Оптимизация гребенчатого волновода лазера на основе HgCdTe гетероструктуры для одномодовой генерации излучения дальнего ИК диапазона

© А.А. Дубинов, С.В. Морозов

Институт физики микроструктур Российской академии наук, 603950 Нижний Новгород, Россия

E-mail: sanya@ipmras.ru

Поступила в Редакцию 30 июня 2022 г. В окончательной редакции 7 июля 2922 г. Принята к публикации 7 июля 2022 г.

Проведена оптимизация параметров гребенчатого волновода лазера с оптической накачкой на основе гетероструктуры HgCdTe с квантовыми ямами для одномодовой генерации излучения в диапазоне длин волн 25–41 мкм. Было показано, что ширина гребня не должна превышать 15 мкм для осуществления одномодовой генерации в лазере с глубиной травления, захватывающей активную область.

Ключевые слова: лазер, волновод, мода, HgCdTe, дальний ИК диапазон.

DOI: 10.21883/FTP.2022.09.53404.39

1. Введение

В настоящее время крайне востребованы источники когерентного излучения дальнего ИК диапазона длин волн для различных применений в спектроскопии газов, медицине, мониторинге окружающей среды [1–3]. В этой области длин волн лидирующее место среди полупроводниковых источников излучения занимают монополярные квантовые каскадные лазеры (ККЛ) на основе соединений $A^{III}B^V$. Однако существует диапазон длин волн (25–55 мкм), в котором работа ККЛ на основе упомянутых выше соединений затруднена, а зачастую невозможна из-за сильного поглощения на полярнооптических фононах [4]. Есть только одна работа, посвященная возможности генерации в этом диапазоне на длине волны 28 мкм [5].

Альтернативой материалам $A^{III}B^V$ могут служить полупроводники, в которых частоты полярно-оптических фононов располагаются вдали от рассматриваемой выше области частот. В частности, одним из таких полупроводников являются твердые растворы HgCdTe, имеющие длины волн оптических фононов в районе 75 мкм, при этом ширину запрещенной зоны в HgCdTe можно менять в широких пределах — от нуля до 1.6 эВ — за счет изменения доли Cd. Эти материалы широко применяются для создания приемников и приемных матриц среднего ИК диапазона (см., например, работу [6] и ссылки в ней). Недавно было предложено использовать квантовые ямы на основе HgCdTe для создания ККЛ [7], излучающего в недоступном для ККЛ на основе соединений $A^{III}B^V$ диапазоне длин волн.

Однако ККЛ, в том числе на HgCdTe, достаточно сложны в изготовлении из-за необходимости роста огромного числа квантово-размерных слоев требуемого качества. Поэтому альтернативой усилению на межподзонных оптических переходах (как в ККЛ) может стать усиление на межзонных оптических переходах [8]. До недавнего времени межзонные лазеры на основе HgCdTe генерировали излучение лишь на длинах волн короче 5.3 мкм [9]. Но благодаря улучшению методики роста структур HgCdTe методом молекулярно-пучковой эпитаксии, из выращенных этим методом планарных волноводных структур HgCdTe с квантовыми ямами удалось наблюдать суперлюминесценцию на длинах волн вплоть до 31 мкм [10].

Для практических применений часто необходима одномодовая лазерная генерация. Первым шагом к ее созданию служит определение параметров гребенчатого волновода лазера с целью генерации одной моды, поперечной направлению распространения. В дальнейшем использование стандартных принципов создания лазера с распределенной обратной связью [11] позволит добиться одномодовой генерации по продольным модам.

2. Моделирование и его результаты

В рассматриваемой структуре (см. таблицу и рис. 1), предназначенной для оптической накачки, мы будем полагать толщину буферного слоя CdTe, равной 15 мкм, так как ранее было показано, что для излучения в диапазоне длин волн 25-41 мкм оптимальный вариант волновода по отношению внутренних потерь α к фактору оптического ограничения Г реализуется при росте лазерной структуры HgCdTe на подложке GaAs с буферным слоем CdTe именно такой толщины [12].

Путем варьирования толщин волноводных слоев D_1 Hg_{0.25}Cd_{0.75}Te и D_2 при решении уравнений Максвелла для волноводных ТЕ-мод [13] были определены их оптимальные толщины (см. рис. 2), при которых порог генерации для TE₀-моды был минимальным (что соответствует минимальному отношению α/Γ) [12]. При

№ слоя	Название	Состав	Толщина, нм
1	Подложка	GaAs	_
2	Буферный слой	ZnTe	50
3	Буферный слой	CdTe	15000
4	Волноводный слой	Hg _{0.25} Cd _{0.75} Te	D_1
5	Активный слой (10 КЯ/барьер)	HgTe/Hg _{0.25} Cd _{0.75} Te	6/30
6	Волноводный слой	Hg _{0.25} Cd _{0.75} Te	D_2
7	Покровный слой	CdTe	50

Параметры исследуемой структуры

Рис. 1. Ростовая схема лазерной структуры (не в масштабе). (Цветной вариант рисунка представлен в электронной версии статьи).

Рис. 2. Частотная зависимость минимального отношения α/Γ и соответствующих оптимальных значений D_1 и D_2 .

этом порог генерации для неосновных мод был выше на 1-2 порядка. Из рис. 2 видно, что α/Γ быстро растет с уменьшением частоты моды, что связано с резким увеличением поглощения при приближении частоты моды к частотам полярно-оптических фононов в CdTe, ZnTe и GaAs [14]. Отметим также максимум поглощения на 35 мэB, который соответствует двухфононному пику поглощения в CdTe [14]. Частотная зависимость диэлектрической проницаемости для Hg_{0.25}Cd_{0.75}Te аппроксимировалась из работы [15].

Для определения максимальной ширины гребенчатого волновода W, при которой существует только одна поперечная мода, мы использовали метод эффективного показателя преломления [13]. Полагалось, что травление при формировании гребня будет осуществляться до волноводного слоя, находящегося под слоем с активной областью. Это необходимо для того, чтобы при оптической накачке лазерная генерация возникала только в гребне. Вычислив эффективные показатели преломления n_{ef} и потери α TE₀-мод под гребнем и вне его (см. рис. 3), можно найти искомую величину W в зависимости от ча-

Рис. 3. Частотная зависимость n_{ef} (1) и α (3) под гребнем и n_{ef} (2) и α (4) вне его, а также максимальной ширины W (5).

стоты излучения. Отметим, что для TE_0 -моды вне гребня частотная зависимость α имеет пик вблизи 40 мэВ, что связано с уменьшением общей толщины волноводного слоя при травлении, которое приводит к увеличению потерь на вытекание моды в подложку GaAs и росту α .

На рис. 3 представлена частотная зависимость W для рассматриваемого гребенчатого волновода в диапазоне длин волн 25–41 мкм. Из рисунка видно, что зависимость W достаточно слабая и при ширине Wменее 15 мкм во всем рассматриваемом диапазоне длин волн должна наблюдаться одномодовая генерация на моде TE_{00} .

3. Заключение

В заключение в работе было проведено численное моделирование модового состава гребенчатого волновода лазера на основе $CdTe/Hg_{0.25}Cd_{0.75}Te$ с квантовыми ямами HgTe. Было показано, что в диапазоне длин волн 25—41 мкм ширина гребня не должна превышать 15 мкм для осуществления одномодовой генерации в лазере с глубиной травления, захватывающей активную область.

Финансирование работы

Работа выполнена при поддержке Российского научного фонда (грант № 22-12-00310).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S.S. Dhillon, M.S. Vitiello, E.H. Linfield, A.G. Davies. J. Phys. D: Appl. Phys., 50 (4), 043001 (2017).
- [2] T. Hochrein. J. Infr. Milli. Terahz. Waves, **36**, 235 (2015).
- [3] P.F.-X. Neumaier, K. Schmalz, J. Borngraber, R. Wylde, H.-W. Hubers. Analyst, 140, 213 (2015).
- [4] M.S. Vitiello, G. Scalari, B. Williams, P. De Natale. Opt. Express, 23, 5167 (2015).

- [5] K. Ohtani, M. Beck, M.J. Süess, J. Faist, A.M. Andrews, T. Zederbauer, H. Detz, W. Schrenk, G. Strasser. ACS Photonics, 3 (12), 2280 (2016).
- [6] A. Rogalski. Rep. Progr. Phys., 68, 2267 (2005).
- [7] D. Ushakov, A. Afonenko, R. Khabibullin, D. Ponomarev, V. Aleshkin, S. Morozov, A. Dubinov. Opt. Express, 28, 25371 (2020).
- [8] A. Afonenko, D. Ushakov, G. Alymov, A. Dubinov, S. Morozov, V. Gavrilenko, D. Svintsov. J. Phys. D: Appl. Phys., 54, 175108 (2021).
- [9] J.M. Arias, M. Zandian, R. Zucca, J. Singh. Semicond. Sci. Technol., 8, S255 (1993).
- [10] S.V. Morozov, V.V. Rumyantsev, M.S. Zholudev, A.A. Dubinov, V.Ya. Aleshkin, V.V. Utochkin, M.A. Fadeev, K.E. Kudryavtsev, N.N. Mikhailov, S.A. Dvoretskii, V.I. Gavrilenko, F. Teppe. ACS Photonics, 8, 3526 (2021).
- [11] H. Kogelnik, C.V. Shank. J. Appl. Phys., 43, 2327 (1972).
- [12] А.А. Дубинов, В.В. Румянцев, М.А. Фадеев, В.В. Уточкин, С.В. Морозов. ФТП, 55, 455 (2021).
- [13] М. Адамс. Введение в теорию оптических волноводов (М., Мир, 1984).
- [14] *Handbook of optical constants of solids*, ed. by E.D. Palik (Academic Press, Orlando, 1985).
- [15] J. Polit. Bull. Polish Acad. Sciences. Tech. Sciences, 59 (3), 331 (2011).

Редактор Г.А. Оганесян

Optimization of a stripe laser waveguide based on an HgCdTe heterostructure for single-mode generation of far-IR radiation

A.A. Dubinov, S.V. Morozov

Institute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia

Abstract The parameters of an optically pumped stripe waveguide laser based on an HgCdTe heterostructure with quantum wells for single-mode generation of radiation in the wavelength range of $25-41\,\mu\text{m}$ are optimized. It was shown that the width of the ridge should not exceed $15\,\mu\text{m}$ to implement single-mode generation in a laser with an etching depth covering the active region.

Публикация материалов Симпозиума завершена.