Фотодиоды на основе структур Ga₂O₃/*n*-GaAs, способные работать в автономном режиме

© В.М. Калыгина, О.С. Киселева, Б.О. Кушнарев, В.Л. Олейник, Ю.С. Петрова, А.В. Цымбалов

Национальный исследовательский Томский государственный университет, 634050 Томск, Россия

E-mail: kalygina@ngs.ru

Поступила в Редакцию 18 апреля 2022 г. В окончательной редакции 28 июля 2022 г. Принята к публикации 28 июля 2022 г.

> Исследованы электрические и фотоэлектрические характеристики структур Ga₂O₃/*n*-GaAs. Пленку оксида галлия получали ВЧ магнетронным напылением на эпитаксиальные слои *n*-GaAs с концентрацией $N_d = 9.5 \cdot 10^{14}$ см⁻³. Толщина оксидной пленки равнялась 120 нм. Измерения на частоте 10⁶ Гц показали, что вольт-фарадные и вольт-сименсные зависимости описываются кривыми, характерными для структур металлдиэлектрик-полупроводник и обнаруживают слабую чувствительность к излучению с $\lambda = 254$ нм. При работе на постоянном сигнале образцы проявляют свойства фотодиода и способны работать в автономном режиме. Фотоэлектрические характеристики детекторов во время непрерывного действия излучения с $\lambda = 254$ нм определяются высокой плотностью ловушек на границе Ga₂O₃/GaAs и в объеме оксидной пленки.

> Ключевые слова: МДП-структуры, вольт-фарадные характеристики, вольт-сименсные характеристики, фототок, плотность ловушек.

DOI: 10.21883/FTP.2022.09.53417.9868

1. Введение

Одним из перспективных направлений разработки детекторов коротковолнового излучения являются устройства, способные работать в автономном режиме. Фотодетекторы с автономным питанием имеют ряд преимуществ перед другими устройствами на основе широкозонных материалов, способных обнаруживать ультрафиолетовое излучение. Такие фотодетекторы имеют простое устройство и, что особо важно, предполагают прямую интеграцию с технологией изготовления структур металл-диэлектрик-полупроводник (MIS) [1]. К настоящему времени описано значительное количество исследований, связанных с изучением электрических и фотоэлектрических характеристик структур металл-Ga₂O₃-полупроводник. В качестве полупроводниковой подложки использовали органические и неорганические материалы [2-9]. Электрические и оптические характеристики таких устройств определяются выбором полупроводника, технологией и режимом получения пленки Ga₂O₃ и технологическими приемами, используемыми для обработки оксидной пленки после ее нанесения на полупроводниковую подложку. В данном сообщении представлены результаты исследований электрических и фотоэлектрических характеристик структур, полученных ВЧ магнетронным напылением пленки оксида галлия на эпитаксиальные слои *n*-GaAs.

2. Методика эксперимента

В качестве подложки использовали эпитаксиальные слои *n*-GaAs с концентрацией $N_d = 9.5 \cdot 10^{14}$ см⁻³. Эпи-

таксиальные слои электронного арсенида галлия толщиной 12 мкм выращивали на пластинах монокристаллического GaAs(100). Толщина буферного слоя n^+ -типа составляла 4.9 мкм. После нанесения оксидной пленки Ga₂O₃/*n*-GaAs структуры отжигали в аргоне в течение 30 мин при температуре 900°С.

Фазовый состав пленки исследовали с помощью рентгено-дифракционного анализа (XDA) на установке "Lab-X XRD 6000 ShimadzuX-raydiffractometer". Для исследования атомной структуры использовали рентгеновскую трубку с медным анодом. Рабочая длина волны 1.54 нм. Компьютерная обработка результатов проводилась в программе OriginPro8.

Для измерений электрических характеристик на поверхности Ga_2O_3 и тыловую сторону полупроводниковой подложки наносили платиновые контакты. Контакт к полупроводнику напыляли в виде сплошной металлической пленки, а контакт к оксиду галлия создавали напылением металла через маски диаметром 1 мм. Площадь электрода к Ga_2O_3 (затвор) составляла $1.04 \cdot 10^{-2}$ см².

Темновые вольт-амперные характеристики (ВАХ) и ВАХ при воздействии ультрафиолетового излучения исследовали при комнатной температуре с помощью источника-измерителя Keithley 2611В. В качестве источника УФ-излучения использовалась криптон-фторовая лампа VL-6 с фильтром на 254 нм. Расстояние между лампой и образцом составляло 1 см, падающая интенсивность излучения равнялась 0.78 мВт/см².

Измерение вольт-фарадных (ВФХ) и вольт-сименсных характеристик (ВСХ) полученных образцов проводилось на частоте 1 МГц. Для этой цели использовали измеритель Е7-12 и специально разработанную приставку, позволяющую в одном цикле измерять вольт-фарадные

Рис. 1. Результаты XDA пленки оксида галлия после отжига в Ar при 900°C.

 $(C\!-\!U)$ и вольт-сименсные $(G\!-\!U)$ характеристики в автоматическом режиме.

3. Экспериментальные данные и обсуждение

На рис. 1 представлены результаты XDA анализа пленки оксида галлия, полученной ВЧ-магнетронным напылением на подложке GaAs после отжига в аргоне в течение 30 мин при 900°С.

В пленке Ga_2O_3 присутствуют кристаллиты β -фазы, ориентированные в направлениях [$\overline{1}02$], [401] и [023].

C-U- и G-U-зависимости образцов (рис. 2, a) описываются кривыми, характерными для структур металлдиэлектрик-полупроводник (МДП-структура). Толщина оксидной пленки, рассчитанная по формуле плоского конденсатора из значения емкости диэлектрика в режиме обогащения ($C_d = 740 \, \text{п}\Phi$), составляет 124 нм. Расчет концентрации носителей заряда в полупроводнике при использовании вольт-фарадной характеристики в режиме обеднения (рис. 3) показал, что $N_d = 1.5 \cdot 10^{15} \,\mathrm{cm}^{-3}$, что с учетом погрешности эксперимента удовлетворительно соответствует исходной концентрации электронов в эпитаксиальной пленке.

Таким образом, нанесение ВЧ магнетронным напылением пленки оксида галлия не изменяет исходную концентрацию электронов в GaAs в отличие от получения пленки Ga₂O₃ методом электрохимического анодирования [10].

При включении УФ излучения наблюдается лишь небольшой рост проводимости G в режиме обеднения (рис. 4), емкостные свойства структуры практически не изменяются.

Темновые вольт-амперные характеристики образцов (I_D) — нелинейные, определяются знаком и величиной потенциала на затворе (рис. 5). Коэффициент выпрямления при напряжениях ±4 В составляет 10³.

При воздействии ультрафиолетового излучения (УФИ) прямой ток снижается, а обратный — увеличивается. Наиболее заметное влияние излучения с $\lambda = 254$ нм наблюдается при низких положительных и отрицательных напряжениях на образце, в окрестности $U \approx 0$ В. Такие структуры обладают вольтаическим эффектом, их принято характеризовать как self-powered photo diodes. Для большинства образцов, исследованных в данной работе, напряжение холостого хода U_{xx} составляет (0.40–0.43) В, а ток короткого замыкания $I_{sc} - (4-10) \cdot 10^{-7}$ А.

На рис. 6 в более подробном масштабе показано влияние УФ излучения на ВАХ образцов при непрерывном действии (кривые $I_{LI}-I_{L5}$). Наибольшие изменения прямых и обратных токов во время УФИ наблюдаются при первом опросе детектора (I_{LI}) и снижаются при последующих измерениях ВАХ во время непрерывного действия УФ излучения (рис. 6, кривые $I_{L2}-I_{L5}$).

Рис. 2. Вольт-фарадная и вольт-сименсная характеристики структуры Ga₂O₃/*n*-GaAs (*a*); эквивалентная схема, используемая для расчета плотности состояний на границе Ga₂O₃/GaAs (*b*).

Подобно многим детекторам УФИ на основе пленок оксида галлия структуры $M/Ga_2O_3/n$ -GaAs, исследованные в данной работе, обнаруживают остаточные токи, обозначенные на рис. 6 как кривые I_{D1} .

Исследованные структуры M/Ga₂O₃/*n*-GaAs обнаруживают свойства фотодиодов, работающих в вольтаическом режиме. При воздействии излучения с $\lambda = 254$ нм и напряжении U = -0.012 В обратный ток увеличивается более чем на 2 порядка, что позволяет использовать такие структуры в качестве детекторов УФ излучения в диапазоне длин волн 200–280 нм. При напряжениях, близких к нулевым значениям, практически не наблюдается влияние остаточной проводимости (persistent conductivity) на временные характеристики детекторов. На рис. 7 показано изменение во времени проводимости диода при включении и выключении УФИ при напряжении 0.005 В.

Рис. 3. Зависимость квадрата обратной емкости от напряжения.

Рис. 4. Вольт-сименсные характеристики структуры $M/Ga_2O_3/n$ -GaAs в режиме обеднения: темновая (G_D) и при воздействии излучения с $\lambda = 254$ нм (G_L) .

Рис. 5. Вольт-амперные характеристики образца при положительных и отрицательных потенциалах на затворе: темновые (I_D) и при воздействии излучения с $\lambda = 254$ нм (I_L) .

Рис. 6. Вольт-амперные характеристики образца при положительных и отрицательных потенциалах на затворе: темновые (I_D) и при воздействии излучения с $\lambda = 254$ нм $(I_{LI}-I_{LS})$.

Время отклика τ_r и время восстановления τ_f , определенные по уровню 0.9 и 0.1 соответственно, не превышают 1–2 с; время восстановления τ_f по уровню 0.1 составляет — (1–2) с (рис. 7, *b*), что меньше временны́х параметров УФ детекторов на основе барьерных структур со встречно-штырьевыми электродами [11].

Снижение фототока при многократном опросе структур во время непрерывного действия УФ излучения (рис. 6) объясняется участием ловушечных центров в формировании отклика. Фототок формируется не только переходом электронов из валентной зоны в зону прово-

Рис. 7. Временные зависимости изменения проводимости $M/Ga_2O_3/n$ -GaAs структуры при включении и выключении излучения с $\lambda = 254$ нм (*a*); отдельный импульс в более подробном временном масштабе (*b*). U = 0.005 В.

димости, но и забросом носителей заряда из ловушечных центров. Ловушки локализованы в запрещенной зоне оксидной пленки [12–14] и на границе Ga₂O₃/GaAs. В силу больших различий параметров моноклинной решетки Ga₂O₃ и решетки сфалерита GaAs, предполагается наличие большой плотности поверхностных состояний на интерфейсе. По мере опустошения ловушек их вклад в отклик снижается, и величина фототока стабилизируется (рис. 6, кривые $I_{L2}-I_{L5}$).

Плотность ловушечных центров N_t на границе Ga₂O₃/GaAs оценивали, используя вольт-фарадные и вольт-сименсные характеристики МДП-структур, измеренные мостовым методом при параллельном включении емкости (*C*) и проводимости (*G*). Для этого полученные значения *C* и *G* необходимо пересчитать с помощью формул (1)–(3) в соответствии с эквивалентной схемой, показанной на рис. 2, *b*, и получить зависимости $C_{sc}(\omega)$ и $G_t(\omega)/\omega$ [15]:

$$C_{sc}(\omega) = \frac{\omega^2 C_{\partial}^2 C - C_{\partial} (G^2 + \omega^2 C^2)}{G^2 + \omega^2 (C_{\partial} - C)^2},$$
 (1)

$$\frac{G_t(\omega)}{\omega} = \frac{\omega C_{\partial}^2 G}{G^2 + \omega^2 (C_{\partial} - C)^2},$$
(2)

$$C_{sc}(\omega) = C_i + C_t(\omega). \tag{3}$$

В формулах (1)–(3) C_{sc} — емкость области пространственного заряда; C_{∂} — емкость диэлектрика; C_t и G_t соответственно дифференциальная емкость и проводимость, обусловленные перезарядкой поверхностных состояний, энергетические уровни которых совпадают с уровнем Ферми на поверхности полупроводника F_s ; C_i — емкость инверсионного слоя. Для расчета емкости инверсионного слоя можно использовать формулу [15]

$$C_i = S\left(\frac{\varepsilon\varepsilon_0 e N_d}{2|\varphi_s|}\right)^{1/2},\tag{4}$$

где S — площадь электрода к диэлектрику, ε — диэлектрическая проницаемость полупроводника, ε_0 — электрическая постоянная, φ_s — поверхностный потенциал. Экспериментально емкость C_i находят, определив минимальное значение измеренной емкости (C_{\min}) на ВФХ при больших отрицательных смещениях на МДП-структуре

$$\frac{1}{C_{\min}} = \frac{1}{C_{\partial}} + \frac{1}{C_i}.$$
(5)

Зависимость $G_t(\omega)/\omega$ от напряжения описывается кривой с максимумом при том же напряжении, что и кривая G(U) на рис. 2, *а*. Используя полученные в соответствии с выражением (2) данные и формулу (6) [15]

$$\left(\frac{G_t}{\omega}\right)_{\max} \approx 0.4e^2 N_t(\mathbf{F}_s),$$
 (6)

получили энергетическую ловушек плотность $N_t = 03.2 \cdot 10^{13} \, \text{эB}^{-1} \cdot \text{см}^{-2}$. Найденное значение N_t характеризует плотность состояний только на границе Ga₂O₃/GaAs и, как отмечалось выше, обусловлено несоответствием параметров кристаллических решеток оксида галлия и арсенида галлия. Изменение фототока структур Ga_2O_3/n -GaAs во время непрерывного излучения с $\lambda = 254$ нм определяется действия ловушками не только на интерфейсе, но и в объеме оксидной пленки.

4. Заключение

Исследованы электрические и фотоэлектрические характеристики структур Ga₂O₃/GaAs, полученных ВЧ магнетронным напылением пленки оксида галлия на эпитаксиальные слои *n*-GaAs с концентрацией $N_d = 9.5 \cdot 10^{14}$ см⁻³. Толщина оксидной пленки равнялась 120 нм. Вольт-фарадные и вольт-сименсные зависимости образцов описываются кривыми, характерными для структур металл–диэлектрик–полупроводник. При измерении на частоте 10^6 Гц структуры Ga₂O₃/*n*-GaAs обнаруживают слабую чувствительность к излучению с $\lambda = 254$ нм. При работе на постоянном сигнале образцы проявляют свойства фотодиода и способны работать в автономном режиме. Фотоэлектрические характеристики детекторов во время непрерывного действия излучения с $\lambda = 254$ нм определяются высокой плотностью ловушек на границе Ga₂O₃/GaAs и в объеме оксидной пленки.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- J. Bae, Ji-H.Park, D.-W.Jeon, J. Kim. APL Mater., 9, 101108 (2021).
- [2] A. Atilgan, A. Yildiz, U. Harmanci, M.T. Gulluoglu, K. Salimi. Mater. Today Commun., 24, 101105 (2020).
- [3] Y. Cui, S. Zhang, Q. Shi, S. Hao, A. Bian, X. Xie, Z. Liu. Phys. Scr., 96, 125844 (2021).
- [4] S. Li, Z. Yan, Z. Liu, J. Chen, Y. Zhi, D. Guo, P. Li, Z. Wu, W. Tang, J. Mater. Chem. C, 8, 1292 (2020).
- [5] Z. Yan, S. Li, J. Yue, X. Ji, Z. Liu, Y. Yang, P. Li, Z. Wu, Y. Guo, W. Tang. J. Mater. Chem. C, 9, 14788 (2021).
- [6] Z. Yan, S. Li, J. Yue, X. Ji, Z. Liu, Y. Yang, P. Li, Z. Wu, Y. Guo, W. Tang. ACS Appl. Mater. & Interfaces, 13, 57619 (2021).
- [7] D. You, C. Xu, J. Zhao, W. Zhang, F. Qin, J. Chen, Z. Shi. J. Mater. Chem. C, 7, 3056 (2019).
- [8] H. Lin, A. Jiang, S. Xing, L. Li, W. Cheng, J. Li, W. Miao, X. Zhou, L. Tian. Nanomaterials, 12, 910 (2022).
- [9] B.R. Tak, M.M. Yang, Y.H. Lai, Y.H. Chu, M.A.R. Singh. Scientific Rep., 10:16098 (2020).
- [10] В.М. Калыгина, В.В. Вишникина, А.Н. Зарубин, Ю.С. Петрова, М.С. Скакунов, О.П. Толбанов, А.В. Тяжев, Т.М. Яскевич. Изв. вузов. Физика, 9, 11 (2013).
- [11] V.M. Kalygina, A.V. Tsymbalov, A.V. Almaeva, Yu.S. Petrova. Semiconductors, 55, 341 (2021).
- [12] B.R. Tak, M. Yang, M. Alexe, R. Singh. Crystals, 11, 1046 (2021).
- [13] Y.K. Frodason, K.M. Johansen, L. Vines, J.B. Varley. Appl. Phys., **127**, 075701 (2020). doi: 10.1063/1.5140742
- [14] Y.J. Zhang, J. Shi, D.-C. Qi, L. Chen, H.L. Zhang. APL Mater., 8, 020906 (2020).
- [15] В.И. Гаман, Н.Н. Иванова, В.М. Калыгина, Е.Б. Судакова. Изв. вузов. Физика, № 11, 99 (1992).

Редактор Г.А. Оганесян

Self-powered photo diodes based on Ga_2O_3/n -GaAs structures

V.M. Kalygina, O.S. Kiselyeva, B.O. Kushnarev, V.L. Oleynik, Yu.S. Petrova, A.V. Tsymbalov

National Research Tomsk State University, 634050 Tomsk, Russia

Abstract The electrical and photoelectric characteristics of the Ga₂O₃/*n*-GaAs structures have been studied. A gallium oxide film was obtained by HF magnetron sputtering on *n*-GaAs epitaxial layers with concentration of $N_d = 9.5 \cdot 10^{14} \text{ cm}^{-3}$ concentration. The thickness of the oxide film was 120 nm. Measurements at a frequency of 10^6 Hz have shown that the capacitance-voltage and conductance-voltage dependences are described by curves characteristic of metal-insulator-semiconductor structures and exhibit low sensitivity to radiation with $\lambda = 254$ nm. When operating on a constant signal, the samples exhibit the properties of a photodiode and are able to work offline. The photoelectric characteristics of the detectors during continuous exposure to radiation with $\lambda = 254$ nm are determined by the high density of traps at the Ga₂O₃/GaAs interface and in the oxide film.