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Charge transfer in the vertical structures formed by two-dimensional
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graphene-like compounds are considered.
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After the advent of graphene topics the intensive search

for new two-dimensional (2D) compounds and heterostruc-

tures based on them was initiated [1–3]. Now there are

hundreds of known 2D-materials [4–6] possible in theory

and different schemes to grow superlattices (SL) of 2D-

layers (hereinafter referred to as 2DSL) [7–9]. In [10]

proposed a simple scheme to describe the electron spectrum

of 2DSL making it possible to take into account the

interlayer interaction. In this work we use results of [10] to

determine the charge transfer between the layers of 2DSL.

Let us consider a vertical structure composed of alternat-

ing sheets 1 and 2 that can be described in the isolated form

by Green’s functions G1,2(κ1,2; ω), where ω is the energy

variable, κ1,2 are wave vectors for the electron movement in

the plane (x , y, pd) of the sheet (p = 0, 1, 2,. . . N; d is the

distance between layers in the 2DSL). Now we include the

interlayer interaction V . In the mode of weak interplanar

coupling in the diagonal approximation (see [10]) Green’s

functions G̃1,2(κ1,2kz ;ω) of the 2DSL layers can be written

as follows

G̃−1
1,2(κ1,2, kz ;ω) = G−1

1,2(κ1,2;ω)

− 4 cos2(kz d)32,1(ω) + i0+, (1)

where 31,2(ω) = V 2
∞
∫

−∞

ρ1,2(ω
′)(ω − ω′)−1dω′ are

energy-shift functions of layer 2 (1) under the influence

of layer 1 (2) [10], ρ1,2(ω) = π−1N−1
κ1,2

∑

κ1,2

ImG(κ1,2) are

densities of states of free layers 1 and 2 (Nκ1,2
are numbers

of states κ1,2), kz is the wave vector for the electron

movement in vertical direction (along the SL). As far as we

are not aimed here at obtaining precise results, but only

estimating the charge transfer between layers, we average

expression (1) over kz . Then, instead of (1) we get

〈G̃−1
1,2(κ1,2, kz ;ω)〉kz = Ḡ−1

1,2(κ1,2;ω)

= G−1
1,2(κ1,2;ω) − 232,1(ω) + i0+. (2)

Note that this substitution is reasoned in the mode of weak

coupling interaction, because the z -band can be considered

narrow (dispersion-free) as compared to 2D-band.

Let us consider graphene (Gr) and graphene-like com-

pounds (GLC) as layers that compose the 2DSL. In the low-

energy approximation the density of states of free-standing

GLC and shift function 3GLC(ω) can be respectively written

as follows

ρGLC(�) =

{

2|�|/ξ2, 1 6 |�| 6 R,

0, |�| < 1, |�| > R,

3GLC(�) =
2V 2�

ξ2
ln

∣

∣

∣

�2 − 12

�2 − R2

∣

∣

∣
, (3)

where � = ω − ε, ξ =
√

2π
√
3t, R =

√

ξ2 + 12, t is the

electron hopping energy between the nearest atoms in a

layer, 21 is the band gap width of the free-standing GLC,

ε is the energy of the band gap center [11]. Assuming

1 = 0 and ε = εD , where εD is the Dirac point, we

get the density of states of the free-standing graphene

ρGr(ω). Let us consider that the density of states

of lattice layers ρ̄GLC is determined by expression (3),
where � is to be replaced with � = ω − ε̄, where

ε̄ = ε + 23n.n.l.(ω) and 3n.n.l.(ω) is the shift of electron

states caused by the nearest neighboring layer. Let us make

the approximation, which is widely used in the theory of

adsorption [12] and assume ε̄ = ε + 23n.n.l.(ε). Occupation
numbers of atoms in layers at zero temperature are

n̄1,2 = 2
µ
∫

−∞

ρ̄1,2(ω)dω, where µ is the chemical potential,

which position is determined from the charge conseervation
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condition n̄1 + n̄2 = n1 + n2, where n1,2 are occupation

numbers of layers without interaction. The charge transfer

between layers is ν1,2 = n̄1,2 − n1,2, from which we get

ν1 = −ν2.

Let’s start from the lattice formed by layers Gr and

GLC, and let’s consider Gr and GLC undoped, so that

n1 = n2 = 1. If ε̄D < ε̄ − 1, electrons transfer from GLC

layers to Gr layers. In this case νGr = 2(µ − ε̄D)2/ξ2Gr and

νGLC = −2(µ − ε̄)2/ξ2GLC, from which

µ =
ε̄DξGLC + ε̄ξGr

ξGr + ξGLC
,

νGr = 2
(ε̄ − ε̄D)2

(ξGr + ξGLC)2
. (4)

If ε̄D > ε̄ + 1, electrons transfer from Gr layers

to GLC layers. Then νGr = −2(µ − ε̄D)2/ξ2Gr and

νGLC = 2(µ − ε̄)2/ξ2GLC, from which we again get expres-

sion (4) for µ, and for νGr a plus to minus change

is needed. In the case when ε̄ − 1 < ε̄D < ε̄ + 1, no

charge transfer occurs. If ε = εD (which approximately

corresponds to graphene and hexagonal boron nitride [10]),
there is no charge transfer between layers as well. Estimates

of tGr and tGLC, 1 for A4B4 and A3B5 2D-compounds are

presented in [13], values of −ε and −εD with respect to the

vacuum are equal to corresponding work functions. Due

to the variety of parameters, the conclusion on how exactly

the consideration of coupling interaction affects the charge

transition can only be made for specific 2DSLs.

For 2DSLs composed of GLC1 and GLC2 layers,

ν1,2 = ±2(µ − ε̄1,2)
2/ξ21,2, so that

µ =
ε̄1ξ2 + ε̄2ξ1

ξ1 + ξ2
,

ν1 = 2
(ε̄1 − ε̄2)

2

(ξ1 + ξ2)2
. (5)

If ε̄1 − 11 < ε̄2 − 12, electrons transfer from GLC2 layers

to GLC1 layers, and if ε̄1 + 11 > ε̄2 + 12, the reverse

process takes place. If ε1 = ε2 (which is approximately valid

for AlN and GaN sheets [10]), there is no charge transfer.

Now let us estimate the charge transfer in planar

encapsulated structures. For this purpose let us consider

N vertically arranged arbitrary 2D-layers enclosed between

massive top and bottom slabs. Using the results of [14],
we get the following representation for Green’s functions of

layers g p(ω), where p is the layer number

g−1
N (ω) = ω − εN(κN) − 3top(ω) − 3N−1(ω) + i0+,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g−1
p (ω) = ω − εp(κp) − 3p+1(ω) − 3p−1(ω) + i0+,

1 6 p 6 N − 1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g−1
1 (ω) = ω − ε1(κ1) − 32(ω) − 3bot(ω) + i0+,

(6)
where 3top(bot)(ω) is the shift of electron states induced

by the top (bottom) slab. Let us consider as an example

an encapsulated layer of graphene located between the top

metal slab (contact pad) and bottom slab — a substrate

made of semiconductor (for example, Si, SiC) or dielectric

material (for example, BN, SiO2). In case of nonmagnetic

transition metal (TM) we can write the following

ρTM(ω) =

{

10/Wd , |�m| 6 Wd/2,

0, |�m| > Wd/2,

3TM(ω) = (Ŵm/π) ln

∣

∣

∣

∣

�m + Wd/2

�m −Wd/2

∣

∣

∣

∣

, (7)

where �m = ω − εm; Ŵm = 10πV 2
m/Wd; εm is the energy of

the center of d-band of the TM, which width is Wd ; Vm is

the matrix element of metal−graphene interaction (Friedel
model) [15]. For the semiconductor (dielectric) we can

write the following

ρSC(ω) =

{

ρs , |�s | > Eg/2,

0, |�s | < Eg/2,

3SC(ω) = (Ŵs/π) ln

∣

∣

∣

∣

�s − Eg/2

�s + Eg/2

∣

∣

∣

∣

, (8)

where �s = ω − εs , Ŵs = 4πV 2
s /Ws ; Ws is the width of the

conduction band and the valence band; εs is the energy

of the band gap center Eg ; Vs is the matrix element of

the substrate−graphene interaction (Haldane−Anderson

model) [16]. Assuming ε̄D = εD + 3TM(εD) + 3SC(εD),
we get |νGr | = 2(µ − ε̄D)2/ξ2Gr , where the position of

µ is determined by the slabs. If µ < ε̄D , we have

νGr < 0, i.e. outflow of electrons from the graphene

layer; if µ > ε̄D , we have νGr > 0, i.e. inflow of electrons

into the graphene layer. Also, a case is possible when

3TM(εD) + 3SC(εD) = 0 and ε̄D = εD .

Thus, a simple scheme to estimate the charge transfer is

proposed in the work that allows obtaining analytical results.

The weak-coupling regime (van der Waals interaction) was

considered not only because of simplicity considerations,

but also on the ground that Gr and GLC retain their original

properties in this case only.
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