01,02,05

Ab initio расчет зонной структуры и свойств модификаций соединения Ti₃Sb, допированного литием

© М.М. Асадов^{1,2}, С.О. Маммадова³, С.С. Гусейнова³, С.Н. Мустафаева³, В.Ф. Лукичев⁴

 ¹ Институт катализа и неорганической химии им. М.Ф. Нагиева НАНА, Баку, Азербайджан
 ² Научно-исследовательский институт "Геотехнологические проблемы нефти, газа и химия" АГУНП, Баку, Азербайджан
 ³ Институт физики НАНА, Баку, Азербайджан
 ⁴ Физико-технологический институт им. К.А. Валиева РАН, Москва, Россия
 E-mail: mirasadov@gmail.com

Поступила в Редакцию 2 июля 2022 г. В окончательной редакции 2 июля 2022 г. Принята к публикации 3 июля 2022 г.

С использованием теории функционала плотности (DFT) в приближении локальной электронной спиновой плотности (LSDA) исследованы $2 \times 2 \times 2$ суперьячейки на основе соединения Ti₃Sb, содержащие собственные вакансии и допированные атомы лития, замещающие Ti и/или Sb. DFT-LSDA вычислены структурные, электронные, магнитные свойства, энтальпия образования и энергия когезии двух модификаций соединения Ti₃Sb: кубическая сингония (структура типа A15; a = 5.217 Å) и тетрагональная сингония (структура типа D8_m; a = 10.457 Å, c = 5.258 Å). Распределение плотности состояний кубической сингонии Ti₃Sb имеет более металлический характер, чем для модификации D8_m Ti₃Sb. Усиление "металличности" в кубической модификации A15 Ti₃Sb можно связать с увеличением межатомного расстояния Ti–Sb. За счет этого повышается степень металлической связи при электронном взаимодействии между атомами Ti и Sb вблизи уровня Ферми.

С учетом спин-поляризованной плотности установлено, что в обеих модификациях (A15 и D8_m) Ti₃Sb на уровне Ферми для *s*-, *p*-,*d*-состояний со спином "вверх" и спином "вниз" существует спиновый дисбаланс заселенности энергетических уровней.

DFT-LSDA расчеты дефектсодержащих суперьячеек на основе Ti₃Sb показывают, что вакансии Ti и/или Sb в решетке обеих модификаций (A15 и D8_m) заметно повышают магнитный момент (M) по сравнению со значением $M = 0.08 \,\mu_B$ "чистого" Ti₃Sb. При Li-допировании и создании собственных вакансий Ti или Sb расстояния между атомами в Ti₃Sb изменяются. Соответственно изменяются и образующиеся локальные магнитные моменты вблизи вакансий Ti или Sb. Рассчитаны энтальпия образования и магнитный момент суперъячеек на основе Ti₃Sb—Li. Введение лития ($f6.25 \, at.\% \, Li$) в решетку Ti₃Sb уменьшает парциальный магнитный момент Ti. Проведены DFT-расчеты структурной стабильности бинарных соединений (фаз) и установлена устойчивость конод между фазами в системе Ti–Sb–Li. Изотермический разрез системы Ti–Sb–Li построен при 298 K.

Ключевые слова: интерметаллиды Ti₃Sb, кубическая модификация A15, тетрагональная модификация D8_m, допирование литием, Ti₃Sb–Li, DFT-LSDA расчет суперьячеек, электронные и магнитные свойства, фазовая стабильность Ti–Sb–Li.

DOI: 10.21883/FTT.2022.11.53312.395

1. Введение

Интерметаллические соединения (интерметаллиды) используются в качестве основы в промышленных сплавах. По этой причине важными являются фундаментальные исследования по изучению особенностей структурно-фазовых состояний в бинарных интерметаллидах. Это необходимо при разработке структурно-физических основ разработки сплавов с заданными свойствами. Известны интерметаллиды бинарных соединений стехиометрических соотношений, в частности, AB и A₃B. В сплавах состава A₃B присутствуют интерметаллиды кубической, тетрагональной и гексагональной сингонии. Известен класс интерметаллидов переходных металлов со структурой типа A15 и со стехиометрией A₃B, которые проявляют сверхпроводящие свойства с высокими критическими параметрами [1]. В связи с этим исследованию интерметаллидов A₃B со структурой A15 уделяется большое внимание. Свойства сплавов A15 обусловлены их кристаллической структурой, а наличие высокотемпературной сверхпроводимости связано со структурной неустойчивостью. При этом электронная зонная структура соединений с фазами типа A15 отражает квазиодномерную природу цепочек из атомов сорта А. Изучение электронных свойств соединений типа Ti₃Sb, Ti₃Ir [2], Ta₃Sb, Ta₃Pb и Ta₃Sn [3] с кубической сингонией (фаза A15, прототип Cr₃Si) указывает на наличие сверхпроводимости в них. Зонная структура соединений типа A15 со спин-орбитальной связью характеризуется энергетической щелью вблизи уровня Ферми. Интерметаллические фазы A₃B имеют температуру сверхпроводимости $T_c = 5-20$ K (для Ti₃Sb $T_c = 6.7$ K).

Промежуточные фазы на основе бинарных систем, в частности, Ti-Sb [4-13] имеют и другие практические области применения. Сплавы, содержащие антимониды титана, предлагаются как электродные материалы для литиевых батарей, например, сплавы TiSnSb [14-20].

С учетом вышеуказанного актуальным является изучение тройных интерметаллических фаз в системах Ti-Sb-Me. В этих системах исследованы лишь отдельные сплавы и обнаружено несколько новых соединений [21–32]: Ti-Sb-Fe [21,22], Ti-Sb-Si [23], Ti-Sb-X [24], Ti-Sb-Mn [25], Ti-Sb-Sn [26], Ti-Sb-Ni [27,28], Ti-Sb-Ce(Gd) [29], Ti-Sb-V (Cr, Mn, Fe, Co, Ni) [30], Ti-Sb-RE [31], Ti-Sb-(Si, Ge) [32], Ti-Sb-Ni [33]. Изучены их кристаллическая структура, магнитные и транспортные свойства.

Однако фазовые взаимодействия в тройной системе Ti-Sb-Li до настоящего времени не изучены. Фазовые диаграммы граничных бинарных систем Ti-Sb [4-6], Ti-Li [34], Sb-Li [35-39] и свойства бинарных соединений (в частности, Ti₃Sb, Ti₅Sb₃, Ti_{11-x}Sb_{8-y}, TiSb, Ti₅Sb₈, TiSb₂ [6], Li₃Sb, Li₂Sb [35-39]) тройной системы Ti-Sb-Li изучены экспериментально.

Ti–**Sb.** Согласно работе [4], в системе Ti–Sb существуют четыре антимонида титана: Ti₃Sb (кубическая сингония Cr₃Si-тип) и Ti₅Sb₃ (тетрагональная сингония W₅Si₃-тип [5]), два соединения с ромбической структурой Ti_{1.7}Sb (пространственные группы *Pmma*, *Pmc*21 или *Pma*2) и Ti_{1.2}Sb (*Pbam* или *Pba*2). В [5] показано, что кубическая фаза Ti₃Sb необратимо переходит в тетрагональную модификацию путем стабилизации структуры примесями алюминия и кремния.

Уточненная фазовая диаграмма системы Ti-Sb приведена в работе [6], где обнаружены бинарные соединения Ti₃Sb (плавится инконгруэнтно при 1375°C; имеет область гомогенности 21.9-24.4 at.% Sb), Ti₂Sb (плавится инконгруэнтно при 1422°С), Ті₅Sb₃ (плавится конгруэнтно при 1600°С), $Ti_{11-x}Sb_{8-y}$ (плавится инконгруэнтно при 1328°С; имеет область гомогенности 41.9-43 at.% Sb), TiSb (плавится инконгруэнтно при 1252°С; имеет область гомогенности 49.5-50 at.% Sb), Ti₅Sb₈ (плавится инконгруэнтно при 1092°C; имеет область гомогенности 0.3 at.%; существует в области температур 950-1092°С), TiSb₂ (плавится инконгруэнтно при 1051°C). На основе модификаций α -Ті и β -Ті образуются ограниченные области твердых растворов $(\sim 8-10 \text{ at.}\% \text{ Sb})$. Там же приведены кристаллографические данные бинарных фаз, относящихся к системе Ti-Sb.

Ti–Li. В работе [34] изучена фазовая диаграмма граничной системы Li–Ti, где не образуются бинарные соединения и твердые растворы. До температуры 181° C сплавы системы Li–Ti состоят из смеси модификаций исходных компонентов α -Li + β –Ti.

Li–Sb. Граничная бинарная система Li–Sb [35–39] также изучена экспериментально. В [35] приведена фазовая диаграмма системы Li–Sb, где указано образование двух бинарных соединений: Li₃Sb (плавится конгруэнтно при 1150°C) и Li₂Sb (плавится инконгруэнтно при 585°C). А в работах [38,39] приведены результаты термодинамических исследований сплавов и соединений системы Li–Sb.

Устойчивость кристаллических структур металлических систем и их соединений определяется двумя энергетическими составляющими: электростатическим вкладом ионов и зонным вкладом энергии валентных электронов. В интерметаллидах для образования различных модификаций важно также соотношение размеров атомов. Известно, что электростатический вклад в энергию кристаллической решетки, в частности, бинарных интерметаллидов зависит от атомного объема как $\Omega^{-1/3}$, а зонный вклад энергии валентных электронов — от атомного объема как $\Omega^{-2/3}$. Т.е. формирование различных модификаций интерметаллических фаз зависит также от указанных энергетических вкладов. По вышеуказанным причинам представляется интересным применить ab initio расчеты для определения зонной структуры соединений типа Ti₃Sb, содержащих примеси.

Цель настоящей работы — ab initio расчет электронных, магнитных свойств и фазовой стабильности суперьячеек на основе интерметаллических фаз Ti₃Sb с кубической (типа A15) и тетрагональной сингонией (типа D8_m Ti₃Sb), содержащих литий и/или вакансии.

2. Модель и методика расчетов

Электронные и магнитные свойства двух модификаций соединения Ti₃Sb, допированного литием Ti₃Sb-Li (кубическая сингония типа A15 Ti₃Sb и тетрагональная сингония типа D8_m Ti₃Sb) рассчитаны в рамках теории функционала плотности (DFT, density fuctional theory). Рассчитаны также плотности состояний (DOS, density of states) этого соединения. Расчеты проводили программой Atomistix ToolKit при температуре T = 0 K. Обменнокорреляционный функционал Ехс рассчитывали в приближении локальной электронной спиновой плотности (LSDA) в параметризации Пердью-Цунгера [40-42]. В базис линеаризованных Маффин-Тин (МТ) орбиталей были включены Ti — [Ar] $3d^24s^2$ -состояния титана, Sb — [Kr] $4d^{10}5s^25p^3$ -состояния сурьмы и Li $1s^22s^1$. На основе структуры кристалла Ti₃Sb составляли суперъячейку размером 2 × 2 × 2 элементарной ячейки, в которых заданные позиции были заняты атомами Ti, Sb и Li. Интегрирование в обратном пространстве проводили

Соелинение	Тип	Space group	Параметры ячейки, А			Ссылка
	структуры	Space group	а	b	С	CODIMU
Ti ₃ Sb	Cr ₃ Si	Pm3n	5.2228			11
Ti ₃ Sb	Cr ₅ Si ₃	I4/mcm	10.465		5.2639	5
Ti ₂ Sb	Ti ₂ Sb	I4/mmm	3.9546		14.611	13
Ti ₅ Sb ₃	Yb ₅ Sb ₃	Pnma	10.2182	8.3432	7.1748	22
Ti _{4.8} Sb _{3.3}	Ti ₅ Ga ₄	$P6_3/mcm$	7.982		5.515	12
Ti _{10.84} Sb _{7.73}	Cr ₁₁ Ge ₈	Pnma	14.6228	5.5972	17.644	7
TiSb	NiAs	$P6_3/mcm$	4.123		6.265	24
Ti ₅ Sb ₈	Zr _{2.6} Ti _{2.4} Sb ₈	<i>I</i> 4 ₁ 22	6.492		26.514	31
TiSb ₂	CuAl ₂	I4/mcm	6.660		5.818	8
Ti	Mg	$P6_3/mcm$	2.9511		4.6843	9
Sb	As	R3m	4.3084		11.247	9

Таблица 1. Кристаллографические данные для бинарных соединений системы Ti-Sb

по схеме Монхорста
—Пака с сеткой из 2 \times 2 \times 2
 k-точек в зоне Бриллюэна.

Кинетическая энергия отсечки в расчетах составила 150 Ry. Элементаную ячейку Ti₃Sb релаксировали и оптимизировали с допусками по силе и напряжению 0.01 eV/Å и 0.01 eV/Å³ соответственно. В DFT-LSDA расчетах электронных свойств Ti₃Sb-Li использовали 64 атомные $2 \times 2 \times 2$ суперъячейки на основе соединения Ti₃Sb, содержащие вакансии и допированные атомы лития, замещающие Ті и/или Sb. Провели сравнительные расчеты магнитного момента атомов на основе Ti₃Sb 2×2×2 суперъячеек с последующей заменой одного или нескольких атомов Ті и/или Sb на атомы Li. Параметры решеток выбирали из условия минимума энергии, приходящейся на одну элементарную ячейку путем релаксации межатомных расстояний внутри ячейки до равенства нулю действующих на атомы сил.

3. Результаты и обсуждение

В системе Ti–Sb, как указано выше, установлено образование семи бинарных соединений: Ti₃Sb, Ti₂Sb, Ti₅Sb₃, Ti_{11-x}Sb_{8-y}, TiSb, Ti₅Sb₈, TiSb₂ [6]. Из анализа физико-химических и структурных данных следует, что рассмотренное здесь нами соединение Ti₃Sb кристаллизуется в виде двух модификаций: кубической (структурный тип A15, пространственная группа $Pm\bar{3}n \ a = 5.2228 \text{ Å} \ [11]$) и тетрагональной сингонии (структурный тип D8_m, *I*4/*mcm*; *a* = 10.465 Å; *c* = 5.2639 Å [5]).

Полиморфное превращение $A15 \leftrightarrow D8_m$ в Ti_3Sb происходит с повышением симметрии системы. При дифференциально-термическом анализе сплавов Ti-Sb [6] температура $A15 \leftrightarrow D8_m$ 2-го рода фазового перехода не обнаружена. Температура инконгруэнтного плавления кубической модификации Ti_3Sb составляет 1375°C. Поэтому A15 Ti_3Sb представляет также интерес с точки зрения высокотемпературных применений,

например, в качестве материала для Li-ионных аккумуляторов. Кроме того, интерметаллические соединения А₃В с кубической сингонией, имеют относительно высокую температуру сверхпроводящего перехода.

3.1. Атомная и зонная структуры: A15 Ti₃Sb (кубическая сингония)

3.1.1. Атомная структура

В структуре A15 интерметаллидов типа A₃B позиции A заняты переходными элементами из групп IV, V, VI, а позиции B — как переходными, так и непереходными элементами из группы III. Соединения типа A15 имеют примитивную кубическую элементарную ячейку из 8 атомов. Такая ячейка A₃B имеет два атома B в позициях (0, 0, 0) и (0.5, 0.5, 0.5) и шесть атомов A в позициях (0, 0.5, 0.75), (0.5, 0.75, 0), (0, 0.5, 0.25), (0.5, 0.25, 0), (0.25, 0, 0.5) и (0.75, 0, 0.5).

Релаксированные и оптимизированные нами параметры ячейки, как кубической сингонии A15 Ti₃Sb (space group $Pm\bar{3}n$; № 223) с параметром решетки a = 5.217 Å, V = 141.99 Å с параметром решетки a = 5.217 Å, V = 141.99 Å, так и тетрагональной сингонии D8_m Ti₃Sb (space group I4/mcm; № 140), с параметрами решетки a = 10.457 Å, c = 5.258 Å, хорошо согласуются с опытными данными (табл. 1).

На рис. 1 показана атомная структура кубической сингонии A15 Ti₃Sb и направление локального магнитного момента. В такой структуре атомы Ti в Ti₃Sb образуют систему из трех невзаимодействующих ортогональных линейных "цепочек". Эти "цепочки" атомов Ti параллельны краям элементарной ячейки Ti₃Sb. Сверхпроводящие свойства соединения A15 Ti₃Sb, в частности, определяются такими "цепочками, атомов Ti.

3.1.2. Электронная структура

Результаты DFT-LSDA расчетов зонной структуры A15 Ti₃Sb при T = 0-300 K были аналогичны вдоль

Рис. 1. Структура кубической сингонии соединения A15 Ti₃Sb (space group *Pm*3*n*; № 223). *a*) Зона Бриллюэна (ЗБ) для A15 (space group *Pm*3*n*), *b*) релаксированная атомная структура A15 Ti₃Sb, *c*) направление магнитного момента в суперъячейке A15 Ti₃Sb. Атомы Sb окрашены в фиолетовый цвет, а атомы Ti — в серый.

направлений высокой симметрии. На рис. 2 представлена зонная структура кубической сингонии $2 \times 2 \times 2$ суперъячейки A15 Ti₃Sb, построенная для точек высокой симметрии $\Gamma - X - M - \Gamma - P - X$ $2 \times 2 \times 2$ суперъячейки. В зонной структуре Ti₃Sb (рис. 2, *a*) наблюдаются переходы электронов из валентной зоны в зону проводимости. В Ti₃Sb в основном *d*-состояния Ti обеспечивают металлическую проводимость. В DFT расчетах кулоновская поправка для *d*-состояний Ti нами не учитывалась.

Моделирование обменно-корреляционных взаимодействий (XC) является основной трудностью DFT-расчета. Одночастичные самосогласованные DFT-LSDA вычисления электронной плотности $n(\vec{r})$ состояний $2 \times 2 \times 2$ суперъячеек проводили с учетом различного числа волновых векторов (k). Координаты k выбирались с постоянным шагом на каждой из трех осей (x, y, z) первой зоны Бриллюэна (рис. 1, a). DOS строили для каждого набора волновых векторов. В DFT-LDA расчетах обменной энергии (модель однородного электронного газа) предполагается, что величина $n(\vec{r})$ атома, иона, молекулы или твердого тела в каждой точке пространства одинакова. Величина $n(\vec{r})$ определяет число частиц $N = \int n(\vec{r}) dr$ и внешний потенциал $V(\vec{r})$. Тогда полный гамильтониан Н электронной системы в адиабатическом приближении имеет вид

$$\hat{H} = T + U + \sum_{i=1}^{N} V(\vec{r}_i),$$

где \vec{r} координата *i*-го электрона, T — оператор кинетической энергии электронов, U — энергия электростатического отталкивания электронов. Другими словами, решением уравнения Шредингера $\hat{H}\psi(\vec{r}) = E\psi(\vec{r})$ полученный гамильтониан \hat{H} неявно определяется величиной $n(\vec{r})$.

DFT-LSDA рассчитанная нами электронная плотность состояний суперъячейки соединения Ti₃Sb показана на рис. 2, *b*. Основные пики DOS показаны двумя цветами

(черным и красным): черная кривая (пики) соответствует электронам с направлением "спин-вверх" (направление спина совпадает с направлением намагниченности магнитного материала), а красная — "спин-вниз" (спин и намагниченность разнонаправлены).

В зонной структуре в точках высокой симметрии M и R кубической сингонии A15 Ti₃Sb в энергетическом диапазоне от -10.0 eV до -6.0 eV электроны отсутствуют (рис. 2, *a*). Это связано с тем, что в интерметаллиде Ti₃Sb, как и у металлов, отсутствует запрещенная зона, характерная для полупроводников и диэлектриков. Энергетическая область у дна валентной полосы (около -11.0 eV) обусловлена *s*-состояниями атомов Ti и Sb, находящихся в решетке Ti₃Sb.

В решетке A15 Ti₃Sb, атомы Ti и Sb упакованы близко друг к другу, поэтому каждый атом касается нескольких других атомов, создавая кристаллическую решетку с металлической связью. В такой решетке электроны делокализованы и свободно двигаются. Атомы Ti₃Sb на внешнем уровне имеют мало электронов (Ti $4s^2$; Sb $5p^3$) по сравнению с общим числом электронов внешних орбиталей.

Атомы металлов, как известно, легко отдают наружные электроны и превращаются в ионы: $Me - n\overline{e} \rightarrow Me^{n+}$. Затем электроны атомов, соединяясь с ионами, превращают их в атомы: $Me^{n+} + n\overline{e} \rightarrow Me$. Электроны каждого атома металла делятся на орбиталях окружающих атомов. Это позволяет электронам мигрировать через кристаллическую решетку интерметаллида от своих "родительских" атомов, которые затем принимают новые электроны. Потом электроны снова отрываются от атома металла и присоединяются к другим ионам Me^{n+} и так далее: $Me - n\overline{e} \leftrightarrow Me$.

Другими словами, в A15 Ti₃Sb за счет металлической связи положительные ионы металлов Me^{n+} притягиваются друг к другу и электроны обобществляются. Поэтому кристаллическая структура интерметаллида, как и металла, состоит из катионов металлов, вокруг которых свободно движется обобществленное электронное

Рис. 2. DFT-LSDA рассчитанные зонная структура (*a*) и полная плотность состояний (DOS) (*b*) модели $2 \times 2 \times 2$ суперъячейки соединения A15 Ti₃Sb (space group $Pm\bar{3}n$) вблизи энергии Ферми E_F . Уровень Ферми установлен равным $E_F = 0$ eV. Зонная структура изображена вдоль высокосимметричных направлений в первой зоне Бриллюэна. Черная кривая (пики) DOS соответствует электронам с направлением "спин-вверх", а красная кривая — "спин-вниз".

облако, принадлежащее всему "куску" интерметаллида. В соответствии с вышеуказанным в Ti_3Sb зона проводимости и валентная зона перекрываются, образуя одну зону перекрытия. В таком случае в Ti_3Sb электрон может

2* Физика твердого тела, 2022, том 64, вып. 11

свободно перемещаться в зоне перекрытия, получив малую энергию.

Подобные вышеуказанным особенности зонной электронной структуры в интерметаллических сверхпроводниках со структурой A15 наблюдаются и в других аналогичных материалах, например, в Ti₃Sb, Ti₃Sn, Ti₃Pb [43], Ta₃Sb, Ti₃Ir [44] и W₃Ta [45].

Согласно DFT (PBE) расчетам зонной структуры в [43,44,46,47] показано, что соединения типа A15 (space group $Pm\bar{3}n$; № 223) имеют нетривиальную зонную и электронную структуру. Это приводит к образованию топологических поверхностных состояний вблизи уровня Ферми. Электронная структура сверхпроводников типа A15 (в частности, W₃Ta) рассчитана на основе DFT-GGA в работе [45]. Показано, что формирующийся большой собственный спиновой эффект Холла, генерирующий спиновые токи, в W₃Ta и других сверхпроводниках A15 может быть вызван кристаллической и зонной симметрией.

3.1.3. Парциальные плотности состояний

DFT-LSDA расчетные парциальные плотности состояний (PDOS) для $2 \times 2 \times 2$ суперьячейки структуры A15 Ti₃Sb приведены на рис. 3, *a*, *b*, *c*. Из результатов расчета PDOS для A15 Ti₃Sb следует, что на уровне Ферми для *s*-, *p*-, *d*-состояний со спином вверх и вниз существует спиновый дисбаланс заселенности энергетических уровней.

Согласно PDOS в Ti₃Sb плотности вакантных состояний электронов Ti $(3d^24s^2)$ и Sb $(4d^{10}5s^25p^3)$ с разными спинами (различные проекции спина на ось квантования) неидентичные и эти состояния электронов различаются по энергиям. Такой энергетический сдвиг приводит к заполнению разрешенных зон Ti₃Sb (в частности, Ti-3d² и Sb-3d¹) электронами с одним определенным спином и к появлению локального магнитного момента. В этом случае собственная спиновая поляризация электронов ($P = (n_{\uparrow} - n_{\downarrow})/(n_{\uparrow} + n_{\downarrow})$) определяет характер заселенности энергетических зон электронами с разным спином (n_{\uparrow} и n_{\downarrow} , где n — концентрация электронов).

Другими словами, значение потенциала, в котором локализованы электроны Ti_3Sb , зависит от кулоновского взаимодействия между электронами (E_d), влияния обменного взаимодействия (E_x) и степени поляризации спина электрона. Т.е. в спиновый дисбаланс заселенности в Ti_3Sb вносит вклад также и спин-орбитальное (SO) взаимодействие.

Указанные выше эффекты изменения потенциала A15 Ti₃Sb могут привести к возникновению тонкой структуры энергетического спектра электронов и расщеплению спектров атомов Ti и Sb. В этом случае спиновый дисбаланс заселенности энергетических уровней и спин-орбитальное взаимодействие в Ti₃Sb приводят к эффектам спиновой поляризации (SP) электронных состояний. Таким образом эффекты SP приводят к модифицированию спиновой структуры A15 Ti₃Sb и рас-

Рис. 3. DFT-LSDA рассчитанные парциальные плотности состояний (PDOS) *s*-, *p*-, *d*-орбиталей атомов $2 \times 2 \times 2$ суперьячейки соединения A15 Ti₃Sb (space group $Pm\bar{3}n$): *a*) *s*-состояние, *b*) *p*-состояние, *c*) *d*-состояние. Уровень Ферми установлен равным $E_{\rm F} = 0$ eV. Черная кривая (пики) PDOS соответствует электронам с направлением "спин-вверх", а красная кривая PDOS — "спин-вниз".

Таб мом

щеплению по спину валентных электронных состояний атомов.

Аналогичные нашим результаты PDOS в Ti₃Sb paнее были получены с помощью ab initio pacчетов в работах [44,46]. DFT-LSDA рассчитанные нами пики парциальной плотности s-, p-, d-состояний атомов Ti и Sb хорошо согласуются с известными данными PDOS в Ti₃Sb [44].

В A15 Ti₃Sb атом Sb может принимать три электрона для достижения конфигурации закрытой оболочки. После заполнения валентных 5*p*-орбиталей Sb³⁻ принимает конфигурацию благородного газа. Валентные 5*p*-орбитали Sb вносят вклад в полосу, которая находится на 3-6 eV ниже расчетного уровня Ферми и отделена от зоны проводимости. Последняя в основном состоит из Ті 3d и 4s-состояний и соответствует относительной электроотрицательности Ті и Sb. Полоса, возникающая из валентных 5s-орбиталей Sb, находится на 10-11.6 eV ниже уровня Ферми. Для Ti₃Sb уровнь Ферми попадает на пики кривых DOS, что указывает на то, что в соединении Ti₃Sb возможна сверхпроводимость.

3.1.4. Магнитный момент

Атомы титана и сурьмы в A15 Ti₃Sb размещаются в разных узлах кристаллической решетки. Поэтому неэквивалентные позиции атомов и симметрия двух типов узлов приводят к отличию парциальных магнитных моментов (M_i , $\mu_{\rm B}$ — магнетон Бора или элементарный магнитный момент) атомов Ті и Sb. Из спектров DOS $2 \times 2 \times 2$ суперъячейки соединения A15 Ti₃Sb следует, что основными электронами, которые обеспечивают магнитное взаимодействие между атомами кристалла Ti₃Sb, являются $3d^2$ — электроны титана. Поскольку 3d-оболочки Ті заняты частично, то незаполненные внешние электронные уровни заполняются за счет гибридизации, в частности, 4s²- и 5p³-электронами Ті и Sb. Начальные конфигурации валентных электронов Ті и/или Sb также могут изменяться за счет точечных дефектов кристаллической структуры A15 Ti₃Sb.

Полные и парциальные магнитные моменты получены для геометрически оптимизированных 2 × 2 × 2 суперьячейек на основе соединения A15 Ti₃Sb. Обменные интегралы в гамильтониане учитываются в следующем виде:

$$\hat{H} = -\sum_{i\neq j} J_{ij} S_i S_j,$$

где J_{ij} — параметры магнитного обменного взаимодействия между атомами *i* и *j*, *S_i* — полный спин атома і. Магнитный момент атома і, который связан со спином S_i , вычисляли по соотношению: $M_i = g \mu_B S_i$, где *g* — фактор Ланде (гиромагнитный множитель).

Релаксированный параметр решетки А15 Ti₃Sb (a = 5.217 Å) хорошо соответствовал экспериментальной решетке A15 Ti₃Sb (a = 5.2228 Å [11]). Частичную релаксацию решетки проводили сдвигом атомов титана, ближайших соседей атома Sb, на расстояние

Таблица 2.	DFT-LSDA	рассчитанные	полный	магнитный
момент (M_{tot})	и полная з	энергия (Е) 2	$2 \times 2 \times 2$	суперъячеек
на основе соед	инения А15	Ti ₃ Sb с кубиче	еской син	гонией

2 × 2 × 2 суперъячейка А15	A15 Ti ₃ Sb (space group $Pm\bar{3}n$; No 223; $a = 5.217$ Å)			
Ti ₃ Sb	$M_{\rm tot}, \mu_{\rm B}$		E, eV	
Ti ₃ Sb	0.08	0.073 [46]	-1387.85	
Ti₃Sb с вакансией Ti	0.97		-1205.58	
Ti ₃ Sb с вакансией Sb	1.11		-1232.63	

 $\delta r = 0.006 \,\text{\AA}\,$ по большой диагонали куба. В этом случае полная энергия решетки с частичной релаксацией была ниже ($E = -1387.85 \,\text{eV}$), чем соответствующая величина нерелаксированной решетки (E = -1387.83 eV). Это указывает на то, что при геометричекой релаксации кристаллической ячейки A15 Ti₃Sb кубическая решетка искажается незначительно. Поэтому полученные результаты для магнитных моментов мало отличаются в случаях с учетом и без учета релаксации.

Внедрение моновакансий Ті или Sb в структуру суперъячейки кристалла Ti₃Sb сильно меняет значение локального магнитного момента. В табл. 2 представлены DFT-LSDA рассчитанные полные магнитные моменты и энергия соединения A15 Ti₃Sb, содержащего вакансии Ti или Sb в разных узлах ячейки Ti₃Sb (a = 5.217 Å). Экспериментальные измерения намагниченности для А15 Ті₃Sb отсутствуют. В расчетах магнитного момента принимали, что этой величине соответствует значение M_i элементарной ячейки, отнесенное к количеству магнитных атомов, в частности, Ті в ячейке M_{tot}. Под локальным магнитным моментом подразумевается суммарная спиновая плотность *d*-подобных электронов в приближении МТ-потенциала. МТ потенциал считается сферически симметричным вокруг атомных остовов и постоянным в межузловом пространстве.

Величина локального магнитного момента определяется, в частности, следующими взаимосвязанными факторами. Первый фактор связан с перекрытием волновых функций *d*-состояний, которые меняются при увеличении числа примесей или при увеличении расстояния между атомами. Второй фактор связан с выравниванием *d*-зоны при увеличении *s*-*d* гибридизации на узле титана из-за искажения потенциала внедренной примесью. Локальность *s*-*d* гибридизации приводит к зависимости воздействия примеси от расстояния.

Спиновый магнитный момент *d*-оболочки ионов Ti вносит существенный вклад в полный магнитный момент Ti₃Sb. Значение магнитного момента увеличивается при создании вакансии Ті или Sb в $2 \times 2 \times 2$ суперьячейках Ti₃Sb (табл. 2). DFT-LSDA рассчитанные магнитные моменты атомов 2 × 2 × 2 суперъячеек на

Рис. 4. Релаксированная атомная структура $2 \times 2 \times 2$ суперьячйки тетрагональной модификации соединения $D8_m$ Ti₃Sb (space group *I4/mcm*). Атомы Sb окрашены в фиолетовый цвет, а атомы Ti — в серый.

основе соединения A15 Ti₃Sb, превышают значение для "чистого" A15 Ti₃Sb $M_{tot} = 0.08 \,\mu_{\rm B}$). Наш расчет для "чистого" A15 Ti₃Sb $(M_{tot} = 0.08 \,\mu_{\rm B})$ согласуется с известной величиной $(M_{tot} = 0.073 \,\mu_{\rm B} \,[46])$. Отличия локальных магнитных моментов (разница $\Delta M_{tot} = 0.007 \,\mu_{\rm B}$ в пределах ошибки) в эквивалентных позициях в A15 Ti₃Sb можно связать с различиями методов расчета и параметра решетки. В металлических сплавах часто магнитный момент растет при увеличении параметра решетки. Разупорядочение с внедрением в суперьячейку вакансий Ti или Sb приводит к изменению магнитного момента A15 Ti₃Sb.

3.2. Атомная и зонная структуры: D8_m Ti₃Sb (тетрагональная сингония)

DFT-LSDA расчеты электронной структуры $D8_m$ Ti₃Sb ранее не были проведены. Поэтому определение энергетической зонной структуры электронов в кристалле $D8_m$ Ti₃Sb представляет интерес само по себе. Это также необходимо для сравнительного анализа электронных и магнитных свойств двух модификаций Ti₃Sb.

3.2.1. Атомная структура

Проведены DFT-расчеты $2 \times 2 \times 2$ суперьячеек на основе соединения модификации D8_m Ti₃Sb с тетрагональной сингонией (прототип Cr₅Si₃, space group *I4/mcm*; № 140). Релаксировали параметры ячейки тетрагональной сингонии Ti₃Sb. Кристаллографические позиции атомов выбрали следующим образом: Ti (4b) 0, 1/2, 1/4, Ti (16k) x, y, 0, Sb (4a) 0, 0, 1/4, Sb (8h) x, x + 1/2, 0. Оптимизированные параметры решетки тетрагональной сингонии D8_m Ti₃Sb составляли a = 10.457 Å, c = 5.258 Å, которые согласуются с экспериментальными данными (a = 10.465 Å, c = 5.2639 Å [5]). На рис. 4 представлена релаксированная атомная структура суперъячйки D8_m Ti₃Sb.

3.2.2. Зонная структура D8_m Ti₃Sb

Зонная структура вдоль кристаллографической c-оси кристалла тетрагональной модификации $2 \times 2 \times 2$ су-

Рис. 5. DFT-LSDA рассчитанные зонная структура (*a*) и полная плотность состояний (DOS) электронов (*b*) для тетрагональной модификации $2 \times 2 \times 2$ суперьячейки соединения D8_m Ti₃Sb (space group *I4/mcm*). Уровень Ферми установлен равным $E_{\rm F} = 0$ eV. Черная кривая (пики) DOS соответствует электронам с направлением "спин-вверх", а красная кривая (пики) DOS — "спин-вниз".

Модификация	Межатомное расстояние, А			
Ti ₃ Sb	Ti-Sb	Ti-Ti	Sb-Sb	
A15 Ti ₃ Sb	$Ti_2 - Sb_1 \ (2.92)$	$Ti_2 - Ti_4 \ (2.61)$		
D8 _m Ti ₃ Sb	$Ti_{10} - Sb_{11}$ (2.80)		$Sb_{14}-Sb_{15}$ (2.63)	

Таблица 3. DFT-LSDA рассчитанные межатомные расстояния в $2 \times 2 \times 2$ суперьячейках соединения Ti₃Sb

Таблица 4. DFT-LSDA рассчитанные значения магнитного момента (M_{tot}) и полная энергия (E) 2 × 2 × 2 суперьячейки модификации D8_m Ti₃Sb

$2 \times 2 \times 2$ суперьячейка $D8_m$ Ti ₃ Sb	D8 _m Ti ₃ Sb (прототип Cr ₅ Si ₃ , space group <i>I</i> 4/ <i>mcm</i> ; № 140; <i>a</i> = 10.457 Å, <i>c</i> = 5.258 Å)			
	$M_{ m tot},\mu_{ m B}$		E, eV	
Ті ₃ Sb "чистый"	0.09	0.079 [47]	-2716.17	
Ті ₃ Sb с вакансией Ті	1.25		-2534.61	
Ті ₃ Sb с вакансией Sb	2.54		-2562.05	

перъячейки D8_m Ti₃Sb вблизи уровня Ферми и суммарная плотность состояний представлены на рис. 5, *a*, *b*.

Из сопоставления результатов DFT-LSDA расчетов следует, что электронные структуры кубической и тетрагональной фаз Ti₃Sb в целом имеют схожий характер. В отличие от кубической структуры A15 Ti₃Sb (рис. 2, a), в электронной зонной структуре D8_m Ti₃Sb (рис. 5, a) из-за доминирующего влияния "цепочек" узлов Ti происходит отклонение кристаллического потенциала от приближения MT-потенциала.

3.2.3. Электронная структура

РDOS для *s*, *p*, *d*-электронов структуры $D8_m$ Ti₃Sb со спином вверх и вниз показывает, что в этой модификации также существует спиновый дисбаланс заселенности энергетических уровней, связанный со спиновыми эффектами (рис. 6, *a*, *b*, *c*).

Из сравнения спектров DOS модификаций D8_m Ti₃Sb и A15 Ti₃Sb следует, что поперек уровня Ферми профили DOS тетрагональной сингонии (D8_m) демонстрируют более низкое металлическое поведение. Атомы в A15 Ti₃Sb, по сравнению с D8_m Ti₃Sb, расположены относительно близко, и кубическая решетка (A15) поэтому малоподвижна. В такой решетке атомы сильно связаны, и металлические связи не позволяют атомам (или ядру, являющемуся ионом) изменять свои положения.

Плотность состояний обеих модификаций Ti₃Sb на уровне Ферми в основном определяется *d*-состояниями титана и *p*-состояниями Sb. Поэтому металлические свойства обеих модификаций Ti₃Sb можно связать с локализованной гибридизацией электронов между атомом Ti и атомом Sb. Гибридизация *pd*-орбиталей происходит в окружении атомов Ti (4b) четырьмя атомами Sb на расстоянии 2.8 Å.

3.2.4. Магнитный момент

Вычисленные атомные расстояния между Ti и Sb в структурах A15 Ti₃Sb и D8_m Ti₃Sb отличаются друг от друга. Так, например, атомное расстояние между 2-ым атомом Ti₂ и 1-ым атомом Sb₁ составляет 2.92 Å, что больше на 0.12 Å расстояния между Ti₁₀ и Sb₁₁ (табл. 3).

Установлено, что магнитный момент $D8_m$ Ti₃Sb изменяется в зависимости от расстояния между переходным металлом Ti и полуметаллом Sb, а также между атомами Ti–Ti, Sb–Sb. Результаты DFT-LSDA расчетов магнитных моментов для соединений $D8_m$ Ti₃Sb приведены в табл. 4.

В соединении D8_m Ti₃Sb с вакансией Ti (или Sb) локальные магнитные моменты отличаются друг от друга. Магнитный момент для D8_m Ti₃Sb составляет 0.09 μ_B , что близко к значению 0.079 μ_B , ранее полученному в [47]. Это значение заметно меньше магнитного момента 1.25 μ_B для D8_m Ti₃Sb, включающего вакансию Ti, и 2.54 μ_B для D8_m Ti₃Sb, содержащего вакансию Sb.

Допирование литием и формирование вакансий Ti или Sb в $2 \times 2 \times 2$ суперьячейках модификации D8_m Ti₃Sb изменяют расстояние между атомами в D8_m Ti₃Sb. Соответственно изменяются и образующиеся локальные магнитные моменты в решетке Ti₃Sb вблизи вакансий Ti или Sb.

Из сравнения результатов DFT-LSDA расчетов кристаллических, магнитных и зонных параметров двух модификаций Ti₃Sb следует наличие двух систем кристаллографически неэквивалентных узлов (подрешеток)

Рис. 6. DFT-LSDA рассчитанные парциальные плотности состояний (PDOS) электронов $2 \times 2 \times 2$ суперьячейки соединения $D8_m$ Ti₃Sb (space group *I4/mcm*): *a*) *s*-состояние, *b*) *p*-состояние, *c*) *d*-состояние. Уровень Ферми установлен равным $E_F = 0$ eV. Черная кривая (пики) PDOS соответствует электронам с направлением "спин-вверх", а красная кривая (пики) PDOS — "спин-вниз".

Ti ₃ Sb	Space group	a, Å(cal/exp)	c, Å(cal/exp)	$-\Delta_f H_0$, eV/atom	$-\Delta E_{\rm c}$, eV/atom
A15	Pm3n	5.217/5.2228 [11]	5.217/5.2228 [11]	0.44 0.379 [46]	6.27
$D8_m$	I4/mcm	10.457/10.465 [5]	5.258/5.2639 [5]	0.37i 0.325 [47]	5.34

Таблица 5. DFT-LSDA рассчитанные постоянные решетки (вычисленная/эксперимент — cal/exp), энтальпия образования и энергия когезии модификаций Ti₃Sb

в кристаллической решетке, занятых магнитными Ti и полуметаллическими атомами Sb. Внутри каждой из подрешеток Ti₃Sb и между ними существуют конкурирующие взаимодействия и обмен между атомами (ионами) Ti и Sb различной координации, что и обеспечивает взаимное расположение спинов в кристалле.

3.3. Энтальпия образования и энергия когезии

Стандартная теплота (или энтальпия) образования ($\Delta_f H_{299,15}^0$), как известно, — это тепловой эффект реакции образования 1 моля сложного вещества из простых веществ. В этом случае принимается, что его составляющие простые вещества находятся в устойчивом агрегатном состоянии в стандартных условиях. Т. е. энтальпия образования соединения, которая связана с внутренней энергией системы, позволяет оценить термодинамическую способность образования 1 моля сложного вещества из стандартных простых веществ. Величину $\Delta_f H_0$ суперьячейки соединения Ti₃Sb при T = 0 К вычисляли методом DFT-LSDA как разность общей энергии между соединением Ti₃S при его составляющими Ti и Sb по отношению к стехиометрическому составу Ti₃Sb:

$$\Delta_f H_0(\text{Ti}_3\text{Sb}) = [E_{\text{total}}(\text{Ti}_3\text{Sb}) - n \cdot E_{\text{solid}}(\text{Ti}) - m \cdot E_{\text{solid}}(\text{Sb})]/4, \qquad (1)$$

где $E_{\text{total}}(\text{Ti}_3\text{Sb})$ — полная энергия соединения Ti₃Sb; n = 3, m = 1 — число атомов элемента Ti и Sb соответственно, в элементарной ячейке; $E_{\text{solid}}(\text{Ti})$ и $E_{\text{solid}}(\text{Sb})$ энергия на атом элемента Ti и Sb соответственно, в кристаллической структуре в твердом состоянии.

Аналогичным методом вычисляли и энергию когезии (связь между одинаковыми молекулами (атомами, ионами) внутри тела) ΔE_c , которая характеризует структурную прочность соединения Ti₃Sb. Энергию сцепления атомов в Ti₃Sb определяли как работу по разложению кристалла соединения Ti₃Sb на отдельные свободные атомы

$$\Delta E_{\rm c}({\rm Ti}_3{\rm Sb}) = [E_{\rm total}({\rm Ti}_3{\rm Sb}) - 3E_{\rm atom}({\rm Ti}) - E_{\rm atom}({\rm Sb})]/4, \tag{2}$$

где — $E_{\text{atom}}(\text{Ti})$ и $E_{\text{atom}}(\text{Sb})$ энергия, приходящаяся на атом Ti и Sb в изолированном состоянии соответственно.

Результаты расчетов энтальпии образования $\Delta_f H_0$, энергии когезии атомов ΔE_c и постоянных решетки для Ti₃Sb приведены в табл. 5.

Сопоставление структурных и термодинамических данных Ti₃Sb [46,47] и результатов наших расчетов показывает, что в основном они согласуются между собой. Разброс DFT-LSDA вычисленных значений энтальпии образования кристаллов Ti₃Sb от известных значений $-\Delta_f H_0$ можно связать, в частности, с использованными в расчетах различными параметрами решеток модификаций Ti₃Sb (табл. 5).

3.4. Li-допированное соединение A15 Ti₃Sb

Масштабное применение литий-ионных аккумуляторов (ЛИА) на основе углеродного анода ограничивается их эксплуатационными показателями (низкая скорость заряда, узкий интервал рабочих температур и недостаточная безопасность). Модернизация ЛИА связана с разработкой новых материалов электродов, способных обеспечить требуемые энергетические и эксплуатационные показатели. Поэтому актуальной задачей является поиск материалов для электродов ЛИА, способных сохранять стабильность структуры при многократном внедрении/извлечении Li⁺.

Перспективной заменой углеродному аноду могут быть соединения титана (например, TiO_2 и $Li_4Ti_5O_{12}$), обладающие потенциалом около 1.5-1.8 V относительно литиевого электрода сравнения и повышенной устойчивостью структуры при циклировании. Однако, большая ширина запрещенной зоны (3.0-3.2 eV) и низкая электропроводность ($\sim 10-12$ S/cm) TiO₂, препятствует его использованию в качестве анода ЛИА. Кроме того, известно, что при внедрении/извлечении ионов лития в TiO₂ кристаллическая решетка диоксида титана заметно деформируется (~ 3%). С учетом вышеуказанных синтез допированного ионами лития интерметаллического Ti₃Sb в наноструктурированной форме выглядит эффективным подходом получения анодных материалов для металл-ионных аккумуляторов. Образование тройных интерметаллидов в системе Ti-Sb-Li в литературе не известно.

На основе данных по фазовым равновесиям бинарных систем Ti-Sb [4-6], Ti-Li [34], Sb-Li [35-39] и термодинамическим свойствам бинарных соединений в них изучили систему Ti-Sb-Li. Структурную стабильность бинарных соединений и устойчивость конод между ними в системе Ti-Sb-Li определили термодинамическим путем. DFT расчеты энтальпии образования сплавов Ti-Sb-Li и соединений на основе Ti_3Sb проводили с учетом методики, описанной в [48].

Реакцию введения лития в исходную решетку Ti_aSb_b схематически можно записать в виде

$$Ti_aSb_b + xLi^+ + x\bar{e} \leftrightarrow Ti_aSb_bLi_c.$$

В этом случае величину $\Delta_f H_0$ для 64 атомной суперьячейки образца состава Ti_aSb_bLi_c рассчитывали при T = 0 K по формуле

$$\Delta_{f}H_{0}(\text{Ti}_{a}\text{Sb}_{b}\text{Li}_{c}) = [\Delta E_{\text{total}}(\text{Ti}_{3}\text{Sb}_{b}\text{Li}_{c})] - a[\Delta E_{\text{total}}(\text{Ti})/j] - b[\Delta E_{\text{total}}(\text{Sb})/k] - c[\Delta E_{\text{total}}(\text{Li})/l]/a + b + c,$$
(3)

где a, b, c, d — количество атомов каждого типа в кристаллической решетке используемого в расчетах соединения; j, k, l — число атомов в кристаллической решетке Ti, Sb и Li соответственно, использованное в расчетах; E_{tot} — полная энергия соединения в eV.

DFT образования рассчитанная энтальпия для Ti₃Sb составила $-0.44 \,\mathrm{eV/atom}$ (табл. 5). для Li₃Sb $-0.84 \,\mathrm{eV/atom}$ для Ti₃Sb_{0.9792}Li_{0.0208} (-0.43 eV/atom), для Ti₃Sb_{0.9792}Li_{0.0208} (-0.43 eV/atom), для Ti_{2.9375}SbLi_{0.0625} (-0.42 eV/atom).

Моделировали суперъячейку на основе Ti₃Sb с учетом допирования его структуры литием. Заполнение вакансий решетки Ti₃Sb в позиции 4*d*-состояния Ti допированием атомами Li энергетически выгодно вплоть до составов в области гомогенности (< 1 mole%) на основе Ti₃Sb. В концентрационной зависимости Ti₃Sb—Li наблюдается уменьшение энтальпии образования Ti_{3-x}Sb_yLi_{x-y} при замещении Ti решетки Ti₃Sb атомом лития.

С учетом данных по системам Ti–Sb [4–6], Ti–Li [34], Sb–Li [35–39] и исходя из DFT-расчетов нами построено изотермическое сечение T - x диаграммы системы Ti–Sb–Li при T = 298 К (рис. 7). Изотермическое сечение диаграммы указывает фазовый и структурный состав для всех концентраций тройных сплавов Ti–Sb–Li при 298 К. Как видно растворимость компонентов на основе бинарных соединений в твердом состоянии незначительна.

3.4.1. Атомная структура А15 Ті₃Sb-Li

Структуру суперъячейки A15 Ti₃Sb–Li смоделировали путем допирования Ti₃Sb атомами Li, где атомы Li замещают атомы Ti и/или Sb по отдельности. Допирование литием проводили с изменением концентрации лития в Ti₃Sb–Li. Суперъячейка Ti₃Sb, содержащая 64 атома была допирована литием в концентрации 6.25 аt.% Li для замены атомов Ti и 2 at.% Li для замены атомов Sb, соответственно. Замещение компонентов Ti и/или Sb соединения Ti₃Sb на атомы Li в суперъячейке приводит к составам Ti₃Sb_{0.9792}Li_{0.0208} и Ti_{2.9375}SbLi_{0.0625}. Атомная структура указанной суперъячейки A15 Ti₃Sb–Li, содержащей 64 атома, показана на рис. 8. DFT расчеты показывают, что в соединении Ti₃Sb замещение атомов Ti

Рис. 7. Изотермический разрез системы Ti-Sb-Li при 298 K: $I - Li_3Sb + Li + Sb$, $2 - Li_3Sb + Ti + Ti_3Sb$, $3 - Ti_3Sb + Li_3Sb + Li_2Sb$, $4 - Ti_5Sb_3 + Li_3Sb + Li_2Sb$, $5 - Ti_5Sb_3 + Li_3Sb + Ti_{11-x}Sb_{8-y}$, $6 - TiSb + Li_3Sb + Ti_{11-x}Sb_{8-y}$, $7 - TiSb + Li_3Sb + TiSb_2$, $8 - Li_2Sb + Li_3Sb + TiSb_2$, $9 - Li_2Sb + Sb + TiSb_2$.

и/или Sb по отдельности атомами Li не влияет на атомные позиции Ti и/или Sb в решетке. Li-допирование с замещением атомов Ti или Sb в решетке Ti₃Sb в обоих случаях (Ti_{3-x}SbLi_x и Ti₃Sb_{1-x}Li_x) уменьшает параметры кристаллической решетки. Так, например, DFT расчетный параметр решетки Ti₃Sb_{0.9792}Li_{0.0208} (структурный тип Cr₃Si, пространственная группа $Pm\bar{3}n$) составляет a = 5.207 Å, V = 141.10 Å³, что меньше параметра решетки "чистого" A15 Ti₃Sb: a = 5.217 Å, V = 141.77 Å³ (табл. 2).

В соединениях A15 Ti_3Sb и Ti_3Ir (типа Cr_3Si) DFT-LDA расчетом определено максимальное количество атомов водорода, внедренного в решетку этих интерметаллических соединений [44]. Показано, что в Ti_3SbH_n и Ti_3IrH_n атомы водорода притягиваются к тетраэдрическим междоузлиям [Ti_4] больше, чем к другим позициям. Природа связи металл-водород и металлоид-водород, а также влияние внедрения водорода на связь металл-металл Ti-Sb или Ti-Ir, а также металл-металлоид $Ti-Ti_3Sb$ определяют максимальное содержание атомов водорода в Ti_3Sb и Ti_3Ir . В этом случае связь Ti-Ti частично заменяется связью Ti-H, эффект, который влияет на их сверхпроводящее поведение.

3.4.2. Магнитный момент А15 Ti₃Sb-Li

Проведены DFT-LSDA-расчеты магнитного момента суперьячейки структуры A15 Ti₃Sb-Li с замещением Ti или Sb атомом Li. За счет малой разницы в значениях ионных радиусов частичное замещение ионов Ti^{3+} (0.067 nm) или Sb⁵⁺(0.060 nm) на Li⁺ (0.076 nm)

Рис. 8. Атомная структура Li-допированного соединения A15 Ti₃Sb (space group $Pm\bar{3}n$). Суперъячейки: a) Ti_{2.9375}SbLi_{0.0625}, b) Ti₃Sb_{0.9792}Li_{0.0208}.

Таблица 6. DFT-LSDA рассчитанные полный магнитный момент (M_{tot}) и полная энергия (E) суперъячеек на основе соединения A15 Ti₃Sb с кубической сингонией

Суперьячейка на основе А15	A15 Ti ₃ Sb (space group $Pm\bar{3}n$; No 223; $a = 5.217$ Å)			
Ti ₃ Sb	$M_{ m tot},\mu_{ m B}$		E, eV	
Ti ₃ Sb	0.08 0.073 [46]		-1387.85	
Ti _{2.9375} SbLi _{0.0625}	2.11		-10933.39	
Ti ₃ Sb _{0.9792} Li _{0.0208}	3.53		-10961.04	

заметно не измененяет параметр кубической решетки. Такое Li-замещение соответствует формированию локальных литиевых кластеров в решетке A15 Ti₃Sb–Li. Рассчитанные полные (суммарные) магнитные моменты для Ti₃Sb_{0.9792}Li_{0.0208} и Ti_{2.9375}SbLi_{0.0625} на формульную единицу приведены в табл. 6.

Повышение концентрации Li допанта в Ti_{3-x}SbLi_x и Ti₃Sb_{1-x}Li_x приводит к увеличению магнитного момента и абсолютного значения полной энергии суперъячеек (табл. 6), подтверждая тем самым факт внедрения Li⁺ в решетку A15 Ti₃Sb с образованием твердого раствора $Ti_{3-x}SbLi_x$ и $Ti_3Sb_{1-x}Li_x$. В этом случае объем элементарной ячейки ($Ti_{3-x}SbLi_x$ и $Ti_3Sb_{1-x}Li_x$), меняющийся незначительно, коррелирует с атомным отношением Li/Ti и Li/Sb. Малое увеличение объема элементарной ячейки A15 Ti₃Sb за счет внедрения лития может уменьшить структурные напряжения в кристаллической решетке, вызванные внедрением/извлечением ионов Li⁺. Это косвенно следует из вычисленных полных энергий равновесных конфигураций на основе A15 Ti₃Sb (табл. 6). Введение атомов лития в структуру A15 Ti₃Sb заметно увеличивает значение локального магнитного момента. Это можно связать с увеличением скорости вращения электронов и их движения в атомах решетки Ti₃Sb за счет вклада подвижных одновалентных ионов лития в магнитную структуру и высокой спиновой поляризацией электронов проводимости.

На рис. 9 представлено направление магнитного поля для атомов Ti в суперьячейке A15 $Ti_3Sb_{0.9792}Li_{0.0208}$. DFT-LSDA рассчитанные локальные магнитные моменты атомов Ti, окружающие допируемые атомы Li в структурах A15 $Ti_{2.9375}SbLi_{0.0625}$ и $Ti_3Sb_{0.9792}Li_{0.0208}$, были значительно меньше, чем суммарные значения магнитных моментов.

Локальный (суммарный) магнитный момент атомов Ti (1.04 $\mu_{\rm B}$), окружающих атомы Li в структуре, например, Ti_{2.9375}SbLi_{0.0625}, составляет: 0.76 $\mu_{\rm B}$ для 7-го атома Ti и 0.72 $\mu_{\rm B}$ для 55-го атома Ti, соответственно, что значительно меньше, чем $M_{\rm tot}$ Ti_{2.9375}SbLi_{0.0625} (табл. 6)

Таким образом, отличие локальных магнитных моментов разных модификаций (A15 и $D8_m$) на основе Ti₃Sb и Ti₃Sb–Li можно связать с соотношением кон-

Рис. 9. Направление локального магнитного момента атомов в 64 атомной суперьячейке A15 $Ti_3Sb_{0.9792}Li_{0.0208}$ (space group $Pm\bar{3}n$).

Рис. 10. DFT-LSDA рассчитанные парциальные плотности состояний (PDOS *d*-состояние) электронов суперьячеек на основе A15 Ti_3Sb-Li (space group $Pm\bar{3}n$): *a*) $Ti_{2.9375}SbLi_{0.0625}$, *b*) $Ti_3Sb_{0.9792}Li_{0.0208}$. Уровень Ферми установлен равным 0 eV. Черная кривая (пики) PDOS соответствует электронам с направлением "спин-вверх", а красная кривая (пики) PDOS — "спин-вниз".

курирующих внутри- и межподрешеточных обменных взаимодействий. Кроме того, трансляционная симметрия (т. е. периодичность в расположении атомов или ионов) и эквивалентность узлов в подрешетках кубической и тетрагональной структуры Ti_3Sb , отличаются друг от друга. В кубической подрешетке A15 Ti_3Sb с более "сильной связью между частицами" все узлы заняты одинаковыми атомами (ионами), а в тетрагональной фазе $D8_m$ Ti_3Sb частицы размещаются в "искаженной" подрешетке. В структурах $Ti_{3-x}SbLi_x$ и $Ti_3Sb_{1-x}Li_x$ модификации A15 и $D8_m$ отличаются также спиновыми конфигурациями и уровнем замещения Ti и/или Sb литием в кристаллических подрешетках.

3.4.3. Электронная структура А15 Ti₃Sb-Li

DFT-LSDA рассчитанные интерметаллические электронные структуры на основе A15 Ti₃Sb-Li (в частности, Ti_{2.9375}SbLi_{0.0625} и Ti₃Sb_{0.9792}Li_{0.0208}) для *d*-орбиталей, с учетом спин-поляризации, показаны на рис. 10. Из анализа спектров PDOS (*d*-состояние) следует, что допированные атомы Li влияют на электронные структуры на основе A15 Ti₃Sb-Li. При этом в структуре кристаллической решетки связь Ti-Ti частично заменяется связью Ti-Li. Такой эффект Li-допирования может влиять на сверхпроводящее поведение структуры A15 Ti₃Sb за счет

изменения размерного фактора, плотности упаковки и электронной концентрации.

4. Заключение

Расчеты в рамках теории функционала плотности (DFT) в приближении локальной электронной спиновой плотности (LSDA) зонной структуры, магнитного момента, постоянных решетки, энтальпия образования и энергия когезии суперъячеек, содержащих литий и/или собственные вакансии двух модификаций Ti₃Sb (кубическая сингония, структурный тип A15, прототип Cr₃Si, space group $Pm\bar{3}n$; № 223; a = 5.217 Å); тетрагональная сингония, структурный тип D8_m, (прототип Cr₅Si₃, space group I4/mcm; № 140; a = 10.457 Å, c = 5.258 Å) показали следующее.

DFT-LSDA вычисленные полные энергии и плотности состояний электронов (DOS) и зонные структуры суперьячеек на основе модификаций A15 Ti₃Sb и $D8_m$ Ti₃Sb в т.ч. и Li-допированных структурах, показали энергетическую стабильность этих двух модификаций с металлической связью. Электронная структура и поверхности Ферми обеих модификаций (A15 и $D8_m$) Ti₃Sb похожи друг на друга. В обеих структурах образование металлической связи происходит за счет валентных электронов, которые оптимизируют гетероатомные связи Ti–Sb. Характеристики распределения электронной плотности указывают на то, что в образцах на основе модификации A15 Ti₃Sb "металличность" больше, чем в $D8_m$ Ti₃Sb.

DFT-LSDA вычисленный магнитный момент зависит как от структуры модификаций, так и от атомных расстояний (Ti-Sb, Ti-Ti, Sb-Sb) в двух $2 \times 2 \times 2$ суперъячейках модификациий ТізSb. Магнитный момент A15 Ti₃Sb (суммарный локальный магнитный момент $M_{\text{tot}} = 0.08 \,\mu_{\text{B}})$ меньше по сравнению с магнитным моментом D8_m Ti₃Sb (суммарный магнитный момент $0.09\,\mu_{\rm B}$). При наличии в структуре разных собственных вакансий Ті или Sb магнитные моменты модификаций A15 и D8_m Ti₃Sb отличаются. В частности, в A15 Ti₃Sb (Ti–Sb 2.92 Å) при наличии вакансии Ti — $0.97 \,\mu_{\rm B}$, а при наличии вакансии Sb — $1.11 \,\mu_{\rm B}$, соответственно. Аналогично для модификации D8_m Ti₃Sb (Ti-Sb 2.80 Å) получены следующие значения M_{tot} при наличии вакансии Ti — $1.25 \,\mu_{\rm B}$, а при наличии вакансии Sb — $2.54 \,\mu_{\rm B}$, соответственно.

DFT-LSDA рассчитаны постоянные решетки (A15 Ti₃Sb, a = 5.217 Å; a = 10.457, c = 5.258 Å) и энтальпия образования (A15 Ti₃Sb, $\Delta_f H_0 = -0.44 \text{ eV/atom}$; D8_m Ti₃Sb, $\Delta_f H_0 = -0.37 \text{ eV/atom}$) модификаций Ti₃Sb, которые хорошо согласуются с известными данными. Li-допирование уменьшает абсолютное значение $\Delta_f H_0$ (например, для Ti₃Sb_{0.9792}Li_{0.0208} (-0.43 eV/atom), для Ti₃Sb_{0.9792}Li_{0.0208} (-0.43 eV/atom), для Ti₃Sb_{0.9792}Li_{0.0208} (-0.43 eV/atom), для Ti_{2.9375}SbLi_{0.0625} (-0.42 eV/atom)). Исходя из рассчитанной энтальпии образования бинарных соединений Ti_xSb_y (Ti₃Sb составила -0.44 eV/atom) и Li_xSb_y (Li₃Sb -0.84 eV/atom) построено изотермическое сечение (298 K) тройной T-x-y фазовой диаграммы Ti-Sb-Li, откуда следует, что растворимость лития на основе Ti₃Sb незначительна (< 1 at,%).

Атомы Li влияют на электронные структуры суперьячеек на основе A15 Ti₃Sb, и спектры DOS показывают, что связь Ti–Ti частично заменяется более металлической связью Ti–Li. Такой эффект может влиять на сверхпроводящее поведение Ti₃Sb. При Li-допировании Ti₃Sb значение магнитного момента A15 Ti₃Sb–Li увеличивается за счет вклада, вносимого связью между атомами Ti–Li в магнитные подрешетки, содержащие атомы Li. С увеличением концентрации лития значение магнитного момента увеличивается. Для суперъячеек, например, Ti₃Sb_{0.9792}Li_{0.0208} полный магнитный момент составил 2.11 μ_B , а для Ti_{2.9375}SbLi_{0.0625} — 3.53 μ_B на формульную единицу соответственно.

Благодарности

Работа выполнена при частичной поддержке Фонда развития науки при Президенте Азербайджанской Республики (EIF) (грант № EIF-BGM-4-RFTF-1/2017) и Российского фонда фундаментальных исследований (РФФИ) (проект № Аг_а2018).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- W. Steurer, J. Dshemuchadse. Intermetallics: Structures, Properties, and Statistics. Oxford University Press (2016). 592 p. ISBN-13: 9780198714552.
- [2] M. Mandal, K.P. Sajilesh, R.R. Chowdhury, D. Singh, P.K. Biswas, A.D. Hillier, R.P. Singh. Phys. Rev. B. 103, 054501 (2021).

https://doi.org/10.1103/PhysRevB.103.054501.

- [3] M. Kim, C. Wang, K. Ho. Phys. Rev. B 99, 224506 (2019). https://doi.org/ 10.1103/PhysRevB.99.224506.
- [4] J.L. Murray. Phase Diagrams of Binary Titanium Alloys. ASM International, Metals Park, Ohio(1987). P. 282–284. ISBN-13: 9780871702487
- [5] A. Kjekshus, F. Grønvold, J. Thorbjørnsen. Acta Chem. Scand. 16, 1493 (1962).

https://doi.org/10.3891/acta.chem.scand.16-1493.

- [6] A. Tavassoli, A. Grytsiv, F. Failamani, G. Rogl, S. Puchegger, H. Müller, P. Broz, F. Zelenka, D. Macciò, A. Saccone, G. Giester, E. Bauer, M. Zehetbauer, P. Rogl. Intermetallics 94, 119 (2018). https://doi.org/10.1016/j.intermet.2017.12.014.
- [7] S. Bobev, H. Kleinke. Chem. Mater. 15, 3523 (2003). https://doi.org/10.1021/cm034328d.
- [8] M. Armbrüster, W. Schnelle, U. Schwarz, Y. Grin. Inorg. Chem. 46, 6319 (2007). https://doi.org/10.1021/ic070284p.
- [9] J. Emsley. The Elements. 2nd ed. Clarendon Press, Oxford (1991). ISBN-13: 978-0198555681
- [10] G. Chandra, S. Ramakrishnan, A.K. Nigam. J. Phys. F 16, 209 (1986). https://doi.org/10.1088/0305-4608/16/2/010.
- S. Ramakrishnan, G. Chandra. Phys. Lett. 100, 44 (1984). https://doi.org/10.1016/0375-9601(84)90640-6.
- [12] J.W. Kaiser, M.G. Haase, W. Jeitschko. Z. Anorg. Allg. Chem. 627, 2369 (2001).

https://doi.org/10.1002/1521-3749(200110)627:103.0.

- [13] S. Derakhshan, A. Assoud, K.M. Kleinke, E. Dashjav, X. Qiu, S.J.L. Billinge, H. Kleinke. J. Am. Chem. Soc. 126, 8295 (2004). https://doi.org/10.1021/ja048262e.
- [14] E. Dashjav, H. Kleinke. 176, 329 (2003). https://doi.org/10.1016/s0022-4596(03)00214-7.
- [15] M.T. Sougrati, J. Fullenwarth, A. Debenedetti, B. Fraisse, J.C. Jumas, L. Monconduit. J. Mater. Chem. 21, 10069 (2011). https://doi.org/10.1039/c1jm10710k.
- [16] C. Marino, M.T. Sougrati, B. Gerke, R. Pottgen, H. Huo, M. Menetrier, C.P. Grey, L. Monconduit. Chem. Mater. 24, 4735 (2012). https://doi.org/10.1021/cm303086j.
- H.A. Wilhelm, C. Marino, A. Darwiche, L. Monconduit,
 B. Lestriez. Electrochem. Commun. 24, 89 (2012). https://doi.org/10.1016/j.elecom.2012.08.023.
- [18] W. Zhang, F. Ghamouss, A. Darwiche, L. Monconduit, D. Lemordant, R. Dedryvere, H. Martinez. J. Power Sour. 268, 645 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.041.
- [19] H.A. Wilhelm, C. Marino, A. Darwiche, P. Soudan, M. Morcrette, L. Monconduit, B. Lestriez. J. Power Sour. 274, 496 (2015). http://dx.doi.org/10.1016/j.jpowsour.2014.10.051.

[20] W. Zhang, F. Ghamouss, A. Mery, D. Lemordant, R. Dedryvere, L. Monconduit, H. Martinez. Electrochim. Acta. 170, 72 (2015).

https://doi.org/10.1016/j.electacta.2015.04.009.

- [21] A. Tavassoli, A. Grytsiv, G. Rogl, V.V. Romaka, H. Michor, M. Reissner, E.B.M. Zehetbauer, P. Rogl. Dalton Trans. 47, 879 (2018). https://doi.org/10.1039/c7dt03787b.
- [22] G.A. Melnyk, W. Tremel. J. Alloys Compd. 349, 164 (2003). https://doi.org/10.1016/s0925-8388(02)00921-0.
- [23] H. Kleinke. Can. J. Chem. 79, 1338 (2001). https://doi.org/10.1139/cjc-79-9-1338.
- [24] A.Y. Kozlov, V.V. Pavlyuk. Intermetallics 11, 237 (2003). https://doi.org/10.1016/s0966-9795(02)00232-7.
- [25] A. Tkachuk, Yu. Gorelenko, Yu. Stadnyk, B. Padlyak, A. Jankowska-Frydel, O. Bodak, V. Sechovsky. J. Alloys Compd. **319**, 74 (2001). https://doi.org/1016/s0925-8388(01)00915-x.
- [26] P. Berger, C. Schmetterer, H. Effenberger, H. Flandorfer. J. Alloys Compd. 879, 160272 (2021). https://doi.org/10.1016/j.jallcom.2021.160272.
- [27] J. Tobola, J. Pierre. J. Alloys Compd. 296, 243 (2000). https://doi.org/10.1016/S0925-8388(99)00549-6.
- [28] V.V. Romaka, P. Rogl, L. Romaka, Yu Stadnyk, N. Melnychenko, A. Grytsiv, M. Falmbigl, N. Skryabina. J. Solid State Chem. **197**, 103 (2013). https://doi.org/10.1016/j.jssc.2012.08.023.
- [29] O. Senchuk, Y. Tokaychuk, R. Serkiz, P. Demchenko, R. Gladyshevskii. Chem. Met. Alloys. 10, 76 (2017).
- [30] C. Colinet, J.-C. Metal. Mater. Min., **13**, 75 (2016). http://dx.doi.org/10.4322/2176-1523.1077.
- [31] H. Bie, S.H.D. Moore, D.G. Piercey, A.V. Tkachuk, O.Y. Zelinska, A. Mar. J. Solid State Chem. 180, 2216 (8) (2007). https://doi.org/10.1016/j.jssc.2007.05.030.
- [32] A.Y. Kozlov, V.V. Pavlyuk. J. Alloys Compd. 367, 76 (2004). http://dx.doi.org/10.1016/j.jallcom.2003.08.015
- [33] R. Kainuma, R. Umino, X. Xu, K. Han, T. Omori. J. Phase Equilib. Diffus. 41, 116-112 (2020). https://doi.org/10.1007/s11669-020-00784-7
- [34] C. W. Bale. Bull. Alloy Phase Diagrams 10, 135 (1989). https://doi.org/10.1007/bf02881424
- [35] A. Beutl, D. Cupid, H. Flandorfer. J. Alloys Compd. 695, 1052 (2016). https://doi.org/10.1016/j.jallcom.2016.10.230
- [36] D. Li, A. Beutl, H. Flandorfer, D.M. Cupid. J. Alloys Compd. 701, 186 (2017). https://doi.org/10.1016/j.jallcom.2016.12.399.
- [37] M.M. Kane, J.M. Newhouse, D.R. Sadoway. J. Electrochem. Soc. 162, A421 (2015). http://hdl.handle.net/1721.1/102197
- [38] J. Sangster, A.D. Pelton. J. Phase Equilib. 14, 514 (1993). https://doi.org/10.1007/bf02671973.
- [39] S. Terlicka, A. Dębski, P.J. Alloys Compd. 673, 272 (2016). https://doi.org/10.1016/j.jallcom.2016.02.235.
- [40] М.М. Асадов, С.Н. Мустафаева, С.С. Гусейнова, В.Ф. Лукичев. ФТТ 63, 1975 (2021) [М.М. Asadov, S.N. Mustafaeva, S.S. Guseinov, V.F. Lukichev. Phys. Solid State. 63, 797 (2021). https://doi.org/10.1134/S1063783421050036].
- [41] М.М. Асадов, С.Н. Мустафаева, С.С. Гусейнова, В.Ф. Лукичев. ФТТ **62**, 680 (2020). [М.М. Asadov, S.N. Mustafaeva, S.S. Guseinova, V.F. Lukichev. Phys. Solid State. **62**, 2224 (2020). https://doi.org/10.1134/S1063783420110037]
- [42] M.M. Asadov, S.S. Guseinov, V.F. Lukichev. Russ. Microelectron. 49, 314 (2020). https://doi.org/10.1134/S1063739720050030

- [43] M. Kim, C.-Z. Wang, K.-M. Ho. Phys. Rev. B 99, 224506(2019). https://doi.org/110.1103/PhysRevB.99.224506
- [44] G.J. Miller, R.S. Dissanayaka Mudiyanselage, W. Xie.
 Z. Naturforsch. B 76, 819 (2021). https://doi.org/110.1515/znb-2021-0137.
- [45] E. Derunova, Y. Sun, C. Felser, S.S.P. Parkin, B. Yan, M.N. Ali. Science Adv., 4, eaav8575. (2019). https://doi.org/10.1126/sciadv.aav8575
- [46] https://materialsproject.org/materials/mp-1412/. https://doi.org/10.17188/1190175
- [47] https://materialsproject.org/materials/mp-569837/. https://doi.org/10.17188/1275289
- [48] M.M. Asadov, E.S. Kuli-zade. J. Alloys Compd. 842, 155632 (2020)https://doi.org/10.1016/j.jallcom.2020.155632.

Редактор Т.Н. Василевская