03,04,19

Синтез, кристаллическая структура и высокотемпературная теплоемкость замещенных апатитов $Pb_9R(GeO_4)_3(VO_4)_3$ (R = Tb, Dy, Ho)

© Л.Т. Денисова¹, М.С. Молокеев^{1,2}, Е.О. Голубева¹, Н.В. Белоусова¹, В.М. Денисов¹

 ¹ Сибирский федеральный университет, Красноярск, Россия
 ² Институт физики им. А.В. Киренского ФИЦ КНЦ СО РАН, Красноярск, Россия
 E-mail: Idenisova@sfu-kras.ru

Поступила в Редакцию 11 апреля 2022 г. В окончательной редакции 11 апреля 2022 г. Принята к публикации 19 апреля 2022 г.

Твердофазным синтезом из исходных оксидов PbO, Tb₂O₃ (Dy₂O₃, Ho₂O₃), GeO₂ и V₂O₅ последовательным отжигом (при температуре 773–1073 K) в атмосфере воздуха получены апатиты Pb₉R(GeO₄)₃(VO₄)₃ (R = Tb, Dy, Ho). Методом рентгеноструктурного анализа установлена их кристаллическая структура. Высокотемпературная теплоемкость измерена методом дифференциальной сканирующей калориметрии. На основании экспериментальной зависимости теплоемкости от температуры рассчитаны термодинамические свойства.

Ключевые слова: апатиты, твердофазный синтез, кристаллическая структура, теплоемкость, термодинамические свойства.

DOI: 10.21883/FTT.2022.11.53315.353

1. Введение

Важной проблемой современного материаловедения является получение новых оксидных соединений и материалов с наперед заданными физико-химическими свойствами на их основе. В качестве последних могут быть использованы сложные оксидные соединения с апатитоподобной структурой (пр. гр. P6₃/m). Интерес к таким соединениям обусловлен наличием уникальных свойств, имеющих прикладную ценность, что позволяет использовать их в качестве биоматериалов, люминофоров, сенсоров, лазерных и флуоресцентных материалов, катализаторов органического синтеза [1-7], в акустооптических устройствах, в медицине, энергетике, нефтепереработке, охране окружающей среды [8], для утилизации радиоактивных отходов [9]. Отличительной особенностью соединений со структурой апатита является возможность замещения одних структурных единиц другими без существенного изменения структуры [3,10-15]. Такое замещение дает возможность как изменять свойства уже известных соединений со структурой апатита, так и получать новые материалы [16,17]. Так, например, частичная замена свинца в апатите Pb₅(GeO₄)(VO₄)₂ (или Pb₁₀(GeO₄)₂(VO₄)₄) на редкоземельные элементы (РЗЭ) позволяет получить соединения с общей формулой $Pb_{10-x}R_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (R — редкоземельный элемент, х принимает значения от 0 до 3) [13,18–25], а на висмут — $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ [26]. Следует отметить, что свойства апатитов $Pb_{10-x}R_x(GeO_4)_{2+x}(VO_4)_{4-x}$ мало изучены, а имеющиеся данные относятся, в основном,

к исследованию их кристаллической структуры. Данные по теплоемкости получены нами только для апатитов этого класса, содержащих La [19,20,22,25], Pr [23,25], Nd [21,25], Eu [24], Sm [25]. Имеющиеся в литературе сведения о термодинамических свойствах относятся к другим соединениям со структурой апатита (фтор-, хлори гидроксиапатитам) [27,28].

Цель настоящей работы — установление закономерностей изменения кристаллической структуры и теплоемкости при замещении свинца редкоземельными элементами в апатитах $Pb_9R(GeO_4)_3(VO_4)_3$ (R = Tb, Dy, Ho) на основе экспериментальных результатов.

2. Эксперимент

Замещенные апатиты $Pb_{10-x}R_x(GeO_4)_{2+x}(VO_4)_{4-x}$ получали из исходных оксидов методом твердофазных реакций. Для этого предварительно прокаленные оксиды в стехиометрических количествах смешивали в агатовой ступке, прессовали в таблетки без связующего и последовательно отжигали в атмосфере воздуха при 773, 873 и 973 К по 10 h. Время окончательного отжига при 1073 К подбирали экспериментально. Оно увеличивалось от 100 h (для La [22]) до 200 h (Тb, Dy, Ho). Это согласуется с данными авторов работы [3], отметивших, что в кальцийсодержащих силикатапатитах при переходе от La до Er протекание твердофазной реакции затрудняется. Ими предположено, что последнее связано с понижением реакционной способности в данном ряду соединений редкоземельных элементов. Для увеличения полноты протекания твердофазных реакций через каждые 10 h отжига проводили измельчение образцов и снова их прессовали. Фазовый состав синтезированных образцов контролировали с помощью рентгенофазового анализа (дифрактометр Bruker D8 ADVANCE, CuK_{α} -излучение с графитовым монохроматором в области углов $2\theta = 7.5-120^{\circ}$, шаг сканирования 0.016°, время экспозиции на каждый шаг сканирования 2 s, уточнение кристаллической структуры соединений проведено методом Ритвельда в программе TOPAS 4.2 [29]).

Для измерения высокотемпературной теплоемкости методом дифференциальной сканирующей калориметрии использовали термоанализатор STA 449 С Jupiter (NETZSCH, Германия). Методика экспериментов описана нами ранее [30]. Ошибка экспериментов не превышала 2%.

3. Результаты и их обсуждение

В качестве примера на рис. 1 показана рентгенограмма апатита $Pb_9Ho(GeO_4)_3(VO_4)_3$. Все рефлексы были проиндицированы в гексагональной ячейке ($P6_3/m$) с параметрами, близкими к $Pb_5(GeO_4)(VO_4)_2$ [31,32]. Поэтому эта структура была взята в качестве стартовой модели уточнения. Параметры элементарных ячеек синтезированных апатитов приведены в табл. 1.

Заметим, что в структуре свинецсодержащих апатитов имеются две структурно-неэквивалентные катионные позиции Pb1(4f) и Pb2(6h) [11,31–34]. В работе [34] показано, что при замещении свинца лантаном в апатите состава Pb₈La₂(GeO₄)₄(VO₄)₂ атомы La располагаются в основном в позиции Pb1, несмотря на то, что эффективный заряд La³⁺ больше, чем эффективный заряд Pb²⁺. Такое же явление наблюдалось для Sr_{10-x}Eu_x(VO₄)₆(OH)_{2-x}O_x при замещении стронция европием (Eu³⁺ преимущественно занимает позиции Sr1) [35]. Тем не менее, в гидроксиапатите кальция в случае большого эффективного заряда у замещающего иона он преимущественно занимает меньшую по размерам позицию Ca2 [36].

На рис. 2 показаны зависимости параметров элементарных ячеек апатитов $Pb_9R(GeO_4)_3(VO_4)_3$ от порядкового номера редкоземельных элементов. Видно, что в ряду от лантана до гольмия происходит немонотонное изменение a, c и V. Подобное явление наблюдалось и для других свойств в этом же ряду [37]. Известно,

Таблица 1. Параметры элементарных ячеек апатитов $Pb_9R(GeO_4)_2(VO_4)_4$ (R = Tb, Dy, Ho): a, c — параметры ячейки, V — объем ячейки, Z — число формульных единиц в ячейке

Параметры	Tb	Dy	Но
a, A c, A V, A^3 Z	10.09290(18) 7.38863(16) 651.82(3) 1	$\begin{array}{c} 10.09371(30) \\ 7.37080(25) \\ 650.350(44) \\ 1 \end{array}$	$ \begin{array}{r} 10.0917(3) \\ 7.372(2) \\ 650.20(4) \\ 1 \end{array} $

 $S_{1} = \frac{1}{20 40 60 80 100}$

Рис. 1. Экспериментальный (1), расчетный (2) и разностный (3) профили рентгенограмм $Pb_9Ho(GeO_4)_3(VO_4)_3$ после уточнения методом минимизации производной разности; штрихи указывают расчетные положения рефлексов.

Рис. 2. Зависимости параметров элементарных ячеек a(1), c(2) и V(3) апатитов $Pb_9R(GeO_4)_3(VO_4)_3$ от порядкового номера редкоземельных элементов.

что образование твердых растворов определяется как размерными факторами, так и строением электронных оболочек [38]. При этом в случае гетеровалентного замещения ион с большим зарядом входит в кристалл легче, чем ион с меньшим зарядом (правило полярности Гольдшмидта) [38]. Учитывая наличие лантаноидного

Т,К	$C_p,$ JK ⁻¹ mol ⁻¹	$H^{\circ}(T)-H^{\circ}(350 \mathrm{K}),$ kJ mol ⁻¹	$S^{\circ}(T) - S^{\circ}(350 \mathrm{K}),$ $\mathrm{L}\mathrm{K}^{-1} \mathrm{mol}^{-1}$	$-\Delta G/T^*$, I K ⁻¹ mol ⁻¹		
Pb ₉ Tb(GeO ₄) ₃ (VO ₄) ₃						
350	852.7	-	-	- 7.22		
400	8/0.4	43.09	115.1	/.33		
450	885.4	86.99	218.5	25.14		
500	898.6	131.6	312.4	49.24		
550	910.8	176.8	398.7	//.14		
600	922.2	222,7	478.4	107.3		
650	933.1	269.1	552.7	138.7		
700	943.6	316.0	622.2	170.8		
750	953.8	363.4	687.7	203.1		
800	961.8	411.4	749.5	235.3		
850	973.7	459.8	808.3	267.3		
900	983.4	508.7	864.2	298.9		
950	993.0	558.1	917.6	330.1		
1000	1002	608.0	968.8	360.8		
$Pb_9Dy(GeO_4)_3(VO_4)_3$						
350	912.4	_	_	_		
400	926.3	45.97	122.7	7.82		
450	939.1	92.61	232.6	26.80		
500	951.2	139.9	332.2	52.44		
550	962.9	187.7	423	82.07		
600	974.3	236.2	507.7	114.1		
650	985.4	285.1	586.1	147.4		
700	996.4	334.7	659.5	181.4		
750	1007	384.8	728.6	215.6		
800	1018	435.4	794.0	249.7		
850	1029	486.6	856.1	283.5		
900	1039	538.3	915.2	317.0		
950	1050	590.5	971.6	350.0		
1000	1061	643.3	1026	382.5		
Pb ₉ Ho(GeO ₄) ₃ (VO ₄) ₃						
350	893.1	_	_	_		
400	908.7	45.05	120.3	7.66		
450	922.9	90.84	228.1	26.27		
500	936.3	137.3	326.1	51.43		
550	949.2	184.5	415.9	80.54		
600	9617	232.2	499.1	112.0		
650	974.0	232.2	576.5	144.8		
700	986.0	320.0	649 1	178.2		
750	998.0	379.2	7176	211.0		
800	1010	420 A	782 /	211.)		
850	1021	-127.4 /180.2	8/2 0	273.0		
000	1021	1 00.2 531.6	0027	219.0		
900	1035	592 5	902.7	2146		
900 1000	1040	303.3 626 1	938.8 1012	544.0 276.7		
1000	1036	030.1	1013	3/0./		

Таблица 2. Термодинамические свойства $Pb_9R(GeO_4)_2(VO_4)_4$ (R = Tb, Dy, Ho)

Примечание. *— $\Delta G/T^* = [H^{\circ}(T) - H^{\circ}(350 \text{ K})]/T - [S^{\circ}(T) - S^{\circ}(350 \text{ K})]$

сжатия, полученные зависимости (рис. 2) могут быть связаны с действием этих двух факторов.

Влияние температуры на молярную теплоемкость апатитов $Pb_9R(GeO_4)_3(VO_4)_3$ (R = Tb, Dy, Ho) показано на рис. 3. На кривых $C_p = f(T)$ нет различного

рода экстремумов (температуры плавления, установленные нами, равны 1167, 1161 и 1157 К соответственно). Температурные зависимости молярной теплоемкости $Pb_9Tb(GeO_4)_3(VO_4)_3$, $Pb_9Dy(GeO_4)_3(VO_4)_3$ и $Pb_9Ho(GeO_4)_3(VO_4)_3$ хорошо описываются класси-

Рис. 3. Влияние температуры на молярную теплоемкость апатитов $Pb_9Dy(GeO_4)_3(VO_4)_3$ (1), Pb_9Ho (GeO₄)₃(VO₄)₃ (2), $Pb_9Tb(GeO_4)_3(VO_4)_3$ (3).

ческим уравнением Майера-Келли, которое для исследованных апатитов имеет следующий вид: для Pb₉Tb(GeO₄)₃(VO₄)₃

$$C_p = (826.6 \pm 1.9) + (180.1 \pm 2.0) \cdot 10^{-3}T$$
$$- (45.41 \pm 1.98) \cdot 10^5 T^{-2}, \tag{1}$$

для Pb₉Dy(GeO₄)₃(VO₄)₃

$$C_p = (854.7 \pm 2.5) + (207.0 \pm 2.7) \cdot 10^{-3}T$$

- $(18.51 \pm 2.67) \cdot 10^5 T^{-2}$, (2)

для Pb₉Ho(GeO₄)₃(VO₄)₃

$$C_p = (831.9 \pm 1.7) + (226.7 \pm 1.8) \cdot 10^{-3}T$$
$$- (22.20 \pm 1.85) \cdot 10^5 T^{-2}, \qquad (3)$$

где C_p измеряется в J/(mol·K), T — в К. Коэффициенты корреляции для уравнений (1)–(3) равны 0.9993, 0.9986 и 0.9955, а максимальные отклонения экспериментальных точек от сглаживающих кривых — 1.6, 2.3 и 1.5% соответственно.

С использованием этих уравнений для исследованных апатитов рассчитаны температурные зависимости молярной теплоемкости C_p , изменения энтальпии $H^{\circ}(T) - H^{\circ}(350 \text{ K})$, энтропии $S^{\circ}(T) - S^{\circ}(350 \text{ K})$ и энергии Гиббса ΔG . Эти результаты приведены в табл. 2.

4. Заключение

Твердофазным методом синтезированы апатиты $Pb_9R(GeO_4)_3(VO_4)_3$ (R = Tb, Dy, Ho). Определена их кристаллическая структура. Исследовано влияние

температуры (в интервале 320–1000 К) на молярную теплоемкость этих апатитов. Установлено, что полученные экспериментальные результаты хорошо описываются уравнением Майера-Келли. По этим данным рассчитаны термодинамические функции.

Финансирование работы

Работа выполнена при частичной финансовой поддержке в рамках государственного задания на науку ФГАОУ ВО "Сибирский федеральный университет", номер проекта FSRZ-2020-0013.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Т. Каназава. Неорганические фосфатные материалы. Наук. думка, Киев (1998). 298 с.
- [2] D. Grossin, S. Rollin-Martinet, C. Estournis, F. Rossignol, E. Champion, C. Comdes, C. Rey, C. Geoffroy, C. Drouet. Acta Biomater. 6, 2, 577 (2010).
- [3] Ш.Ю. Азимов, А.А. Исматов, Н.Ф. Федоров. Апатиты и их редкоземельные аналоги. ФАН, Ташкент (1990). 116 с.
- [4] T. Yano, Y. Nabeta, A.A. Watanabe. Appl. Phys. Lett. 18, 12, 570 (1971).
- [5] L. Kovács, Á. Péter, M. Gospodinov, R. Capelletti. Phys. Status Solidi C 2, 1, 689 (2005).
- [6] J. Zhang, H. Liang, H. Yu, Q. Su. Mater. Chem. Phys. 114, 242 (2009).
- [7] S. Kale, S. Kahaudal, S. Disale, R. Jayaram. Curr. Chem. Lett. 1, 69 (2012).
- [8] С.В. Добрыднев, М.Ю. Молодцова. Изв. ТулГУ. Естеств. науки. 1, 1, 212 (2014).
- [9] M. Manecki, P.A. Mourice, S.J. Traina. Am. Mineral. 85, 932 (2000).
- [10] А.В. Игнатов, Т.М. Саванкова, Е.Г. Дидоренко, А.Ю. Талыкова, Е.И. Гетьман, Л.В. Пасечник. Вестн. Донецкого нац. ун-та, Сер. А. Естеств. науки. 1, 152 (2014).
- [11] T.M. Savankova, L.G. Akselrud, L.I. Ardanova. J. Chem. 6, 1 (2014).
- [12] M. Pasero, A.R. Kampf, C. Ferraris, I.V. Pekov, J. Rakovan, T.J. White. Eur. J. Mineral. 22, 163 (2010).
- [13] В.Д. Журавлев, Ю.А. Великодный. ЖНХ 54, 10, 1626 (2009).
- [14] T. Baikie, S.S. Pramada, C. Ferraris. Acta Crystallogr. B 66, 1 (2010).
- [15] N. Lakshminarasimhan, U.V. Varadaraju. J. Solid State Chem. 178, 3284 (2005).
- [16] H. Benmoussa, M. Mikou, A. Bensaoud. Mater. Res. Bull. 35, 369 (2000).
- [17] S. Nakayama, Y. Higuchi, Y. Kondo. Solid State Ion. 170, 219 (2004).
- [18] Н.В. Яблочкова. ЖНХ 58, 7, 219 (2004).
- [19] Л.Т. Денисова, А.Д. Изотов, Ю.Ф. Каргин, В.М. Денисов, Н.А. Галиахметова. ДАН 477, 3, 313 (2017).
- [20] Л.Т. Денисова, Ю.Ф. Каргин, Н.В. Белоусова, Н.А. Галиахметова, В.М. Денисов. Неорган. материалы 54, 2, 177 (2018).

- [21] Л.Т. Денисова, Е.О. Голубева, Н.В. Белоусова, В.М. Денисов, Н.А. Галиахметова. ФТТ 61, 7, 1397 (2019).
- [22] Л.Т. Денисова, Ю.Ф. Каргин, Е.О. Голубева, Н.В. Белоусова, В.М. Денисов. Неорган. материалы 55, 2, 182 (2019).
- [23] Л.Т. Денисова, Ю.Ф. Каргин, Е.О. Голубева, Г.М. Зеер, А.К. Абкарян, В.М. Денисов. Неорган. материалы 56, 10, 1081 (2020).
- [24] Л.Т. Денисова, М.С. Молокеев, А.А. Александровский, Ю.Ф. Каргин, Е.О. Голубева, В.М. Денисов. Неорган. материалы 57, 11, 1226 (2021).
- [25] L.T. Denisova, E.O. Golubeva, V.M. Denisov, N.V. Belousova, L.G. Chumilina. Russ. J. Phys. Chem. A 94, 13, 2669 (2020).
- [26] Л.Т. Денисова, М.С. Молокеев, В.М. Денисов, Е.О. Голубева, Н.А. Галиахметова. ФТТ 62, 11, 1828 (2020).
- [27] В.К. Каржавин. Термодинамические величины химических элементов. Примеры их практического применения. Издво Кольского науч. центра РАН, Апатиты (2011). 160 с.
- [28] В.В. Богач, С.В. Добрыднев, В.С. Бесков. ЖНХ 46, 7, 1127 (2001).
- [29] Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. — User's Manual. Bruker AXS, Karlsruhe, Germany (2008).
- [30] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин. Неорган. материалы. 53, *1*, 71 (2017).
- [31] С.А. Иванов. ЖСХ 31, 4, 80 (1990).
- [32] С.А. Иванов, В.Е. Заводник. Кристаллография **34**, *4*, 824 (1989).
- [33] Т.М. Саванкова, А.В. Игнатьев, Д.М. Уточкин. Наукові праці ДонНТУ. Сер. Хім. хім. техн. Вип. 3 (23), 78 (2014).
- [34] Е.И. Гетьман, Н.В. Яблочкова, С.Н. Лобода, Л.В. Каракай. Вестн. Дон. нац. ун-та. Сер. А. Естеств. науки 1, 129 (2013).
- [35] E.I. Get'man, N.V. Yablochkova, S.N. Loboda, V.V. Prisedsky, V.P. Antonovich, N.A. Chivireva. J. Solid State Chem. 181, 2386 (2008).
- [36] В.С. Урусов, В.О. Худоложкин. Геохимия 10, 1509 (1974).
- [37] С.П. Яценко, Е.Г. Федорова. Редкоземельные элементы. Взаимодействие с р-металлами. Наука, М. (1990). 280 с.
- [38] А.В. Кнотько, И.А. Пресняков, Ю.Д. Третьяков. Химия твердого тела. Академия, М. (2006). 304 с.

Редактор Е.Ю. Флегонтова