10

Лазерное структурирование кварцевых стекол для создания элементов микрофлюидики

© А.Г. Бондаренко¹, Р.А. Заколдаев¹, А.Рамос Веласкес^{1,2}

¹ Университет ИТМО, 197101 Санкт-Петербург, Россия ² ООО "Лазерный центр", 195067 Санкт-Петербург, Россия

e-mail: ag_bondarenko@itmo.ru

Поступила в редакцию 09.06.2022 г. В окончательной редакции 16.06.2022 г. Принята к публикации 30.06.2022 г.

Исследовано влияние мощности и скорости сканирования лазерного излучения CO₂-лазера на поверхность кварцевого стекла для изготовления микроканалов и микрорезервуаров для задач микрофлюидики. Установлены зависимости размеров и шероховатости микроструктур от параметров лазерного излучения. Глубина микрофлюидных элементов достигает $45\,\mu\text{m}$ с шероховатостью < 40 nm. Для записанных микроканалов произведена оценка скорости распространения жидкости (до 15 mm/s). Оценена смачиваемость микрорезервуаров, где угол смачивания достигает $64 \pm 7^{\circ}$. Созданные элементы обладают высоким пропусканием ($T \ge 0.8$) в видимом спектральном диапазоне.

Ключевые слова: СО2-лазер, микроканал, кварцевое стекло, микрофлюидика.

DOI: 10.21883/OS.2022.09.53303.3833-22

Введение

Микрофлюидные (МФ) элементы находят свое применение в научных и инженерных задачах и, как правило, широко востребованы в создании лабораторий на чипе, где появляется возможность управлять потоками жидкостей и распределять объемы реагентов/аналитов на уровне нано/пико-литров [1]. Особое внимание уделяется выбору материала-заготовки для МФ системы. Кварцевые стекла можно считать универсальными с точки зрения высокой оптической прозрачности, химической стойкости и отсутствия гигроскопичности. Преимущественно МФ элементы формируются на поверхности полимерных материалов методом фотолитографии [2], а на поверхности кварцевых стекол — методом сухого травления [3]. Затем на МФ систему наносится полипропиленовая пленка, обеспечивающая герметичность системы [4]. Среди ключевых МФ элементов можно отметить микроканалы для управления и распределения потоками жидкости и микрорезервуары для хранения/смешивания реагентов и аналитов [5]. Однако перечисленные методы являются многостадийными и ресурсозатратными, что затрудняет разработку доступных и относительно дешевых МФ систем. Таким образом, разработка новых методов и технологий микрообработки поверхности кварцевых стекол является актуальным направлением.

Применение лазерных технологий обработки силикатных материалов, основанных на резонансном поглощении излучения CO₂-лазера, можно отнести к перспективному направлению создания МФ элементов. В работе [6] было продемонстрировано и исследовано три основных режима воздействия CO_2 -лазерного излучения на матрицу SiO_2 — денсификация матрицы, абляция нанометровых слоев за импульс и линейная абляция слоев толщиной более 150 nm за импульс. Таким образом, с физической точки зрения нет преград для реализации МФ элементов с требуемой геометрией. Однако пока еще не разработаны методики применения коммерческих CO_2 -лазерных систем для обработки кварцевых стекол, а именно не исследованы допустимая геометрия формируемых структур, шероховатость и соответственно смачиваемость обработанной поверхности.

В настоящей работе впервые рассмотрена технология изготовления $M\Phi$ элементов — микроканалов и микрорезервуаров на поверхности кварцевого стекла с помощью коммерческой лазерной установки. Для записанных микроканалов была произведена оценка скорости распространения жидкости, а для микрорезервуаров — оценка контактных углов смачиваемости. Высокая оптическая прозрачность микрорезервуаров подтверждена спектрами пропускания в видимом диапазоне.

Экспериментальная часть

Лазерное микроструктурирование проводилось сфокусированным лазерным пучком на поверхности кварцевого стекла (JGS1). В экспериментах использовалась лазерная установка C-Marker (ООО "Лазерный центр"), генерирующая излучение на длине волны 10.6 µm с частотой следования импульсов 8 kHz. Развертка лазерного

Рис. 1. (*a*) Схематическое изображение лазерной установки С-Marker для обработки стекла: О — объектив, РС — компьютер для управления лазерной установкой. (*b*) Схема установки для измерения контактных углов смачиваемости на обработанной поверхности: РС — компьютер с программой ToupView, CDD — цифровая камера ToupCam для визуализации поверхности во время измерений, СТ — координатный стол, L — кольцевая лампа.

Рис. 2. Массив микроканалов на поверхности кварцевого стекла и режимы лазерной обработки, при которых они были получены (*a*), неоднородные микроканалы с различными дефектами (*b*, *c*) и однородные микроканалы без напряжений (*d*, *e*). В красных рамках приведены снимки микроканалов, снятых при скрещенных поляризаторе и анализаторе.

пучка осуществлялась с помощью гальванометрической системы из двух зеркал, фокусировка излучения производилась с помощью однолинзового объектива (SCAN 160/150-20 ST) с фокусным расстоянием 141 mm. Схема установки представлена на рис. 1, *а.* Размер фокального пятна по уровню 1/e составил $62 \,\mu$ m. Пороговая энергия для абляции кварцевого стекла в импульсе составила $34 \,\mu$ J.

Микроскопия выполнена с помощью оптического микроскопа Zeiss. Для измерения размеров и шероховатости микроструктур применялись оптический профилометр ZeScope и контактный профилометр Hommel Tester T8000. Для исследования спектров пропускания изготовленных микроструктур в видимом диапазоне использовался микроскоп-спектрофотометр ЛОМО МСФУ-К.

Измерение контактных углов смачиваемости для определения свойства смачиваемости обработанных об-

ластей проводилось с помощью экспериментальной установки, состоящей из микроскопа ЛОМО (1-4X), цифровой камеры ToupCam, кольцевой лампы, координатного стола (рис. 1, b). Ввод жидкости в каналы осуществлялся посредством осаждения капли дистиллированной воды объемом 0.1 μ l.

Результаты и их обсуждение

Микрофлюидные каналы

На рис. 2, *а* представлены фотографии микроканалов, сформированных на поверхности стекла при различных значениях скорости сканирования лазерного пучка и мощности излучения. Мощность лазерного излучения не превышала 17 W (соответствует плотности мощности $q = 6 \cdot 10^4$ W/cm²), чтобы избежать образова-

ния напряжений и трещин вокруг области воздействия (рис. 2, b). Скорость сканирования напрямую связана с перекрытием лазерных импульсов, поэтому не превышала 75 mm/s и обеспечивала процент перекрытия 79-97%. Увеличение скорости приводило к нарушению непрерывности треков (рис. 2, с). Минимальная ширина треков составила $46\,\mu\text{m}$ (3.3 W, 75 mm/s). По фотографиям видно, что исследуемый диапазон параметров лазерной обработки позволяет записывать однородные треки (рис. 2, d, e). Отметим, что ширина трека может точно контролироваться за счет увеличения мощности, и у полученной зависимости наблюдается степенной характер, где насыщение происходит для значений ширины $190-210 \,\mu m$ (рис. 3, *a*). В перспективе возможно увеличить ширину треков при использовании другой фокусирующей системы или при обработке в сходящемся пучке.

Методами контактной профилометрии проводилось исследование шероховатости и глубины созданных треков. В частности, зависимость глубины трека от мощности лазерного излучения при постоянной скорости сканирования представлена на рис. 3, *b*. Функция имеет линейный характер с коэффициентом $R^2 = 0.98$. Можно предположить, что последующее увеличение глубины целесообразно проводить за счет построчного сканирования, не повышая мощность лазерного излучения. В настоящем исследовании глубину трека можно задавать в диапазоне $0.5 \pm 0.1-45 \pm 6\,\mu$ m. Поведение кривой хорошо согласуется с работой [7], где были исследованы зависимости глубины кратеров от плотности энергии излучения СО₂-лазера при импульсной абляции кварцевого стекла.

Для задач микрофлюидики очень важно помимо геометрии каналов контролировать их шероховатость, например, параметр R_a . Повышенная шероховатость понижает трение, что может привести к увеличению скорости потока жидкости в микроканалах [8]. Заметно увеличение шероховатости при уменьшении скорости сканирования (рис. 3, c).

На следующем этапе осуществлялось осаждение жидкости с одной стороны канала. В качестве тестовых каналов был выбран режим, который обеспечивает запись трека с глубиной 8.5 µm, шероховатостью 11 nm. При осаждении 0.1 µ1 дистиллированной воды с одной стороны канала наблюдалось распространение жидкости по всей длине канала (рис. 4, а). Стоит отметить, что потенциально канал с длиной 6 mm вмещает объем жидкости $\sim 7.5\,\mathrm{nl}$. Момент осаждения капли продемонстрирован на рис. 4, b, спустя 0.16 s наблюдается направленное распространение жидкости по созданному треку. Спустя 1.5 s можно заметить равномерное распределение жидкости в пределах канала (рис. 4, с). В дальнейшем можно предположить использование жидкости меньшего объема. Созданные микроканалы могут быть задействованы при создании МФ системы на базе кварцевого стекла.

Рис. 3. Зависимость ширины (a), глубины (b) и шероховатости R_a (c) микроканалов от скорости сканирования и мощности лазерного излучения.

Кроме того, нам удалось оценить скорость протекания жидкости по нескольким микроканалам в зависимости от их шероховатости (рис. 4, d). Скорость изменяется в пределах 4–15 mm/s, что является в 5 раз быстрее аналогичных МФ каналов на стекле [9].

Микрорезервуары

Ключевым МФ элементом также является микрорезервуар, который может быть реализован данной технологией при построчном перекрытии треков. Однако для записи с перекрытием треков пришлось корректировать параметры лазерной обработки. Таким образом, микрорезервуары были записаны на стекле при изменении мощности лазерного излучения (3.3-5.8 W) и процента перекрытия по оси *Y* (75–95%) (рис. 5). С помощью

Рис. 4. Микроканал, протестированный на осаждение капли дистиллированной воды (a), распространение капли жидкости по микроканалу (b, c) и зависимость скорости потока от шероховатости R_a микроканалов (d).

Рис. 5. Массив микрорезервуаров на поверхности кварцевого стекла и режимы лазерной обработки, при которых они были получены.

оптического и контактного профилометров были получены значения глубины и шероховатости микрорезервуаров.

Зависимости размеров микрорезервуаров от параметров лазерного излучения показали увеличение глубины $(1 \pm 0.5 - 35 \pm 5 \,\mu\text{m})$ и параметра шероховатости S_a (150 ± 15-4500 ± 100 nm) при росте перекрытия лазерного пятна по оси *Y* от 75 до 95%.

Созданные микрорезервуары были также протестированы при осаждении дистиллированной воды (0.1 µl) с целью определения контактного угла смачиваемости. Для микрорезервуаров была построена зависимость контактных углов смачиваемости от параметра шероховатости S_a с учетом процентов перекрытия лазерного пятна и параметров лазерной обработки (рис. 6).

По графику наглядно видно, что контактные углы смачиваемости линейно увеличиваются по мере увеличения параметра S_a . Вероятно, это связано с тем, что полученные микроструктуры с высокими значениями шероховатости повторяют модель Венцеля [10], которая описывает поведение шероховатых поверхностей с низкой смачиваемостью.

Спектры пропускания

Спектры пропускания исследуемых микрорезервуаров в видимом диапазоне (400–800 nm) представлены на рис. 7. Необработанная поверхность кварцевого стекла демонстрирует высокое пропускание (коэффициент пропускания $T \sim 0.93$).

Изготовленные микроструктуры обладают повышенной шероховатостью, что приводит к уменьшению коэффициента пропускания до значений T = 0.8 в синезеленой области спектра.

Заключение

В настоящей работе впервые показана возможность изготовления МФ структур различной геометрии на поверхности кварцевого стекла с помощью излучения коммерческого СО₂-лазера. Для полученных микроструктур были выведены зависимости их размеров и шероховатости от параметров лазерной обработки. Исследуемые микроканалы демонстрируют перемещение жидкости со скоростью 4-15 mm/s, значения контактных углов смачиваемости для микрорезервуаров растут с увеличением S_a . Результаты спектроскопии показывают уменьшение пропускания микрорезервуаров до ~ 80%.

Рис. 6. Зависимость контактных углов смачиваемости от шероховатости *S_a* микрорезервуаров при различных параметрах лазерной обработки.

Рис. 7. Спектры пропускания поверхности необработанного кварцевого стекла и полученных микрорезервуаров.

Благодарности

А.Г. Бондаренко благодарит ООО "Лазерный центр" за предоставление необходимого оборудования для проведения экспериментов.

Финансирование работы

Исследование выполнено при финансовой поддержке гранта НИРМА ФТ МФ Университета ИТМО.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M. Hitzbleck, E. Delamarche. Chem. Soc. Rev., 42 (21), 8494-8516 (2013). DOI: 10.1039/C3CS60118H
- [2] A.E. Mironov, J. Kim, Y. Huang, A.W. Steinforth, D.J. Sievers,
 J.D. Eden. Nanoscale, **12** (32), 16796–16804 (2020).
 DOI: 10.1039/D0NR04142D
- [3] M.J. Ahamed, D. Senkal, A.A. Trusov, A.M. Shkel. In: SENSORS (IEEE, 2013), p. 1–4. DOI: 10.1109/icsens.2013.6688574
- [4] T. Wang, J. Chen, T. Zhou, L. Song. Micromachines, 9 (6), 269 (2018). DOI: 10.3390/mi9060269
- [5] J. Choi, R. Ghaffari, L.B. Baker, J.A. Rogers. Sci. Adv., 4 (2), (2018). DOI: 10.1126/sciadv.aar3921
- [6] A. Temmler, C.B. Weingarten, B. Schober, E. Uluz. Applied Surface Science, 555, 149609 (2021).
 DOI: 10.1016/j.apsusc.2021.149609
- [7] K.M. Nowak, H.J. Baker, D.R. Hall. Applied Optics, 54 (29), 8653–8663 (2015). DOI: 10.1364/AO.54.008653
- [8] A.S. Rawool, S.K. Mitra, S.G. Kandlikar. Microfluidics and Nanofluidics, 2 (3), 215–221 (2006). DOI: 10.1007/s10404-005-0064-5
- [9] Y. Zhu, K. Petkovic-Duran. Microfluidics and Nanofluidics, 8
 (2), 275–282 (2010). DOI: 10.1007/s10404-009-0516-4
- [10] E. Bormashenko. Advances in Colloid and Interface Science, 222, 92–103 (2015). DOI: 10.1016/j.cis.2014.02.009