02

Строение кристаллогидратов петафторидоциркониевой кислоты по данным колебательной спектроскопии

© Е.И. Войт, Н.А. Диденко

Институт химии Дальневосточное отделение РАН, 690022 Владивосток, Россия e-mail: evoit@ich.dvo.ru

Поступила в редакцию 17.12.2021 г. В окончательной редакции 17.02.2022 г.

Принята к публикации 25.06.2022 г.

Методами колебательной спектроскопии и термогравиметрии исследованы кристаллогидраты пентафторидоцирконовой кислоты состава HZrF₅ · 3H₂O, HZrF₅ · 2H₂O и промежуточный продукт термического разложения кислот состава ZrF₄ · H₂O. Показано, что кристаллогидраты HZrF₅ · nH₂O (n = 2, 3) представляют собой соли с комплексными катионами H₅O₂⁺ и H₇O₃⁺. На основе результатов квантово-химических расчетов проведено отнесение полос в ИК и КР-спектрах.

Ключевые слова: комплексные фториды циркония, пентафторидоциркониевые кислоты, колебательная спектроскопия.

DOI: 10.21883/OS.2022.09.53295.3042-22

Введение

Синтез большинства фторидных и разнолигандных фторсодержащих комплексных соединений циркония (IV) с одно-, двух- и трехвалентными катионами может быть осуществлен жидкофазным методом из растворов на основе пента- или гексафторидоциркониевых кислот [1,2]. Комплексные кислоты состава HZrF₅ и H2ZrF₆ не существуют в виде индивидуальных соединений, они образуют ряд гидратных форм. Существенным отличием гидратной сетки кислот от аналогичной сетки солей является наличие в ней протонов и образование специфических протонгидратных структур $H(H_2O)_n^+$, строение которых зависит от степени гидратации (*n*) и внешних H-связей с анионом.

В кристаллических решетках кислот ион гидроксония H₃O⁺ существует при условии, когда на один протон молекулы кислоты приходится одна молекула воды. К гидратам кислотного типа, в структурах которых присутствует катион H₃O⁺, относятся фторокислоты состава $H_2AF_6 \cdot 2H_2O$ ((H₃)O₂AF₆), A = Zr, Si, Ti [3–5], H₃OTiF₅ [6], H₃OTi₂F₉ [7], H₃OSbF₆ [8], H₃OUF₆ [9]. При увеличении содержания воды происходит не простая гидратация иона H₃O⁺, а взаимодействие между H₃O⁺ и молекулами H₂O, что ведет к образованию более сложных ассоциатов. Известно большое число кислот, содержащих ион $H_5O_2^+$. Ион $H_5O_2^+$ был обнаружен в решетке кристаллогидратов комплексных фторокислот $H_2SiF_6 \cdot nH_2O$ (*n* = 4, 6 и 9.5) [10] и $H_2TiF_6 \cdot nH_2O$ (n = 3, 6) [11]. В структурном отношении перечисленные кислоты представляют собой оксониевые соли либо их кристаллогидраты. Установлено, что в структурах ряда гидратов фторокислот кремния $H_2SiF_6 \cdot nH_2O$ (n = 4, 6 и 9.5) при увеличении содержания H₂O происходит

трансформация катионной подрешетки: наблюдается переход от изолированных ионов $H_5O_2^+$ к цепям из $H_5O_2^+$, соединенных с молекулами H_2O водородной связью О-Н...О, и далее — к трехмерной сетке с образованием каналов [10].

Известно, что гексафторидоциркониевая кислота $H_2ZrF_6 \cdot 2H_2O$ кристаллизуется из систем HF-ZrF4-H₂O только при концентрации HF больше 33% [12]. Соединение $H_2ZrF_6 \cdot 2H_2O$ представляет собой гидроксониевую соль кислоты $(H_3O)_2ZrF_6$. Ее структура состоит из обособленных бесконечных цепей $[ZrF_6]_n^{2n-}$ и катионов H_3O^+ . Отнесение характеристических полос катиона H_3O^+ в ИК спектре $H_2ZrF_6 \cdot 2H_2O$ [13] согласуется со спектральными данными, полученными для ряда гидроксониевых соединений [14]. Наблюдаемое на воздухе разложение $H_2ZrF_6 \cdot 2H_2O$ с выделением HF обусловлено отщеплением в первую очередь ослабленных сильными H-связями концевых атомов F (F_κ) с образованием пентафторидоциркониевой кислоты [13].

По данным рентгеноструктурного анализа (PCA) соединения состава HZrF₅ · 3H₂O и HZrF₅ · 2H₂O представляют собой кристаллогидраты соли гидроксония H₃OZrF₅ · 2H₂O и H₃OZrF₅·H₂O соответственно [15]. Их исследование методами колебательной спектроскопии ранее не проводилось. Есть разрозненные спектроскопические данные для других гидратов фторокислот: H₃OTiF₅, H₃OSbF₆, H₃OAsF₆, H₅O₂SbF₆ [6,8,16]. Совместное применение методов ИК и KP-спектроскопии при изучении HZrF₅ · nH₂O (n = 2, 3) позволит подтвердить одинаковое строение анионов, выявить различия в строении протонгидратной катионной подрешетки и оценить прочность H-связей.

Цель настоящей работы — исследовать влияние гидратного числа на строение и термическое поведение

кристаллогидратов пентафторидоциркониевой кислоты $HZrF_5 \cdot nH_2O$ (n = 2, 3) и продукта их частичной дегидратации и дегидрофторирования $ZrF_4 \cdot H_2O$ методами термического анализа и колебательной спектроскопии (ИК, КР) с привлечением результатов кантовохимических расчетов.

Экспериментальная часть

Синтез

Пентафторидоциркониевая кислота получена путем растворения при нагревании ZrO_2 (3.1 g, 0.0025 M) в 20 ml ~ 30%-й фтористоводородной кислоты с последующей кристаллизацией раствора в накрытом полиэтиленовом стакане при комнатной температуре. Выпавшие тонкие прозрачные кристаллы имеют форму шестиугольных пластинок. Рентгенограмма синтезированного соединения соответствует моноклинной модификации $HZrF_5 \cdot 3H_2O$ (карта № 01-079-0024(C)). Из-за склонности синтезированного соединения к разложению для каждого исследования отделялась от маточного раствора новая порция кристаллов и тщательно высушивалась между листами фильтровальной бумаги.

Ромбическая модификация кристаллогидрата $HZrF_5 \cdot 2H_2O$ (карта $N_{\mbox{\scriptsize 01-079-0023}}(C)$) получена методом термической дегидратации тригидрата при его нагревании на дериватографе до температуры 70°C после первого эндоэффекта согласно данным ДТА.

Термическое исследование образцов проведено на дериватографе Q-1000 МОМ в атмосфере воздуха при скорости нагревания 5 deg/min. Навеска образцов составляла 170 mg. В качестве эталона использован прокаленный Al₂O₃. Рентгенодифракционные данные для синтезированных образцов были получены на дифрактометре "STOE STADI P" (CuK_{a1}-излучение, $\lambda = 1.5406$ Å, Geмонохроматор). Для получения информации о составе продуктов использовали банк порошковых данных PDF-2.

Регистрация КР-спектров исследуемых соединений проведена на спектрометре RFS100/S (лазер Nd:YAG, $\lambda = 1064$ nm) с разрешением 4 cm⁻¹. ИК спектры получены в области 4000–400 cm⁻¹ при комнатной температуре с использованием прибора IRAffinity-1S с образцов, подготовленных в виде суспензии в вазелиновом масле на окне КРС-5.

Для отнесения полос в спектрах $HZrF_5 \cdot nH_2O$ (n = 2, 3) были выполнены квантово-химические расчеты, которые проведены с использованием пакета программ GAMESS [17] в рамках теории функционала локальной плотности в сочетании с гибридным обменно-корреляционным потенциалом B3LYP. Для атомов Zr(IV) использован базисный набор LANL2DZ с остовным потенциалом и наборы базисных функций Поппла 6311g(dp) для атомов F, O, H [18]. Выбор модельных кластеров проведен с учетом известных структурных

данных. Рассчитаны равновесная геометрия и частоты нормальных колебаний в гармоническом приближении. Результаты получены с использованием оборудования ЦКП "Дальневосточный вычислительный ресурс" ИАПУ ДВО РАН (https://cc.dvo.ru).

Результаты и их обсуждение

Данные РСА

Первоначально кристаллы HZrF₅ · 3H₂O были отнесены к моноклинной сингонии, пр. гр. C2 [15]. Позже было показано, что структура соединения лучше описывается в ромбической сингонии с пр. гр. Fdd2 [19]. Кристаллы HZrF₅ · 2H₂O ромбические и относятся к пр. гр. *Cmmm* [15]. Обе структуры содержат бесконечные двумерные идентичные слои состава [ZrF₅]^{*n*}_{*n*}, ионы H₃O⁺ и молекулы кристаллизационной воды. Однако атомы H в структурах указанных кристаллогидратов не были локализованы. А при отсутствии информации об их расположении ион гидрооксония не может быть четко отделен от молекул воды.

По строению анионных слоев структуры кислот HZrF₅ · nH₂O (n = 2, 3) близки структурам солей фторидоцирконатов (F/Zr = 5) с протонированными органическими катионами большого размера [2], а также с комплексными октаэдрическими катионами [Zn(H₂O)₆]²⁺ [20]. В анионных слоях можно выделить цепи из связанных ребрами Zr-полиэдров, которые между собой сопряжены также по ребрам. Расстояние между слоями анионов зависит от размера и заряда катиона, количества молекул воды и степени разветвленности системы H-связей. В структурах HZrF₅ · nH₂O (n = 2, 3) анионные слои объединены посредством H-связей, образуемых протонсодержащими ионами с атомами F, в трехмерное образование (рис. 1).

Исходя из предложенных структурных формул для три- и дигидратов в виде $H_3OZrF_5 \cdot 2H_2O$ и $H_3OZrF_5 \cdot H_2O$ соответственно [15,19], можно заключить, что в этом случае катионы H_3O^+ и молекулы H_2O являются отдельными не взаимодействующими или слабо взаимодействующими между собой элементами структуры, что не соответствует данным РСА. Наличие в катионных подрешетках обсуждаемых кислот сравнительно коротких расстояний О...О позволяет предположить существование в них более сложных катионов, являющихся центрами локализации протонов.

В межслоевом пространстве решетки $HZrF_5 \cdot 3H_2O$ можно выделить трехчленные ассоциаты, соединенные в цепи. Два коротких расстояния O...O (2.490 и 2.532 Å) соответствуют гидратным единицам ионов $H_7O_3^+$ (рис. 1, *a*, *b*). Внешними H-связями с расстояниями O...O (2.926 Å) соседние ионы $H_7O_3^+$ объединяются в цепи [19].

В катионной подрешетке соединения $HZrF_5 \cdot 2H_2O$ определены две структурно неэквивалентные группы

Рис. 1. Фрагменты структур $HZrF_5 \cdot 3H_2O(a, b)$, $HZrF_5 \cdot 2H_2O(c)$ и возможные H-связи.

О1...О1' и О2...О2' с соответствующими расстояниями 2.42(1) и 2.307–2.693(1) Å, которые, вероятно, являются центрами локализации добавочных протонов. В решетке каждый атом О2 объединяет два разных анионных слоя, в то время как каждый атом О1 связан только с одним (рис. 1, c). Учитывая короткое расстояние О1...О1', структурную эквивалентность атомов О1 и их симметричное окружение анионами, можно предположить, что протон кислоты занимает центросимметричное положение в группировке $H_5O_2^+$.

По данным РСА есть разупорядоченность позиций атомов О2 и, как следствие, разброс расстояний О2...О2' (2.307–2.693 Å) при высоком значении изотропного теплового параметра (B_{eq}) [15], вероятно, вследствие динамической или статической разупорядоченности протонгидратного иона.

Колебательная спектроскопия

Согласно опубликованным расчетным данным, изолированный ион $H_7O_3^+$ имеет симметрию C_S и представляет собой симметричный катион H_3O^+ , окруженный с двух сторон молекулами H_2O [21]. Теоретические расчеты изолированного иона $H_7O_3^+$ приводят к расстоянию $O \cdots O$ (2.48–2.49 Å). Учет внешнесферного окружения приводит к изменению симметрии иона $H_7O_3^+$ и небольшому изменению расстояния $O \cdots O$ [22].

Ранее методом ИК спектроскопии исследованы катионы гидратированных протонов в растворах кислот с различным мольным соотношением вода/кислота и выявлены условия образования катиона Н₇O₃⁺ [23]. Показано, что катионы $H(H_2O)_n^+$ при n = 3-5.2 существуют в виде катиона $H_7O_3^+$ как в растворах, так и в твердых фазах. Установлено, что в ИК спектрах в области колебаний катионов Н₇O₃⁺, помимо характерных колебаний молекул H₂O, обнаруживается непрерывное поглощение с широкими полосами в области ~ 2600-2800, ~ 2200 и $\sim 1700 - 1800 \, \mathrm{cm^{-1}}$, отвечающими колебаниям сопряженной группы [О...Н-О-Н...О]+ [23]. Полосы граничных молекул H₂O (валентные колебания vOH при $3500-3000 \text{ cm}^{-1}$ и деформационные δ ОНО при $1700-1500 \text{ cm}^{-1}$) перекрываются контуром непрерывного фонового поглощения фрагмента $[O \cdots H - O - H \cdots O]^+$,

Рис. 2. Рассчитанные ИК спектры кластеров $[2(H_7O_3^+)\cdot Zr_6F_{26}^{2-}](a), [H_5O_2^+ \cdot 2(ZrF_5^-)](b)$ в области колебаний катионов $H_7O_3^+$ и $H_5O_2^+$ и расстояния (Å) в равновесной геометрии.

Таблица	1.	Рассчитанные	колебательные	частоты	катионов	$H_7O_3^+$	В	кластере	$[2(H_7O_3^+)\cdot Zr_6F_{26}^{2-}]$	И	$H_5O_2^+$	В	кластере
$[H_5O_2^+ \cdot 2(Z$	ZrF_5^-)] и их отнесен	ше										

$[2(H_7O_3^+)\cdot Zr_6F_{26}^{2-}], C2, \nu, cm^{-1}$	Отнесение*	$[H_5O_2^+ \cdot 2(ZrF_5^-)], D2, \nu, cm^{-1}$	Отнесение *
3757, 3749	ν_{as} OH (H ₂ O, O1)	3563	$\nu_s OH (H_2 O$
3691, 3689	ν_{ns} OH (H ₂ O, O1)	3551	,
3590, 3589	ν_{as} OH (H ₂ O, O2)	3197	$v_{as}OH$ (H ₂ O
3542, 3541	$\nu_s OH (H_2 O, O2)$	3183	
3300, 3300	$\nu OH \cdots F(O3)$		
2776, 2770	$\nu OH \cdots O(O3,O1)$		
2201, 2197	$\nu OH \cdots O(O3,O2)$		
1789, 1789	δ //OH···O (O3,O1) или δ_{as} H ₃ O		
-		1781	$\delta / / O \cdots H \cdots O$
1721, 1721	δ //OH···O (O3,O2) или δ_{as} H ₃ O		
1669, 1666	$\delta //H_2O(O1)$ (sciss)	1748	$\delta //H_2O$
1610, 1609	$\delta //H_2O(O2)$ (sciss)	1727	
1374, 1373	sc $\delta \perp OH \cdots O$ (O3) или γH_3O	1304	$\delta \perp O \cdots H \cdots O$
1071, 1070	ac $\delta \perp OH \cdots O(O3)$	1010	$\nu O \cdots H \cdots O$
846, 845	$\rho H_3 O (O3)$	988, 794	$\omega H_2 O$
789, 788, 772-744	ω , tw H ₃ O	852, 635	twH ₂ O
697-616	ω , tw, ρ H ₂ O или $\delta \perp$ OH \cdots F	525, 520	$ ho H_2 O$

Примечание. *Отнесение полос: v_s , v_{as} — валентное симметричное и асимметричное, δ — деформационное, sciss – ножничное, γ — зонтичное, ω — веерное, ρ — маятниковое, tw — твист. $\delta_{//}$ — деформационное в плоскости, δ_{\perp} — из плоскости молекул H₂O. sc — симметричная, ас — асимметричная комбинации. ОН···F, ОН···O — водородные связи.

их положение в спектре зависит от окружения катиона $H_7O_3^+$.

Для более точного отнесения полос в ИК спектре HZrF₅ · 3H₂O дополнительно были проведены *ab initio*

расчеты частот колебаний катиона $H_7O_3^+$ (табл. 1), окруженного фторидоцирконатными анионами (рис. 2), проведены их отнесения. Предварительно получена равновесная геометрия кластера $[2(H_7O_3^+)\cdot Zr_6F_{26}^{2-}]$ (C_2), в

Рис. 3. ИК, КР-спектры HZrF₅ · 3H₂O (*a*), HZrF₅ · 2H₂O (*b*), ZrF₄·H₂O (*c*). * — вазелиновое масло.

котором граничные атомы Zr анионной подрешетки и атом O дополнительной молекулы H_2O были заморожены в кристаллографических позициях. Добавочная молекула H_2O является акцептором протонов и ее учет важен для оценки правильной геометрии катиона $H_7O_3^+$ в решетке $HZrF_5 \cdot 3H_2O$. Предполагаемые отнесения полос в экспериментальных колебательных спектрах соединения $HZrF_5 \cdot 3H_2O$ (табл. 2) проведены с учетом расчетных данных.

$HZrF_5 \cdot 3H_2O$

В экспериментальном ИК спектре HZrF₅ · 3H₂O в области валентных колебаний vOH (рис. 3, a) на фоне широкого континуума наблюдаются две полосы разной полуширины с максимумами ~ 3543 и $\sim 3418\,{
m cm}^{-1}$, что свидетельствует о разной прочности Н-связей, образованных молекулами H₂O катиона. Полоса с максимумом при $\sim 1705 \, {\rm cm}^{-1}$ и слабым плечом при $1654 \, {\rm cm}^{-1}$ представляет собой суперпозицию плоскостных деформационных колебаний ($\delta H_3 O$, $\delta H_2 O$). Широкая затянутая полоса со слаборазрешенными максимумами ~ 1271 и $\sim 1155\,\text{cm}^{-1}$ сложносоставная: она включает в основном симметричные и асимметричные комбинации внеплоскостных деформационных мод фрагмента [О··· Н- $O-H \cdots O^{+}$, обусловленных движением протонов [21]. В низкочастотной области этой полосы также есть вклад либраций молекул H₂O [24], которые можно рассматривать как внеплоскостные дефомационные колебания

 $\delta OH\cdots F.$ Ниже по частоте отчетливо заметна только лишь одна либрационная полоса при $\sim 654\,cm^{-1}.$

Разложение ИК спектра $HZrF_5 \cdot 3H_2O$ на составляющие позволяет выделить отдельные полосы в области непрерывного поглощения связанных протонов (рис. 4, *a*). Широкие компоненты с максимумами при 2815, 2155 и 1783 сm⁻¹ предположительно можно отнести в соответствии с результатами расчета (табл. 1) и согласно выводам [23] к характеристическим колебаниям сопряженной группы $[O \cdots H - O - H \cdots O]^+$. К ним же можно добавить полосы при 1314 и 1055 сm⁻¹, относящиеся к поперечным деформационным колебаниям протонов в группе $[O \cdots H - O - H \cdots O]^+$, которые зачастую в спектрах имеют низкую интенсивность. Таким образом, полученные данные свидетельствуют о наличии в структуре $HZrF_5 \cdot 3H_2O$ катионов $H_7O_3^+$.

$HZrF_5 \cdot 2H_2O$

Авторы работы [15] представили структурную формулу кислоты $HZrF_5 \cdot 2H_2O$ как $H_3O \cdot ZrF_5 \cdot H_2O$, однако ее ИК спектр отличается от спектра соединений, содержащих ион H_3O^+ или ассоциат $H_3O^+ \cdot H_2O$.

Сделанное предположение о существовании катиона $H_5O_2^+$ в структуре $HZrF_5 \cdot 2H_2O$ подтверждается данными ИК спектроскопии. Условиями образования иона $H_5O_2^+$ являются эквивалентность двух атомов O, короткое расстояние O···O (2.40–2.44 Å) и потенциальная яма с плоским дном для мостикового протона. Ранее в

HZ: ИК	$F_5 \cdot 3H_2O$ $KP UK^{**}$ V, cm^{-1}	Отнесение* H ₇ O ₃ ⁺ , Zr-слой	НZ ИК	$rF_5 \cdot 2H_2O$ KP UK^{**} ν , cm ⁻¹	Отнесение* Н ₅ O ₂ ⁺ , Zr-слой	HZrF. ИК v, ci	₄·H ₂ O KP m ⁻¹	Отнесение* Zr-каркас
3540	3565 3540	v_{as} OH····F (H ₂ O) (O1) v_{c} OH····F (H ₂ O) (O1)						
3418	3425	v_{as} OH···F (H ₂ O) (O2)	3337	3469	$\nu O - H \cdots F(H_2 O)$	3329		v_{as} OH···F
	3409	$\nu_s OH \cdots F (H_2 O) (O2)$	3219	3151	· · · ·	3224	3224	$\nu_s OH \cdots F$
	3220	ν_{as} OH···F (H ₂ O) (O3)						
	2815	v_{as} OH···O (O3,O1)						
	2155	v_{as} OH···O (O3,O2)						
1705	1783	$\delta//[\mathrm{O}\cdots\mathrm{HOH}\cdots]^+$	1704	1793	$\delta / / [\mathrm{O} \cdots \mathrm{H}^{-} \cdots \mathrm{O}]$	1678	1678	
1654	1690	$\delta//\mathrm{H_2O}$		1698	$\delta//\mathrm{H_2O}$	1633		$\delta H_2 O$
1271	1314	sc $\delta \perp [O \cdots HOH \cdots O]^+$		1308	$\delta \perp [\mathbf{O} \cdots \mathbf{H}^+ \cdots \mathbf{O}]$	1369		$\delta \perp OH \cdots F$
1155	1055	$ac\delta \perp [O \cdots HOH \cdots O]^+$	1100	1108	$v_{as}[O \cdots H^+ \cdots O]$			
				970	$\omega H_2 O$	-		707
(54		цо	(07		цо	766		vZr–O–Zr
654 524	525	$v_{\rm libr} H_2 O$	627	520	$v_{\rm libr}H_2O$	628	400	$v_{\rm libr} H_2 O$
505	535	$V_{s} \Sigma \Gamma F_{k}$	402	530	$v_s Z \Gamma F_k$	190	498	$v_s Z \Gamma F_k$
303	176	$V_{\rm as} \Sigma \Gamma_k$	492	470	$V_{as} \mathbf{L} \mathbf{\Gamma}_k$	460		$V_{\rm as} \mathbf{Z} \mathbf{\Gamma}_k$
	470			470		133	133	v 72-F -7r
305	387	$v_{-}Zr_{-}F_{-}Zr_{-}$	397	389	v_{-} $7r_{-}F_{-}$ $7r_{-}$	455	395	
575	361	$v_{as}Zr - F_{m} - Zr$	371	371	$v_{as}Zr - F_{m} - Zr$		575	
	501			5/1			324	δZr–O–Zr
	260	δZrF"		280	δZrF_m		261	δZrF_m
_		m		263	m			- m
	246							
	218	δZrF_m		232	δZrF_k		224	δZrF_k
							207	
	172	Решеточные		180	Решеточные		180	Решеточные
							158	
	121			125			135	
	107			105			104	

Таблица 2. Положение полос в спектрах $HZrF_5 \cdot 3H_2O$, $HZrF_5 \cdot 2H_2O$, $ZrF_4 \cdot H_2O$ и их отнесение

* Отнесение колебаний: v_s , v_{as} — валентное симметричное и асимметричное, δ_{\parallel} — изгиб в плоскости, δ_{\perp} — из плоскости, ω — веерные, v_{libr} — либрационные, sc — симметричная, as — асимметричная комбинация. F_k , F_M — концевой и мостиковый атомы фтора. ОН···F, OH···O — водородные связи. ** Полосы, полученные разложением экспериментального спектра.

спектрах соединений с катионом $H_5O_2^+$ был обнаружен набор из трех интенсивных полос при 3500–3200, 1700–1672, 1150–1045 сm⁻¹, сопровождаемых слабыми полосами в области 1400, 1300 и 900 сm⁻¹ [23,25]. Согласно выводам [25], полосы, связанные с центральным мостиком $O \cdots H^+ \cdots O$ в ионе $H_5O_2^+$, не особенно чувствительны к анионному окружению. Колебаниям двух концевых молекул H_2O в ИК спектре иона $H_5O_2^+$ отвечают валентные моды растяжения пОН (ns, nas выше 3000 сm⁻¹), два деформационных колебания dOHO (плоскостное и внеплоскостное) и также моды связанного протона в группе $O \cdots H^+ \cdots O$ вносят вклад в поглощение ниже 1700 сm⁻¹.

Предполагаемое отнесение полос катиона $H_5O_2^+$ в экспериментальных ИК, КР-спектрах $HZrF_5 \cdot 2H_2O$ (табл. 2) выполнено исходя из результатов расчета кластера $[H_5O_2^+ \cdot 2(ZrF_5^-)]$ (D_2) (табл. 1), в котором граничные атомы Zr были заморожены. Предварительно получена его равновесная геометрия (рис. 2, *b*).

В ИК спектре кислоты $HZrF_5 \cdot 2H_2O$ (рис. 3, *b*) видна одна широкая, симметричная полоса со слаборазрешенными максимумами при 3337, 3219 cm⁻¹ (валентное колебание nOH концевых молекул H₂O). Полуширина полосы при $\sim 1704\,\mathrm{cm}^{-1}$ уменьшается по сравнению с аналогичной полосой HZrF5 · 3H2O, она становится более симметричной. Это подтверждает меньший разброс длин связей OH···F в структуре и их общее упрочнение (2.556, 2.666 Å). Интенсивное поглощение, характерное для спектра H₅O₂⁺, присутствует в диапазоне 1200-800 ст⁻¹ [25,26]. Обращает на себя внимание изменение контура и увеличенная интегральная интенсивность полос ниже $2000 \,\mathrm{cm}^{-1}$ (рис. 3, b), что характерно для спектров соединений с катионом H₅O₂⁺ [23,25]. В целом спектр HZrF5 · 2H2O в области колебаний катиона $H_5O_2^+$ аналогичен спектру соединения $H_5O_2^+ClO_4^-$ [27].

Принимая во внимание разупорядоченность атомов O2 и O1 в структуре $HZrF_5 \cdot 2H_2O$ [15], в настоящей работе рассматривалось также состояние катионов $H_5O_2^+$

Рис. 4. Разложение ИК спектров $HZrF_5 \cdot 3H_2O(a)$ и $HZrF_5 \cdot 2H_2O(b)$ на составляющие. * — вазелиновое масло.

как альтернативное в виде асимметричного комплекса $H_3O^+ \cdot H_2O$. Например, асимметричному ассоциату $H_3O^+ \cdot H_2O$ с расстоянием $O \cdots O$ около 2.58 Å в ИК спектре гидратированного β -Al₂O₃ [28] были отнесены полосы при 3380, 2900 и 2540 cm⁻¹. В этом случае полоса 2540 cm⁻¹ соответствует самой короткой Hсвязи, объединяющей группу O-H иона H_3O^+ с атомом O молекулы H_2O . В экспериментальном ИК спектре HZrF₅ · 2H₂O нет дополнительных полос, характерных для $H_3O^+ \cdot H_2O$. Кроме того, отсутствует фоновое поглощение в области 3000–2000 cm⁻¹, которое возникает от динамически искаженных конфигураций гидроксония [29].

Разложение экспериментального ИК спектра HZrF₅ · 2H₂O в диапазоне $4000-900 \text{ cm}^{-1}$ (рис. 4, b) показывает, что полоса при 1704 ст⁻¹ имеет две компоненты с максимумами при 1793, 1698 ст⁻¹, конденсированных характерные для соединений с катионом $H_5O_2^+$ [25,27]. Иx можно отнести плоскостным деформационным колебаниям к мостикового протона и молекул Н2О. Под полосой с максимумом 1110 cm⁻¹ скрываются как внеплоскостное деформационное колебание протона в фрагменте $O \cdots H^+ \cdots O$ (~ 1308 cm⁻¹), так и соответствующее валентное колебание ($\sim 1108 \, \text{cm}^1$). Полоса νOH концевых молекул Н2О состоит, по крайней мере, из двух составляющих большой полуширины с максимумами при 3469 и 3151 cm⁻¹, что является подтверждением динамики в решетке HZrF5 · 2H2O концевых молекул H₂O диакваводородного иона H₅O₂⁺. Выделить колебания v_s OH, v_{as} OH затруднительно, в структуре присутствуют поскольку два типа атомов 01 и О2. Образованные ИМИ катионы имеют различающиеся симметрию И окружение. Дополнительным свидетельством беспорядка служит рассчитанное авторами [15] значение изотропного параметра (B_{eq}) теплового для атомов 01. обусловленное, вероятно, большим углом F3-O1-F3 (140.67°) , при котором каждая молекула H₂O не может образовать две эквивалентные связи ОН · · · F.

Возникающие вопросы могут быть решены с привлечением новых данных о локализации атомов водорода в структуре, полученных методами нейтронографии и ЯМР-спектроскопии.

В области частот ниже 600 сm⁻¹ проявляются характеристические колебания комплексного аниона [20]. В ИК спектре HZrF₅ · 3H₂O ниже 600 сm⁻¹ присутствует три полосы ~ 534, 505 (сл), 395 сm⁻¹ (рис. 3, *a*). Большая доля мостиковых атомов фтора (F_M) в структуре и влияние на них молекул воды (присутствие контактов O···F_M) приводит к росту интенсивности полосы валентного колебания v_{as} ZrF_M реберных связей Zr-2F-Zr (~ 395 сm⁻¹). Полоса v_{as} ZrF_K (~ 505 cm⁻¹) перекрывается с v_s ZrF_K, v_{as} ZrF_M (~ 534, 395 cm⁻¹). Проявление в ИК спектре v_s ZrF_K (~ 534 сm⁻¹) указывает на снижение симметрии аниона вследствие его взаимодействия с несимметричной протонгидратной катионной подрешеткой.

В ИК спектре HZrF₅ · 2H₂O (рис. 3, *b*) проявляются две полосы асимметричных растяжений связей Zr-F при 492 и 397 сm⁻¹. Однотипность H-связей O-H····F_к, упрощенное строение гидратной катионной подрешетки и повышение симметрии аниона (меньший разброс длин связей в Zr-многогранниках) в структуре приводят к упрощению спектра.

Аналогичное слоистое строение фторидоцирконатных слоев $[ZrF_5]_n^{n-}$ кислот $HZrF_5 \cdot 3H_2O$ и $HZrF_5 \cdot 2H_2O$ подтверждает схожесть их KP-спектров (рис. 3, *a*, *b*). Сдвиг полос валентных колебаний v_sZrF_{κ} (535 \rightarrow 530 cm⁻¹) и v_sZrF_{M} (387, 361 \rightarrow 389, 371 cm⁻¹) по направлению к друг другу в спектре $HZrF_5 \cdot 2H_2O$ по сравнению с $HZrF_5 \cdot 3H_2O$ указывает на ослабление концевых связей и соответственно упрочение мостиковых связей в анионном слое двухводного соединения. Общие изменения в KP-спектре $HZrF_5 \cdot 2H_2O$ согласуются со структурными перестройками: уменьшением межплоскостного расстояния в решетке и действием упрочененных связей $O-H\cdots F$.

Рис. 5. Термоаналитические кривые соединения $HZrF_5 \cdot 3H_2O$.

Термический анализ

Перечисленные отличия в строении гидратов кислоты $HZrF_5 \cdot nH_2O$ (n = 3, 2) находят отражение в характере их термического поведения.

Термическое разложение соединения HZrF5 · 3H2O описывается рядом последовательных эндотермических эффектов при температурах 60, 90, 120 и 300°С (рис. 5). Сопоставляя положение максимума при 60°С с кривой потери массы (убыль массы в интервале 40-60°С составляет 1.8%, при этом отсутствует ступенька на кривой TG), можно сказать, что первый эндоэффект соответствует инконгруэнтному плавлению тригидрата. Последующий эндоэффект при 90°С связан с испарением выделившейся влаги в процессе инконгруэнтного плавления. Убыль массы при 100°С составляет 7.1%, что примерно соответствует удалению одной молекулы воды из соединения ($\Delta m_{\text{pacy}} = 7.47\%$). Исходя из структурных данных HZrF5 · 3H2O, можно полагать, что при нагревании первыми удаляются молекулы воды О(2), и разложение можно описать схемой

$$\mathrm{HZrF}_5 \cdot 3\mathrm{H}_2\mathrm{O}_{(\mathrm{TB})} \to \mathrm{HZrF}_5 \cdot 2\mathrm{H}_2\mathrm{O}_{(\mathrm{TB})} +$$
жидкая фаза $+ x\mathrm{H}_2\mathrm{O}_{\mathrm{IAP}} \to \mathrm{HZrF}_5 \cdot 2\mathrm{H}_2\mathrm{O}_{(\mathrm{TB})} + (1-x)\mathrm{H}_2\mathrm{O}_{\mathrm{IAP}}.$

При нагревании выше 100°С на кривой дифференциально-термического анализа (DTA) регистрируется интенсивный эндоэффект с суммарной убылью массы при 180°С, равной 23.5% (рис. 5). Продуктом разложения по данным рентгенофазового анализа РФА является $ZrF_4 \cdot H_2O$ ($\Delta m_{pac4} = 23.24\%$). Из этого следует, что процесс дегидратации HZrF₅ · 2H₂O, обусловленный распадом диакваводородных ионов $H_5O_2^+$ на H_3O^+ и молекулы H_2O , перекрывается с процессом термической диссоциации кислоты и описывается суммарным уравнением

$$HZrF_5 \cdot 2H_2O \rightarrow ZrF_4 \cdot H_2O + HF \uparrow +H_2O \uparrow$$

Таким образом, уменьшение степени гидратации катиона пентафторидоциркониевой кислоты ($n = 1 \text{ H}_3 \text{OZrF}_5$) приводит при повышенной температуре к поляризации катиона H_3O^+ и, как следствие, к перескоку протона к аниону и отщеплению HF. В итоге происходит переход от фторидного в H_3OZrF_5 (F/Zr = 5) к аквафторидному окружению атомов Zr в ZrF₄·H₂O (F +H₂O/Zr = 5) и перестройка слоистой анионной подрешетки в каркасную с сохранением координационного числа (KЧ) Zr равным 8 [30]. Соединение ZrF₄·H₂O можно рассматривать как продукт кислотного гидролиза аниона ZrF₅⁻.

Процесс удаления оставшейся молекулы воды из ZrF₄·H₂O протекает в широком температурном интервале 210–350°C и сопровождается частичным пирогидролизом. Суммарная убыль массы при 350°C составляет 31.8% (при образовании ZrF₄ $\Delta m_{\rm pacq} = 30.71\%$). Продуктами разложения по данным РФА является преимущественно смесь β -ZrF₄, Zr₂OF₆.

Соединение β -ZrF₄, как и ZrF₄·H₂O, имеет каркасную структуру (KЧ Zr 8), а при переходе ZrF₄·H₂O \rightarrow ZrF₄ все восемь атомов F Zr-полиэдра становятся вершинными мостиковыми [31]. Хотя структура Zr₂OF₆ неизвестна, можно предположить, что процесс гидролиза по схеме 2ZrF₄·H₂O \rightarrow Zr₂OF₆+H₂O+2HF↑ сопровождается перестройкой структуры с образованием в решетке

Рис. 6. Фрагмент каркаса структуры $ZrF_4 \cdot H_2O$.

1363

оксофторида мостиковых связей типа -O-Zr-O-Zr-O- и -F-Zr-F-Zr-F-.

Степень пирогидролиза (влагой воздуха) образовавшихся β -ZrF₄ и Zr₂OF₆ заметно возрастает при нагревании выше 350°С. Промежуточным продуктом разложения при 500°С является оксофторид Zr₇O₉F₁₀, а конечным при 800°С — моноклинный ZrO₂.

Термическое разложение HZrF₅ · 2H₂O начинается при 80°C. Термограмма двухводной кислоты близка дериватограмме HZrF₅ · 3H₂O (рис. 5), за исключением двух первых эндоэффектов при 60 и 90°C. Убыль массы при частичной дегидратации с образованием ZrF₄·H₂O составляет 17.3% ($\Delta m_{\rm pacu} = 17.04\%$), а при полном обезвоживании, осложненном частичным гидролизом, 26.2% при 350°C (при образовании ZrF₄ $\Delta m_{\rm pacu} = 25.11\%$).

$ZrF_4 \cdot H_2O$

Практически во всех структурах фторидоцирконатов со смешанными лигандами (O_w и F) молекулы H₂O являются концевыми, за исключением структуры ZrF₄·H₂O (пр. гр. *I-42d*) [30]. В ней атом О является мостиковым при объединении Zr-полиэдров.

структуры $HZrF_5 \cdot 2H_2O$ Сравнивая [15] И ZrF₄·H₂O [30], можно заметить, что фрагменты O1···O1′ и O2···O2′ в решетке кислоты расположены между анионными слоями поперек и вдоль анионных предопределяет слоев, что перпендикулярные направления мостиковых связей -О_w-Zr-O_w- в каркасе ZrF₄·H₂O (рис. 6). Трансформация слоя в каркас при $HZrF_5\cdot 2H_2O{\rightarrow}ZrF_4{\cdot}H_2O$ переходе сопровождается организацией мостиковых связей через молекулу Н₂О, а реберные мостиковые связи раскрываются до вершинных, при этом значение (F+H₂O)_м/F_к остается равным F_M/F_κ в структуре HZrF₅ · 2H₂O.

ИК спектр ZrF₄·H₂O характерен для жесткой кристаллической решетки: полосы с четко выраженными максимумами имеют небольшую полуширину (рис. 3). На полосе валентных колебаний vOH зарегистрированы два максимума 3329 и 3224 сm⁻¹ (v_{as} , v_s). Проявление полосы 3224 ст⁻¹ в КР-спектре позволяет однозначно ее идентифицировать. Таким образом, в структуре ZrF₄·H₂O при осуществлении мостиковой функции молекула H₂O начинает проявлять свои протолитические свойства под действием двух высокозарядных ионов Zr⁴⁺. Это приводит к образованию прочных Н-связей О-H···F (2.479–2.595 Å). В области колебаний $\delta H_2 O$ также проявляются две полосы ~ 1678 , $1633 \, {\rm cm}^{-1}$, которые можно отнести к симметричной и асимметричной комбинациям колебаний δH_2O в решетке ZrF₄·H₂O, что подтверждается проявлением пика в КР-спектре при 1678 ст⁻¹ (табл. 2). Либрационная мода молекул воды проявляется при $\sim 628 \, {\rm cm}^{-1}$.

В ИК спектре в области внутренних колебаний аниона происходят заметные изменения. К $\nu_{as}ZrF_{\kappa}$ полиэдра

 $[ZrF_6({\rm H_2O})_2]$ следует отнести полосу $\sim 480~{\rm cm}^{-1}.$ Заметная полоса средней интенсивности 766 cm $^{-1}$, вероятно, соответствует валентным колебаниям связей Zr-H₂O-Zr, характеризующимся коротким расстоянием Zr-O_w (2.132 Å).

В КР-спектре ZrF₄·H₂O наиболее интенсивная полоса при 498 сm⁻¹ соответствует колебаниям v_s ZrF_к удлиненных связей Zr-F (2.100 Å), участвующих в сильных H-связях (2.576 Å). Максимумы при 433 и 395 сm⁻¹ относятся соответственно к колебаниям v_s ZrF_M сильных (2.058 Å) и более слабых (2.170 Å) связей Zr-F-Zr. Если полосу 324 сm⁻¹ можно отнести к деформационным колебаниям связей Zr-H₂O-Zr, то полосы 261, 224, 207 сm⁻¹ — к деформационным колебаниям δ ZrF_M и δ ZrF_K. Отметим, что положение полос, относящихся к валентным колебаниям мостиковых связей Zr-F-Zr, близко к таковым в спектре β -ZrF₄ [32].

Выводы

Термическое разложение $HZrF_5 \cdot nH_2O$ (n = 3, 2) на воздухе в интервале $20-800^{\circ}C$ описывается последовательностью превращений (исключая первую стадию для n = 2): $HZrF_5 \cdot 3H_2O \rightarrow HZrF_5 \cdot 2H_2O \rightarrow ZrF_4 \cdot H_2O \rightarrow ZrF_4 + Zr_2OF_6 \rightarrow ZrO_2$.

Согласно структурным и ИК спектроскопическим данным, в кристаллической решетке $HZrF_5 \cdot 3H_2O$ две молекулы воды связаны с ионом гидроксония в несимметричный комплексный катион $H_7O_3^+$. В структуре $HZrF_5 \cdot 2H_2O$ обе молекулы воды имеют близкую природу и образуют катионы $H_5O_2^+$. В решетке $HZrF_5 \cdot 3H_2O$ протонгидратные катионы $H_7O_3^+$ связаны в цепи, в $HZrF_5 \cdot 2H_2O$ ионы $H_5O_2^+$ образуют обособленные групны, в $ZrF_4 \cdot H_2O$ молекулы H_2O входят в координацию атома Zr и изолированы друг от друга.

Показано, что в структурах соединений HZrF₅ · $3H_2O$ и HZrF₅ · $2H_2O$ гидратированный протон непосредственно не связан с анионом, а взаимодействует с анионом через молекулу воды по механизму H-связи (мостиковый протон), повышая симметрию и устойчивость аниона. И наоборот, присоединение протона к аниону посредством H-связи в соединении H_3OZrF_5 (или для сравнения в $(H_3O)_2ZrF_6)$ существенно снижает его устойчивость в процессах термической диссоциации, приводящей к изменению отношения F/Zr.

В ZrF₄·H₂O молекулы воды меняют свою структурную функцию. Они входят в координационную сферу атомов Zr (KЧ Zr 8) и становятся мостиковыми в каркасе. Молекула воды под действием двух высокозарядных ионов Zr⁴⁺ проявляет свои кислотные свойства, образуя прочные водородные связи O-H····F.

Финансирование работы

Работа была выполнена в рамках государственного задания No 0265-2021-0001 Института химии ДВО РАН

при частичной финансовой поддержке РФФИ (грант № 20-03-00279).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M.М. Годнева., Д.Л. Мотов. Химия фтористых соединений циркония и гафния (Наука, Л., 1971). https://www.studmed.ru/godneva-mm-motov-dl-himiyaftoristyh-soedineniy-cirkoniya-i-gafniya_334beafc550.html
- [2] Р.Л. Давидович, В.И. Сергиенко. Структурная химия комплексных фторидов титана (IV), циркония (IV) и гафния (IV) (Дальнаука, Владивосток, 2016).
- [3] Р.Л. Давидович, А.В. Герасименко, Б.В. Буквецкий, В.Б. Логвинова, Ю.А. Буслаев. Координац. химия., 13 (5), 706 (1987).
- [4] В.О. Гельмбольт, Э.В. Ганин, Л.Х. Миначева, В.С. Сергиенко. Журн. неорган. химии, 50 (2), 181 (2005).
- [5] В.Г. Ягодин, В.Э. Мистрюков, В.И. Пахомов, Ю.Н. Михайлов, Е.Г. Ильин, Ю.А. Буслаев. Журн. неорган. химии., 32 (10), 2589 (1987).
- [6] S. Cohen, H. Selig, R. Gut. J. Fluor. Chem., 20 (3), 349 (1982). DOI: 10.1016/S0022-1139(00)82227-7
- Z. Mazej, E. Goreshnik. Inorg. Chem., 48 (14), 6918 (2009).
 DOI: 10.1021/ic9009338
- [8] K.O. Christe, C.J. Schack, R.D. Wilson. Inorg. Chem., 14 (9), 2224 (1975). DOI: 10.1021/ic50151a039
- [9] J.P. Masson, J.P. Desmoulin, P. Charpin, R. Bougon. Inorg. Chem., 15 (10), 2529 (1976). DOI: 10.1021/ic50164a042
- [10] D. Mootz, E.J. Oellers. Z. Anorg. Allg. Chem., 559 (1), 27 (1988). DOI: 10.1002/zaac.19885590103
- [11] D. Mootz, E.J. Oellers. Z. Anorg. Allg. Chem., 564 (1), 17 (1988). DOI: 10.1002/zaac.19885640103
- [12] Н.С. Николаев, Ю.А. Буслаев, М.П. Густякова. Журн. неорган. химии, 7, 1685 (1962).
- [13] Р.Л. Давидович. Стереохимия и закономерность образования комплексных фторидов переходных металлов IV-V групп и урана. Автореф. докт. дис. (Институт химии ДВО РАН, Владивосток, 1992). URL: https://search.rsl.ru/ru/record/01002245108
- [14] K. Nakamoto. Infrared and Raman spectra of inorganic and coordination compounds. 5th Edition, Part A: Theory and Applications in Inorganic Chemistry (New York by Wiley-Interscience, 1997).
- P. Charpin, M. Lance, M. Nierlich, J. Vigner, J. Lambard. Acta Crystallogr., C44 (10), 1698 (1988). DOI: 1107/S0108270188005797
- B. Bonnet, J. Roziere, R. Fourcade, G. Mascherpa. Can. J. Chem., 52 (11), 2077 (1974). DOI: 10.1139/v74-301
- [17] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery. J. Comput. Chem., 14 (11), 1347 (1993). DOI: 10.1002/jcc.540141112
- B.P. Pritchard, D. Altarawy, B. Didier, T.D. Gibson, T.L. Windus. J. Chem. Inf. Model., 59 (11), 4814 (2019). DOI: 10.1021/acs.jcim.9b00725

- [19] R.E. Marsh, A.A. Noyes. Acta Cryst., C45, 980 (1989).
 DOI: 10.1107/S0108270188014672
- [20] E.I. Voit, N.A. Didenko, A.V. Gerasimenko, A.B. Slobodyuk. J. Fluor. Chem., 232, 109475 (2020). DOI: 10.1016/j.jfluchem.2020.109475
- [21] Q. Yu, J.M. Bowman. J. Chem. Phys., 146 (12), 121102 (2017). DOI: 10.1063/1.4979601
- [22] O. Vendrell, F. Gatti, H.D. Meyer. J. Chem. Phys., 27 (18), 184303 (2007). DOI: 10.1063/1.2787596
- [23] E.S. Stoyanov, I.V. Stoyanova, F.S. Tham, C.A. Reed.
 Am. Chem. Soc., 130 (36), 12128 (2008).
 DOI: 10.1021/ja803535s
- [24] V.P. Tayal, B.K. Srivastava., D.P. Khandelwal,
 H.D. Bist. Appl. Spectrosc. Rev., 16 (1), 43 (1980).
 DOI: 10.1080/05704928008081709
- [25] E.S. Stoyanov, C.A. Reed. J. Phys. Chem. (A)., 110 (48), 12992 (2006). DOI: 10.1021/jp062879w
- [26] T.D. Fridgen, T.B. McMahon, L. MacAleese, J. Lemaire, Ph. Maitre. J. Phys. Chem. (A), 108 (42), 9008 (2004). DOI: 10.1021/JP040486W
- [27] М.В. Вернер, И. Зауэр. Физ. хим. Хим. физ., 7 (2), 258 (2005).
 [М.V. Vener, J. Sauer. Phys. Chem. Chem. Phys., 7, 258 (2005).
 DOI: 10.1039/B412795A].
- [28] Ph. Colomban, G. Lucazeau, R. Mercier, A. Novak. J. Chem. Phys. 67 (11), 5244 (1977). DOI: 10.1063/1.434701
- [29] J. Xu, Y. Zhang, G.A. Voth. J. Phys. Chem. Lett., 2 (2), 81 (2011). DOI: 10.1021/jz101536b
- [30] B. Kojic-Prodic., F. Gabela, Z. Ruzic-Toros, M. Sljukic. Acta Crystallogr., B37 (11), 1963 (1981 Burbank). DOI: 10.1107/S0567740881007772
- [31] R.D. Burbank, F.N. Bensey. U.S. Atomic Energy Comm., K-1280, 11 (1956).
- [32] M. Goldstein, R.J. Hughes, W.D. Unsworth. Spectrochimica Acta (A), **31** (5,6), 621 (1975). DOI: 10.1016/0584-8539(75)80055-9

1364