в кристаллическом германии Ge(Sn) ($\delta \sim 1.80$ mm/s, в их локальном окружении находятся только атомы германия). Исходя из приведенных данных, можно сделать вывод, что в локальном окружении германия в пленках a-GeSbTe находятся преимущественно атомы теллура. Подтверждением этого может служить тот факт, что изомерный сдвиг спектров ¹¹⁹Sn пленок *a*-Ge(Sn)SbTe монотонно возрастает от значения 2.03(1) mm/s для состава Ge₃Sb₂Te₆ (содержит 27.3 at.% Ge) до значения 2.07(1) mm/s для состава GeSb₄Te₇ (содержит 8.3 at.% Ge).

Колобовым и др. [9] на основании результатов XAFS для описания перехода порядок-беспорядок в пленках соединения Ge₂Sb₂Te₅ был предложен механизм "пере-

ворота зонтика", согласно которому аморфизация кристаллической пленки сопровождается скачком атома Ge из октаэдрической позиции в тетраэдрическую позицию, окруженную четырьмя атомами Te, а связи Ge–Ge не были обнаружены.

Впрочем, Бейкер и др. [10,11], также, используя данные EXAFS для a-Ge₂Sb₂Te₅, пришли к выводу, что атомы Ge участвуют в структурных единицах Te₃Ge–GeTe₃, причем в отличие от механизма переворота зонтика эта модель основывается на преимущественном образовании связей Ge–Ge.

Также методом EXAFS (в сочетании с дифракцией высокоэнергетических рентгеновских лучей и дифракцией нейтронов) структура аморфных соединений *a*-Ge₂Sb₂Te₅ и *a*-GeSb₂Te₄ была исследована авторами [12]. Было показано, что связи Ge–Ge и Ge–Sb присутствуют

Рис. 4. Мессбауэровские спектры 121 Sb пленок *c*-Ge₃Sb₂Te₆ (*a*), *c*-Ge₂Sb₂Te₅ (*b*), *c*-GeSb₂Te₄ (*c*), *a*-GeSb₄Te₇ (*d*) и кристаллического соединения Sb₂Te₃ (*e*).

Рис. 5. Мессбауэровские спектры 125 Te пленок *a*-Ge₃Sb₂Te₆ (*a*), *a*-Ge₂Sb₂Te₅ (*b*), *a*-GeSb₂Te₄ (*c*), *a*-GeSb₄Te₇ (*d*) и *a*-Ge_{1.5}Te_{8.5} (*e*). Показано разложение экспериментальных спектров *a*-GeSbTe на два синглета, отвечающих атомам теллура, в локальном окружении которых находятся преимущественно либо атомы германия (штриховая линия), либо атомы сурьмы (сплошная линия).

Рис. 6. Мессбауэровские спектры 125 Те пленок *c*-Ge₃Sb₂Te₆ (*a*), *c*-Ge₂Sb₂Te₅ (*b*), *c*-GeSb₂Te₄ (*c*), *c*-GeSb₄Te₇ (*d*) и *c*-Ge1.5Te8.5 (*e*). Показано разложение экспериментального спектра *c*-Ge1.5Te8.5 на синглет и квадрупольный дублет, отвечающие фазам GeTe и Te соответственно.

Рис. 7. Мессбауэровские спектры ¹²⁵ Те соединений GeTe (a) и Sb₂Te₃ (b).

в обоих аморфных соединениях. Все атомы удовлетворяют формальным требованиям валентности, причем Ge имеет четырехкратную координацию.

Наконец, локальная структура аморфной фазы $Ge_2Sb_2Te_5$ была исследована с использованием аномального рассеяния рентгеновских лучей вблизи *К*-краев поглощения атомов германия, сурьмы и теллура, и полученные данные проанализированы с помощью моделирования методом обратного Монте-Карло [15]. Было обнаружено, что примерно половина атомов Ge имеют октаэдрическое окружение, аналогичное таковому в кристалле. Оставшаяся половина атомов Ge с тетраэдрической симметрией действует как собственный энергетический барьер между фазами, обеспечивая длительное время жизни аморфной модификации Ge₂Sb₂Te₅.

Полученные нами данные MC позволяют заключить, что четырехвалентные атомы германия образуют тетраэдрическую sp^3 систему химических связей в структурной сетке аморфной матрицы (локальное координационное число атомов германия равно четырем) и имеют в своем ближайшем окружении преимущественно атомы теллура.

Полученные нами данные MC находятся в согласии с представлениями авторов [9] о локальной структуре атомов германия в аморфных соединениях Ge₂Sb₂Te₅ и позволяют распространить эти представления на другие аморфные соединения *a*-GeSbTe: четырехвалентные атомы германия образуют тетраэдрическую $s p^3$ -систему химических связей в структурной сетке аморфной матрицы (локальное координационное число равно четырем) и имеют в своем ближайшем окружении только атомы теллура. Также подтверждается вывод авторов [12] о том, что в аморфных соединениях $Ge_2Sb_2Te_5$ и $GeSb_2Te_4$ атомы германия имеют четырехкратную координацию (с тем лишь уточнением, что это справедливо для всех

Характерной чертой спектров примесных атомов 119 Sn в пленках *a*-GeSbTe является их уширение. Могут быть две причины уширения.

аморфных пленок *a*-GaSbTe).

Во-первых, возможные искажения углов между связями атомов олова с атомами в его ближайшем окружении должны привести к уширению спектра за счет неразрешенного квадрупольного расщепления. Обработка экспериментальных спектров в таком предположении приводит к значениям квадрупольного расщепления $QS \leq 0.55$ mm/s. Такая величина QS свидетельствует о значительном искажении тетраэдрических валентных углов.

Вторая причина уширения спектров — флуктуации длин связей Ge-Te при сохранении тетраэдрических углов связей. Это приведет к уширению спектра за счет неоднородного изомерного сдвига. В первом приближении можно считать, что распределение величин изомерных сдвигов подчиняется закону Гаусса:

$$W = rac{1}{\sigma\sqrt{2\pi}}\exp\left[-rac{(\delta-\delta_0)^2}{2\delta^2}
ight].$$

где δ_0 — среднее значение изомерного сдвига, δ — его среднеквадратичное отклонение.

Мы провели численный расчет формы спектра, и для согласования его результатов с экспериментальными значениями ширин спектров аморфных пленок *a*-Ge(Sn)SbTe необходимо принять $\sigma = (0.17-0.20)$ mm/s.

Все наблюдаемые изомерные сдвиги спектров ¹¹⁹Sn в пленках a-Ge(Sn)SbTe и a-Ge_{1.45}Sn_{0.05}Te_{8.5}, определенные по положению центров тяжести их спектров, меньше изомерного сдвига спектра α-Sn. Это соответствует тому, что заселенности 5 s p³-орбиталей олова меньше единицы, атомы олова имеют небольшие положительные эффективные заряды, а связь Sn-Te (и, вероятно, Ge-Te) частично ионная. Однако если допустить упомянутое выше распределение значений изомерных сдвигов со среднеквадратичным отклонением $\sigma \sim 0.2 \,\mathrm{mm/s}$, то около половины сдвигов окажутся в области значений с заселенностями 5 *s p*³-орбиталей больше единицы. Такие заселенности соответствуют отрицательным зарядам олова, что вряд ли возможно для связи Sn-Te. Последнее означает, что уширение линий мессбауэровских спектров ¹¹⁹Sn пленок *a*-Ge(Sn)SbTe нельзя объяснить только флуктуациями длин связей Sn-Te, и необходимо учитывать искажения валентных углов, которые, повидимому, дают основной вклад в уширение.

3.2. Атомы германия в кристаллических пленках *c*-GeSbTe

Спектры примесных атомов ¹¹⁹Sn пленок *c*-GeSbTe и c-Ge_{1.45}Sn_{0.05}Te_{8.5} имеют изомерные сдвиги, типичные

для спектров ¹¹⁹Sn ионных соединений двухвалентного олова. Для сопоставления на рис. 2 приведен спектр соединения двухвалентного олова SnTe, для которого $\delta = 3.54(1)$ mm/s.

Согласно [3-5], сплавы *c*-GeSbTe могут быть получены в виде метастабильных вакансионнонеупорядоченных кубических фаз путем нагревания аморфной пленки выше температуры кристаллизации 150°С. Эти фазы имеют ромбоэдрически искаженные решетки типа NaCl (*Fm3m*) со стехиометрическими вакансиями. Анионоподобные позиции заняты атомами Te, а катионоподобные позиции — атомами Ge, Sb, и 20% их вакантны. Методом XAFS [9] было продемонстрировано, что шесть соседних связей Ge-Te с узлами октаэдрической симметрии разделяются на три короткие и три длинные связи, как в GeTe-кристалле [29].

Данные MC на примесных атомах ¹¹⁹Sn для пленок *с*-Ge(Sn)SbTe согласуются с результатами рентгеноструктурных исследований метастабильных вакансионнонеупорядоченных кубических соединений *с*-GeSbTe. Двухвалентное олово Sn²⁺ (электронная конфигурация $5s^2p^x$) замещает двухвалентный германий Ge²⁺ (электронная конфигурация $4s^2p^x$) в позициях 4b ромбоэдрически искаженной решетки типа NaCl, и в ближайшем окружении шестикоординированных атомов германия находятся только атомы теллура. Именно последним обстоятельством объясняется близость изомерных сдвигов спектров ¹¹⁹Sn соединений *с*-GeSbTe к изомерному сдвигу спектра ¹¹⁹Sn соединения SnTe, также имеющего кристаллическую решетку типа NaCl. Уширение спектров тройных соединений по сравнению с шириной спектра SnTe (G = 0.94 mm/s) связано с ромбоздрическим искажением решетки типа NaCl этих соединений, а также с большой концентрацией случайным образом распределенных стехиометрических вакансий.

Отметим, что, изменение локальной структуры атомов германия в процессе аморфизации соединений GeSbTe (переход от двухвалентного шестикоординированного состояния к четырехвалентному четырехкоординированному состоянию) не является особенностью только соединений GeSbTe, поскольку аналогичный эффект наблюдался ранее и для сплавов системы Ge-As-Te [16,17].

Для пленки *c*-Ge_{1.45}Sn_{0.05}Te_{8.5} рентгенофазовый анализ показал наличие двух фаз — соединения GeTe и элементарного теллура. Изомерный сдвиг мессбауэровского спектра ¹¹⁹Sn этого образца ($\delta = 3.53(1)$ mm/s) близок по изомерному сдвигу к спектру соединения SnTe, но обнаруживает несколько большую ширину (G = 1.13(2) mm/s). В системе Ge_{1-x}Sn_xTe существует непрерывный ряд твердых растворов и, очевидно, при кристаллизации стекла образуется твердый раствор состава Ge_{1.45}Sn_{0.05}Te_{1.5}, который при 80 К имеет структуру ромбоэдрически искаженной решетки NaCl [30]. Нарушение кубической симметрии локального окружения атомов олова в Ge_{1.45}Sn_{0.05}Te_{1.5} приводит к возникновению градиента электрического поля на ядрах

¹¹⁹Sn и квадрупольному расщеплению спектра. Поэтому уширение спектра пленок *c*-Ge_{14.5}Sn_{0.5}Te₈₅ мы интерпретировали как следствие неразрешенного квадрупольного расщепления. Полученное значение квадрупольного расщепления (QS = 0.42(3) mm/c) свидетельствует о незначительном искажении октаэдрического окружения атомов олова, и можно считать, что координационное число олова в кристаллическом образце равно шести.

3.3. Атомы сурьмы в аморфных и кристаллических пленках GeSbTe

Изомерные сдвиги спектров ¹²¹Sb пленок *a*-GeSbTe и *c*-GeSbTe, а также спектр соединения Sb₂Te₃ лежат в пределах $\delta \sim 5.1-5.5$ mm/s, что типично для спектров ¹²¹Sb трехвалентных соединений сурьмы. Следует сделать вывод о близости локальной структуры атомов сурьмы во всех исследованных пленках к локальной структуре атомов сурьмы в соединении Sb₂Te₃. Кристаллический теллурид сурьмы имеет ромбоэдрическую структуру [18]. Она содержит два типа октаэдрических позиций, различающихся степенью искажения, которые заняты атомами трехвалентной сурьмы. В локальном окружении сурьмы находятся только атомы двухвалентного теллура

Таким образом, данные MC подтверждают выводы авторов работ [9,15] о том, что локальное расположение атомов вокруг атома Sb в процессе кристаллизации аморфной пленки Ge₂Sb₂Te₅ остается практически неизменным, т. е. структурные изменения происходят внутри локального расположения атомов Sb, которые играют роль стержня общей структурной стабильности (с тем уточнением, что это справедливо для всех сплавов GaSbTe).

3.4. Атомы теллура в аморфных и кристаллических пленках GeSbTe

Изомерные сдвиги спектров ¹²⁵Те пленок *a*-GeSbTe и *c*-GeSbTe) близки к параметрам спектров ¹²⁵Te соединений двухвалентного теллура GeTe и Sb₂Te₃. Поэтому на рис. 5 и 6 показано разложение экспериментальных спектров пленок a-GeSbTe и c-GeSbTe на два синглета с параметрами, близкими к параметрам спектров ¹²⁵Те соединений GeTe ($\delta = 1.23(4)$ mm/s, G = 6.90(8) mm/s) и Sb₂Te₃ ($\delta = 1.38(4)$ mm/s, G = 6.90(8) mm/s), причем для спектров пленок варьировались амплитуды составляющих спектров в соответствии с химическим составом пленок. Удовлетворительное согласие расчетных и экспериментальных спектров ¹²⁵Те пленок позволяет сделать вывод, что в кристаллических и аморфных пленках локальные структуры атомов теллура соответствуют структурным единицам соединений GeTe и Sb₂Te₃. Первое из них имеет решетку типа NaCl с ромбоэдрическим искажением, а в ближайшем окружении двухвалентных шестикоординированных атомов теллура находятся атомы германия [29]. Второе имеет структуру, содержащую листы толщиной пять атомов в порядке Te-Sb-Te-Sb-Te, причем атомы теллура пограничных слоев образуют только три связи, тогда как атомы теллура внутри слоев образуют шесть связей с атомами сурьмы [20].

Заключение

Методом MC на изотопах ¹¹⁹Sn, ¹²¹Sb и ¹²⁵Te определено локальное окружение атомов в аморфных и кристаллических пленках (GeTe)_x(Sb₂Te₃) (где x = 0.5, 1, 2, 3). Примесные атомы олова в структуре аморфных пленок изовалентно замещают четырехвалентные атомы германия, образующие тетраэдрическую систему химических связей (локальное координационное число атомов германия в аморфных пленках равно четырем), а в локальном окружении атомов германия находятся преимущественно атомы теллура. Искажения углов между связями атомов германия (олова) с атомами теллура в его ближайшем окружении приводит к уширению спектра за счет неразрешенного квадрупольного расщепления. Флуктуации в расстояниях от атомов германия (олова) до атомов теллура при сохранении тетраэдрической системы химических связей приведет к уширению спектра за счет неоднородного изомерного сдвига.

Данные MC на примесных атомах ¹¹⁹Sn для кристаллических пленок согласуются с результатами рентгеноструктурных исследований — двухвалентное олово замещает двухвалентный германий в ромбоэдрически искаженной решетке типа NaCl. Уширение мессбауэровских спектров кристаллических тройных соединений (GeTe)_x(Sb₂Te₃) связано как с искажением решетки, так и с наличием в катионной подрешетке этих соединений большой концентрации стехиометрических вакансий.

Сделан вывод о близости локальной структуры атомов как сурьмы, так и теллура в аморфных и кристаллических пленках $(GeTe)_x(Sb_2Te_3)$.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- D. Lencer, M. Salinga, M. Wuttig. Adv. Mater., 23, 2030 (2011). DOI:10.1002/adma.201004255
- [2] C. Qiao, Y.R. Guo, J.J. Wang, H. Shen, S.Y. Wang, Y.X. Zheng, R.J. Zhang, I.Y. Chen, C.Z. Wang, K.M. Ho. J. Alloys and Compounds, **774**, 748 (2019). DOI:10.1063/5.0067157
- [3] B. Zhang, X.P. Wang, Z.J. Shen, X.B. Li, C.S. Wang, Y.J. Chen, J.X. Li, J.X. Zhang, Z. Zhang, S.B. Zhang, X.D. Han. Sci. Rep., 6, 25453 (2016). DOI: 10.1038/srep25453
- [4] Xue-Peng Wang, Xian-Bin Li, Nian-Ke Chen, Qi-Dai Chen, Xiao-Dong Han, Shengbai Zhang, Hong-Bo Sun. Acta Mater., 136, 242 (2017). DOI:10.1016%2fj.actamat.2017.07.006& partner

- [5] Z. Sun, S. Kyrsta, D. Music, R. Ahuja, J.M. Schneider. Solid State Commun., 143, 240 (2007).
 DOI: 10.1016/j.ssc.2007.05.018
 - [6] P. Urban. Cryst. Eng. Comm., 15, 4823 (2013). DOI: 10.1039/C3CE26956F.
 - [7] A. Lotnyk, U. Ross, S. Bernütz, E. Thelander, B. Rauschenbach. Sci. Rep., 6, 26724 (2016).
 DOI: 10.1038/srep26724
 - [8] Y. Zheng, Y. Wang, T. Xin, Y. Cheng, R. Huang, P. Liu, M. Luo, Z. Zhang, Z. Song, S. Feng. Commun. Chem., 2, 1 (2019). DOI.org/10.1038/s42004-019-0114-7
 - [9] A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominga, T. Uruga. Nat. Mater., 3, 703 (2004). DOI: 10.1038/nmat1215
 - [10] D.A. Baker, M.A. Paesler, G. Lucovsky, S.C. Agarwal, P.C. Taylor. Phys. Rev. Lett., 96, 255501 (2006).
 DOI: 10.1103/PhysRevLett.96.255501
 - [11] D.A. Baker, M.A. Paesler, G. Lucovsky, S.C. Agarwal, P.C. Taylor, J. Non-Cryst. Solids, **352**, 1621 (2006). DOI: 10.1016/j.jnoncrysol.2005.11.079
 - P. Jóvári, I. Kaban, J. Steiner, B. Beuneu, A. Schöps, M.A. Webb. Phys. Rev. B, 77, 035202 (2008).
 DOI: 10.1103/PhysRevB.77.035202
 - Z. Sun, J. Zhou, R. Ahuja. Phys. Rev. Lett., 96, 055507 (2006).
 DOI: 10.1103/PhysRevLett.96.055507
 - [14] M. Jung, H.J. Shin, K. Kim, J.S.Noh, J. Chung. Appl. Phys. Lett., 89, 043503 (2006). DOI: 10.1063/1.2236216 89
 - [15] J.R. Stellhorn, S. Hosokawa, S. Kohara. Analytical Sci., 36, 5 (2020). DOI: 10.2116/analsci.19SAR02
 - [16] A.B. Марченко, П.П. Серегин, Е.И. Tepy-ΦΤΠ, 53, ков. КБ Шахович. 718 (2019).DOI: 10.21883/FTP.2019.05.47570.9032 [A.V. Marchenko, P.P. Seregin, E.I. Terukov, K.B. Shakhovich. Semiconductors, 53, 711 (2019). DOI: 10.1134/S1063782619050166
 - [17] P.P. Seregin, V.P. Sivkov, F.S. Nasredinov, L.N. Vasilev, Yu.V. Krylnikov, Y.P. Kostikov. Phys. Stat. Sol. (a), **39**, 437 (1977).
 - [18] Г.А. Бордовский, А.В. Марченко, Ф.С. Насрединов, Ю.А. Петрушин, П.П., Серегин. ФХС, 47, 179 (2021). DOI: 10.31857/S0132665121020037
 [G.A. Bordovskii, A.V. Marchenko, F.S. Nasredinov, Ya.A. Petrushin, P.P. Seregin. Glass Phys. Chem., 47, 166 (1921). DOI: 10.1134/S1087659621020036]
 - [19] А.В. Марченко, Е.И. Теруков, Ф.С. Насрединов, Ю.А. Петрушин, П.П. Серегин. ФТП, 55, 3 (2021).
 DOI: 10.21883/JTF.2022.11.53441.186-22 [A.V. Marchenko, E.I. Terukov, F.S. Nasredinov, Ya.A. Petrushin. Semiconductors, 55, 1 (1921).
 DOI: 10.1134/S1063782621010127]
 - [20] F. Ledda, C. Muntoni, A. Rucci, S. Serci, G. Alonzo, M. Consiglio, T. Bressani. Hyperfine Interactions, 41, 591, (1988).
 - [21] S. Rigamonti, G. Petrini. Phys. Stat. Sol. (a), 41, 591 (1970).
 - [22] Г.А. Бордовский, Е.И. Теруков, Н.И. Анисимова, А.В. Марченко, П.П. Серегин. ФТП, 43, 1232 (2009).
 [G.A. Bordovskii, E.I. Terukov., N.I. Anisimova, A.V. Marchenko, P.P. Seregin. Semiconductors, 43, 1193 (2009). DOI: 10.1134/S1063782609090164]
 - M. Micoulaut, K. Gunasekera, S. Ravindren, P. Boolchand. Phys. Rev. B, **90**, 094207 (2014).
 DOI: 10.1103/PhysRevB.90.094207
 - [24] P. Boolchand, B.B. Triplett, S.S. HannaS. *Mössbauer Effect Methodology* (New England Nuclear Corporation, 1974)

- [25] M.K. Gauer, I. Dezsi, U. Gonser, G. Langouche, H. Ruppersberg. J. Non-Cryst. Solids, **101**, 31 (1988).
 DOI: 10.1016/0022-3093(88)90365-1
- [26] M.K. Gauer, I. Dezsi, U. Gonser, G. Langouche, H. Ruppersberg. J. Non-Cryst. Solids, 109, 247 (1989).
 DOI: 10.1016/0022-3093(88)90365-1
- [27] R. Mantovan, R. Fallica, A. Mokhles Gerami, T.E. Molhol, C. Wiemer, M. Longo, H.P. Gunnlaugsson, K. Johnston, H. Masenda, D. Naidoo, M. Ncube, K. Bharuth-Ram, M. Fanciulli, H.P. Gislason, G. Langouche, S. Glafsson, G. Weyer. Scientific Rep., 7, 8234 (2017).
 DOI: 10.1038/s41598-017-08275-5
- [28] R.W. Olesinski, G.J. Abbaschian. Bulletin of Alloy Phase Diagrams, 5, 265 (1984).
- [29] T. Chattopadhyay, J.X. Boucherle, H.G. von Schnering. J. Phys. C, 20, 1431 (1987).
- [30] K. Bobokhuzhaev, A. Marchenko, P. Seregin. Structural and Anti-Structural Defects in Chalcogenide Semiconductors. Mössbauer Spectroscopy (LAP Lambert Academic Publishing, 2020)