03.5

Начальная стадия эволюции гидродинамических параметров при глубоком проплавлении металлов мощным лазерным излучением

© Р.Д. Сейдгазов, Ф.Х. Мирзаде

Институт проблем лазерных и информационных технологий РАН — филиал ФНИЦ "Кристаллография и фотоника" РАН, Шатура, Московская обл., Россия

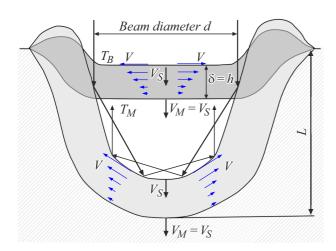
E-mail: seidgazov@mail.ru

Поступило в Редакцию 18 июня 2022 г. В окончательной редакции 29 июля 2022 г. Принято к публикации 29 июля 2022 г.

Представлен качественный анализ изменений гидродинамических параметров при образовании канала проплавления термокапиллярным удалением расплава при точечном воздействии непрерывного лазерного излучения. Установлено, что в режиме глубокого проплавления быстрая деформация поверхности приводит к прилипанию вязкого подслоя к границе плавления и формированию сдвиговой структуры термокапиллярного потока с последующим ускорением роста канала проплавления.

Ключевые слова: глубокое проплавление, лазерное излучение, термокапиллярный механизм, сдвиговый поток, вязкий подслой, прилипание.

DOI: 10.21883/PJTF.2022.18.53394.19283


Режим глубокого проплавления (ГП) обеспечивает большую глубину проплавления и производительность в технологиях лазерной сварки и аддитивного производства селективным лазерным плавлением порошковых слоев. Переход от режима теплопроводности в режим ГП изменяет форму зоны плавления с мелкой и полукруглой на глубокую и узкую из-за образования капиллярного канала, по которому лазерное излучение проникает в глубь металла. В создании канала могут участвовать два гидродинамических механизма: абляционный и термокапиллярный (ТК), хотя мнения о влиянии этих механизмов расходятся. Абляционный механизм предполагает механическое поддержание канала давлением отдачи паров [1,2] и традиционно считается доминирующим. Пороговая смена режимов плавления рассматривается как результат резкого роста давления паров при нагреве поверхности до температуры кипения T_{B} [3]. Следует отметить, что применение абляционного механизма нередко сопровождается признанием отсутствия адекватных знаний о механизме ГП [4-6].

Другой механизм ГП связан с ТК-механизмом удаления расплавленного металла из-за температурной зависимости поверхностного натяжения при неоднородном лазерном нагреве, позволяющем контролировать образование канала [7,8]. Выполненные в работе [9] тщательные численные расчеты формирования кратера с учетом относительного влияния обоих механизмов подтверждают преобладание ТК-механизма при температуре кипения T_B , в то время как доминирование абляционного механизма требует нагрева значительно выше T_B . В режиме ГП (или при поверхностной температуре T_B [3]) интенсивность испарения оказывается недостаточной для механического поддержания канала

давлением паров, а соответствующие этому режиму экспериментальные данные воспроизводимы при оценочных расчетах с использованием ТК-механизма [10–12]. Оценки пороговых условий смены режимов при ТКмеханизме соответствуют результатам экспериментов с разными металлами в широком диапазоне изменений операционных параметров [13]. Таким образом, есть весомые основания считать роль ТК-механизма определяющей, если физически обосновать создание сдвигового ТК-потока в металлах при характерных для них малых числах Прандтля ($Pr = \nu/\chi \ll 1, \nu$ — кинематическая вязкость, χ — температуропроводность). Для этого необходим физический анализ эволюции параметров процесса на начальной стадии лазерного плавления при действии ТК-механизма. Цель настоящей работы представить такой анализ для точечного плавления на основе приближенных зависимостей.

Рассмотрим начальный момент точечного плавления металла непрерывным лазерным излучением с диаметром d и проанализируем формирование сдвигового ТК-потока в условиях режима ГП (рис. 1). Для этого представим эволюцию температуры поверхности, скорости ТК-потока, скорости фронта плавления и деформации поверхности, толщины расплавленного слоя и вязкого подслоя, глубины проплавления и канала при постоянных свойствах металла.

Температура расплава. Поглощение лазерного излучения на поверхности металла происходит в очень тонком слое. Распространение тепловой волны на расстояние x за время t приближенно оценивается как $x(t)=(\chi t)^{1/2}$ [14]. Изменение температуры поверхности при действии поверхностного теплового источника $(\alpha^{-1}\ll(\chi t)^{1/2},\alpha$ — коэффициент поглощения) с посто-

Рис. 1. Лазерное удаление расплава термокапиллярным сдвиговым потоком и рост кратера в установившемся режиме при $h(t) = \delta(t)$ и $V_S(t) = V_M(t)$ с захватом излучения.

янной поглощенной плотностью мощности q равно [14]:

$$\Delta T(t) = (2q/\lambda)(\chi t/\pi)^{1/2},$$

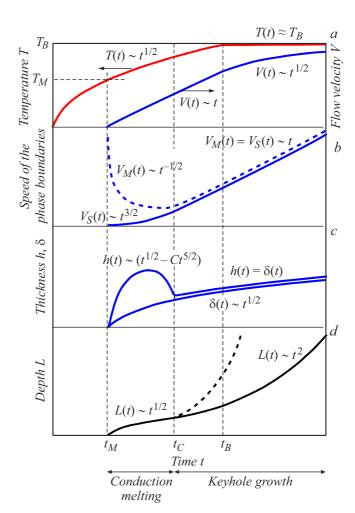
где λ — теплопроводность. Если считать λ , χ постоянными, характер роста температуры будет $\Delta T(t) \sim t^{1/2}$. Плавление начинается при температуре T_M в момент t_M . В момент t_B температура насыщается у точки кипения T_B [3]. Поэтому в процессе плавления можно выделить два интервала: $t_M < t < t_B$ с изменением температуры $T(t) \sim t^{1/2}$ и $t > t_B$ с насыщением температуры $T(t) = T_B$ (рис. 2, a).

Толщина вязкого подслоя. С появлением ТК-течения вязкие силы передаются нижним слоям и распространяются на расстояние толщины вязкого подслоя δ аналогично распространению температуры $\delta(t)=(\nu t)^{1/2}$ [7,8] (рис. 2, c). Такой рост $\delta(t)$ сохраняется, пока существует ТК-поток.

Скорость термокапиллярного течения. Скорость ТК-потока растет с момента t_M как $V(t) \approx \sigma_T \big(T(t) - -T_M\big)\delta(t)/(\eta d)$ [7,8], где σ_T — температурный коэффициент поверхностного натяжения, η — динамическая вязкость. Скорость ТК-потока в интервале $t_M < t < t_B$ линейно растет со временем: $V(t) \sim \big(T(t) - T_M\big)\delta(t) \sim t$. При $t > t_B$ и насыщении температуры $T(t) = T_B$ скорость потока растет с нелинейным замедлением во времени $V(t) \sim T_B\delta(t) \sim t^{1/2}$ (рис. 2,a).

Скорость деформации поверхности. Радиальное растекание ТК-потока со скоростью V при толщине вязкого подслоя δ вызывает в зоне облучения деформацию поверхности расплава со скоростью $V_S(t)$ (рис. 1). Из условия сохранения массы $V_S(t)\pi d^2/4 = V(t)\delta(t)\pi d$ получим $V_S(t) = 4V(t)\delta(t)/d$. При $V(t) \sim t$ и $\delta(t) \sim t^{1/2}$ деформация поверхности сначала $(t_M < t < t_B)$ растет с нелинейным ускорением $V_S(t) \sim t^{3/2}$, а после насыщения температуры (при $t > t_B$) в силу $V(t) \sim t^{1/2}$

и $\delta(t) \sim t^{1/2}$ рост замедляется и принимает линейный характер: $V_S(t) \sim t$ (рис. 2, b).


Толщина расплавленного слоя. Толщина расплавленного слоя h(t) определяется движением двух фазовых границ. В движущейся системе отсчета, связанной с поглощающей поверхностью, толщина h(t) растет с движением фронта плавления в глубь металла со скоростью $V_M(t) \approx (\chi/t)^{1/2}$ и уменьшается с поступлением твердого металла к фронту плавления со скоростью деформации поверхности $V_S(t)$:

$$h(t) = [V_M(t) - V_S(t)]t.$$

Используя соотношения для $V_M(t)$, $V_S(t)$, T(t) и обозначая $C=8qv/(\pi^{1/2}d\lambda)$, получим

$$h(t) = \chi^{1/2}(t^{1/2} - Ct^{5/2}).$$

С началом плавления быстрый рост h(t) определяется теплопроводностью: $h(t) \sim t^{1/2}$. Скорость фронта плав-

Рис. 2. Эволюция параметров, определяющих проплавление металлов. a — температура поверхности T(t), скорость ТК-потока V(t); b — скорость фронта плавления $V_M(t)$, скорость деформации поверхности $V_S(t)$; c — толщина расплавленного слоя h(t), толщина вязкого подслоя $\delta(t)$; d — глубина проплавления L(t).

ления уменьшается со временем от максимального значения $V_M(t_M)$ с нелинейным торможением $V_M(t) \sim t^{-1/2}$, а скорость деформации растет от нуля $V_S(t_M)=0$ с нелинейным ускорением $V_S(t) \sim t^{3/2}$. Толщина h(t) растет, пока скорости фазовых границ не сравняются. После этого под влиянием ускорения деформации поверхности $V_S(t) \sim t^{3/2}$ толщина h(t) уменьшается до момента t_C прилипания вязкого подслоя к границе плавления $h(t) = \delta(t)$ и формирования сдвиговой структуры ТК-потока (рис. 1 и 2, c). С этого момента ($t > t_C$) тепловой источник на ускоряющейся свободной поверхности стимулирует ускорение фронта плавления увеличением теплопередачи за счет конвективного теплопереноса в вязком подслое. В результате толщина h(t) растет вместе с толщиной вязкого подслоя $h(t) = \delta(t) \sim t^{1/2}$ при равенстве скоростей $V_M(t) = V_S(t)$ и сдвиговой структуре ТК-потока. Эффективное удаление расплава из зоны облучения обеспечивает быстрый рост канала в установившемся режиме, который описан теоретически в работах [7,8]. Условие прилипания $h(t) = \delta(t)$ нарушается с достижением предельной глубины канала и прекращением выноса расплава из канала при продолжающемся плавлении действующим лазерным излучением.

проплавления. Момент прилипания t_C Глубина делит процесс проплавления на две фазы: фазу подготовки сдвигового ТК-потока ($t_M < t < t_C$) и фазу установившегося режима роста капиллярного канала $(t > t_C)$ (рис. 2, d). Первая отличается незначительной деформацией поверхности с ростом глубины плавления за счет теплопроводности: $L(t) \approx h(t) \sim (\chi t)^{1/2} \sim t^{1/2}$. Вторая связана с ростом капиллярного канала и нелинейным ускорением глубины проплавления: $L(t) \approx V_S(t)t \sim T(t)\hat{\delta}^2(t)t \sim t^{5/2}$ при $t_M < t < t_C$ и $L(t) \approx T_B \delta^2(t) t \sim t^2$ при $t > t_C$. Дополнительное ускорение росту канала (штриховая линия на рис. 2, d) придает скачок поглощения при захвате излучения каверной (рис. 1) [15]. Существование двух фаз проплавления с характерным изломом эволюционной кривой L(t) подтверждается наблюдениями (с помощью высокоскоростной рентгеновской визуализации) роста канала проплавления в металле [16], согласно которым продолжительность первой фазы сокращается при увеличении мощности излучения, а также уменьшении диаметра лазерного пятна.

Таким образом, быстрая деформация поверхности в режиме ГП способствует кратковременному (только на время роста канала) созданию на фронте плавления сдвигового ТК-потока, даже несмотря на характерные для металлов очень малые значения числа Прандтля ($\Pr = \nu/\chi \ll 1$). Момент прилипания выделяется перегибом (изломом) эволюционной кривой L(t) и делит процесс лазерного плавления в режиме ГП на фазу подготовки сдвигового потока и фазу установившегося роста канала. Когда канал достигает своей предельной глубины, рост деформации поверхности прекращается.

С этого момента толщина расплавленного слоя увеличивается, вязкий подслой отрывается от границы плавления (условие прилипания нарушается). Формируется конвективное ТК-течение с пристеночным возвратным потоком, из-за чего кратер затекает и исчезает, несмотря на продолжающееся действие лазерного излучения, как продемонстрировано в эксперименте [12].

Описанные выше гидродинамические процессы имеют микроскопические масштабы. При толщине $h=\delta\sim 5-10\,\mu\mathrm{m}$ и скорости ТК-потока $V\sim 5-10\,\mathrm{m/s}$ характерное время распространения вязких сил составляет $\delta/V\sim 1\,\mu\mathrm{s}$ [8]. Для численного моделирования ТК-механизма ГП требуется пространственно-временна́я сетка с еще более малым шагом, а также высокая вычислительная мощность. Игнорирование этого требования в расчетной практике может быть источником ошибочных результатов и выводов о роли ТК-механизма.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] М.С. Баранов, Б.А. Вершок, И.Н. Гейнрихс, Теплофизика высоких температур, **13** (3), 566 (1975). [М.S. Baranov, В.А. Vershok, I.N. Geinrikhs, High Temp., **13** (3), 515 (1975).].
- [2] J.G. Andrews, D.R. Atthey, J. Phys. D: Appl. Phys., 9 (15), 2181 (1976). DOI: 10.1088/0022-3727/9/15/009
- [3] K. Hirano, R. Fabbro, M. Muller, J. Phys. D: Appl. Phys., 44 (43), 435402 (2011).
 DOI: 10.1088/0022-3727/44/43/435402
- [4] T. DebRoy, S.A. David, Rev. Mod. Phys., 67 (1), 85 (1995).DOI: 10.1103/RevModPhys.67.85
- [5] R. Fabbro, M. Hamadou, F. Coste, J. Laser Appl., 16 (1), 16 (2004). DOI: 10.2351/1.1642633
- [6] M. Courtois, M. Carin, P. Le Masson, S. Gaied, M. Balabane,
 J. Phys. D: Appl. Phys., 49 (15), 155503 (2016).
 DOI: 10.1088/0022-3727/49/15/155503
- [7] Р.Д. Сейдгазов, Ю.М. Сенаторов, Квантовая электроника, **15** (3), 622 (1988). [R.D. Seidgazov, Yu.M. Senatorov, Sov. J. Quantum Electron., **18** (3), 396 (1988). DOI: 10.1070/QE1988v018n03ABEH011530].
- [8] R.D. Seidgazov, J. Phys. D: Appl. Phys., 42 (17), 175501 (2009). DOI: 10.1088/0022-3727/42/17/175501
- [9] S. Ly, G. Guss, A.M. Rubenchik, W.J. Keller, N. Shen,
 R.A. Negres, J. Bude, Sci. Rep., 9, 8152 (2019).
 DOI: 10.1038/s41598-019-44577-6
- [10] R.D. Seidgazov, in Proc. of the Forth Int. Conf. "Laser technologies in welding and material processing"(E.O. Paton Electric Welding Institute NASU, Kyiv, 2009), p. 62. DOI: 10.13140/RG.2.1.1247.3767
- [11] R.D. Seidgazov, in 2019 IEEE 8th Int. Conf. on advanced optoelectronics and lasers (CAOL) (Sozopol, Bulgaria, 2019), p. 216. DOI: 10.1109/CAOL46282.2019.9019431
- [12] Р.Д. Сейдгазов, Ф.Х. Мирзаде, Письма в ЖТФ, **47** (21), 16 (2021). DOI: 10.21883/PJTF.2021.21.51622.18838
- [13] R.D. Seidgazov, F.Kh. Mirzade, Welding Int., 35 (7-9), 359 (2021). DOI: 10.1080/09507116.2021.1979829

- [14] W.W. Duley, Laser processing and analysis of materials (Plenum Press, N.Y.—London, 1983). DOI: 10.1007/978-1-4757-0193-7
- [15] R. Fabbro, Appl. Sci., 10 (4), 1487 (2020).DOI: 10.3390/app10041487
- [16] R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, A.D. Rollett, Science, 363 (6429), 849 (2019). DOI: 10.1126/science.aav4687