03

О возможности использования упрощенных моделей для определения места утечки в газопроводе

© Г.И. Курбатова, В.А. Клемешев, Н.В. Егоров

Санкт-Петербургский государственный университет, 199034 Санкт-Петербург, Россия e-mail: v.klemeshev@spbu.ru

Поступило в Редакцию 25 апреля 2022 г. В окончательной редакции 25 мая 2022 г. Принято к публикации 31 мая 2022 г.

> Для транспортировки газа по трубам в штатном и аварийном режимах представлено сравнение расчетов по математическим моделям разной степени общности. Исследованы математическая модель неизотермического установившегося течения смеси газов и ее упрощенные варианты. Для упрощенных вариантов получены простые аналитические зависимости для расчета характеристик потока и расчета местоположения стационарной утечки газа. Приведены примеры расчетов распределений давления, температуры и координаты утечки в газопроводах средних давлений по общей и по упрощенным моделям. Примеры охватывают область изменения параметров, представляющую практический интерес. Определены условия допустимости использования предложенных упрощенных моделей для расчета координаты стационарной утечки газа средней интенсивности и разных местоположений.

> Ключевые слова: газопроводы, адекватность модели, упрощения, расчет места аварийной утечки, коэффициент сжимаемости.

DOI: 10.21883/JTF.2022.10.53243.119-22

Введение

Расчетам места утечки в газопроводах и скважинах на основе математической модели течения газа посвящены многочисленные публикации, начиная с основополагающей работы Васильева, Бондарева, Воеводина и Каниболотского [1], вплоть до настоящего времени, например, работы [2-5]. Успех решения этой задачи невозможен без создания адекватной математической модели течения газа в исследуемых условиях. Несмотря на наличие известных программных комплексов (OLGA, PIPESIM, ряда отечественных ПК, например, SINF), преждевременно считать завершенным создание адекватной математической модели и программы расчета транспортировки газа в общем случае. Причина этого в следующем. Адекватность математической модели обеспечивается обоснованным выбором в исследуемой задаче таких трудноопределимых величин как коэффициент гидравлического сопротивления λ и суммарный коэффициент теплопередачи *β*. Универсальным методом расчета λ и β в реальных условиях является метод идентификации этих параметров по экспериментальным данным [1]. В перечисленные выше программные комплексы метод идентификации параметров λ и β не входит. Для адекватности математической модели транспортировки газа также большое значение имеет выбор уравнения состояния газовой смеси в исследуемой области изменений давления р и температуры Т. Известно немало универсальных уравнений состояния, например, уравнение Американской Газовой Ассоциации, рекомендованное в [6]. Однако громоздкость этой универсальной зависимости коэффициента сжимаемости Z(p, T) ставит под сомнение целесообразность ее использования в задачах, в которых диапазон изменений p и T заведомо ограничен.

Для магистральных и морских газопроводов в нашей книге [7] приведено решение задачи идентификации параметров λ и β , основанное на итерационном методе квазилинеаризации Беллмана [8]. Кроме того, в книге [7] исследовано влияние погрешностей в задании этих параметров на характеристики течения. В работе [9] предложена методика построения зависимости Z(p, T)по экспериментальным данным и продемонстрирована ее эффективность в области сверхвысоких давлений. Также в работе [9] представлено решение задачи расчета координаты места стационарной утечки газа методом итерации с использованием квазилинеаризации для сверхвысоких давлений (в рамках предположения об установившемся характере течения как до утечки, так и спустя некоторое время после ее возникновения). Решение аналогичной задачи для средних давлений дано в работе [5]. В настоящей работе рассмотрена допустимость использования сравнительно простых моделей для расчета координаты места стационарной утечки в газопроводах, давление в которых не превышает 100 atm. Как известно [1], при таких давлениях для расчета коэффициента сжимаемости хорошо зарекомендовало себя уравнение Бертло.

1. Математическая модель неизотермического установившегося течения смеси газов по трубопроводу постоянного круглого сечения [1,7]

$$\rho uS = Q^0, \tag{1}$$

$$\frac{d}{dz}(p+\rho u^2) = -\frac{\lambda \rho u|u|}{4R} + \rho g \cos \alpha(z), \qquad (2)$$

$$\rho uc_p \frac{dT}{dz} = \rho uT \left(\frac{\partial (1/\rho)}{\partial T}\right)_p \frac{dp}{dz} + \frac{\lambda \rho u^2 |u|}{4R} - 2\beta \frac{T - T^*}{R},$$
(3)

$$pV = R_g T Z(p, T),$$

$$Z(p, T) = 1 + 0.07 \frac{p}{p_c} \frac{T_c}{T} \left(1 - 6 \frac{T_c^2}{T^2} \right), \qquad (4)$$
$$V = 1/\rho.$$

В системе уравнений (1)-(4) V — удельный объем газа; R_g , p_c , T_c — газовая постоянная, критические давление и температура смеси газов заданного состава; z, L — координата вдоль оси газопровода и его длина; ρ , p, T, u — плотность, давление, температура и скорость газа соответственно; R, S — внутренний радиус и площадь поперечного сечения газопровода; g — ускорение свободного падения; $\alpha(z)$ — угол между направлением силы тяжести и осью газопровода в z-м сечении; λ — коэффициент гидравлического сопротивления; β — суммарный коэффициент теплопередачи; c_p — удельная теплоемкость газовой смеси при постоянном давлении; Q^0 — массовый расход газа; T^* — температура окружающей среды.

В общем случае величины λ , β , c_p и T^* могут быть функциями координаты z, в частности, они могут зависеть от давления и температуры газа, от параметров конструкции газопровода и от внешних условий. Адекватность стационарной математической модели (1)-(4)как отмечалось, зависит от выбора величин λ , β , c_p и от выбора вида зависимости Z(p, T) коэффициента сжимаемости в исследуемом диапазоне изменений давления, температуры и расхода. Система уравнений (1)-(4)дополняется граничным условием

$$z = 0: \quad p = P(0), \quad T = T(0),$$
 (5)

где P(0), T(0) — размерные давление и температура на входе в газопровод.

Решение системы уравнений (1)-(4) при граничном условии (5) существует и единственно в широком диапазоне изменений Q^0 , P(0), T(0), R и L. Численное решение может быть получено с большой точностью, например, методом Рунге–Кутты. Решение задачи идентификации параметров λ и β по экспериментальным данным о давлении и расходе на выходе из участка газопровода, в пределах которого эти величины можно считать постоянными, приведено в работе [7].

2. Расчет величины $c_p(p, T)$

Удельная теплоемкость c_p газовой смеси при постоянном давлении может быть рассчитана по известной формуле [10]:

$$c_{p}(p,T) = c_{p}^{0}(T) - T \int_{p^{0}}^{p} \left(\partial^{2} V / \partial T^{2} \right)_{p} dp.$$
 (6)

Здесь $c_p^0(T)$ — зависимость от температуры удельной теплоемкости газовой смеси при постоянном давлении p^0 , при котором смесь ведет себя как идеальный газ. В диапазоне изменения температуры от 2 до 40°С зависимость $c_p^0(T)$ можно считать линейной. Вторая производная от V по T и интеграл в равенстве (6) для уравнения Бертло (4) находятся аналитически, в результате получается следующее выражение для зависимости удельной изобарной теплоемкости c_p от давления p и температуры T:

$$c_p(p,T) = k_1 + k_2 \frac{T}{T_c} + k_3 \frac{T_c^3}{T^3} \left(\frac{p}{p_c} - \frac{p^0}{p_c}\right).$$
(7)

Значения размерных констант k_1 , k_2 , k_3 , зависящих от состава газовой смеси, приведены далее (10). В общем случае система уравнений (1)–(4) должна решаться с учетом зависимости $c_p(p, T)$ (7). При решении задач, в которых диапазон изменений давления и температуры не очень большой, можно ограничиться среднеинтегральной величиной $\langle c_p \rangle$, определенной равенством:

$$\langle c_p \rangle = \frac{1}{(P(0) - P_L)(T(0) - T_L)} \int_{T_L}^{T(0)P(0)} \int_{P_L}^{O(0)} c_p(p, T) dp dT.$$
(8)

В терминах безразмерных величин $T_0 = T(0)/T_c$, $T_1 = T_L/T_c$, $p_0 = P(0)/p_c$, $p_L = P_L/p_c$, $p_c^0 = p^0/p_c$ среднее значение $\langle c_p \rangle$, рассчитанное по формуле (8), равно

$$\langle c_p \rangle = k_1 + k_2 \left(\frac{T_0 + T_1}{2} \right) + k_3 \frac{(T_0 + T_1)/2}{T_0^2 T_1^2} \left(\frac{p_0 + p_L}{2} - p_c^0 \right).$$
(9)

В настоящей работе все расчеты проводились для смеси газов из 12 компонент с преобладанием метана, состав и параметры смеси приведены в книге [7]. Для этой смеси газов критические параметры и величины k_1, k_2, k_3 равны:

$$k_1 = 1803.7 \text{ J/(kg} \cdot \text{K}), \quad k_2 = (1.5T_c) \text{ J/(kg} \cdot \text{K}),$$

 $k_3 = 2.52R_g \text{ J/(kg} \cdot \text{K}),$
 $T_c = 193.698 \text{ K}, \quad p_c = 4.5978 \text{ MPa},$
 $R_g = 493.501 \text{ J/(kg} \cdot \text{K}).$ (10)

В выражение (9) для величины $\langle c_p \rangle$ входят значения температуры и давления на выходе. Эти величины

либо измеряются экспериментально, либо могут быть рассчитаны по системе уравнений (1)–(4) с граничным условием (5). Во втором случае величина $\langle c_p \rangle$ рассчитывается итерационно. В нулевом приближении задается правдоподобное значение $\langle c_p \rangle^{(0)}$, из решения системы уравнений (1)–(4) определяются величины $P_L^{(0)}$ и $T_1^{(0)}$ в нулевом приближении и по формуле (9) рассчитывается значение $\langle c_p \rangle^{(1)}$ в первой итерации и т. д. В приведенных далее примерах для расчета величины $\langle c_p \rangle$ с точностью до 10⁻⁴ J/(kg·K) оказалось достаточным трех итераций. Далее во всех расчетах использовано среднее значе-

Далее во всех расчетах использовано среднее значе ние $\langle c_p \rangle$, обозначенное как c_p .

3. Упрощенные модели

Решение задачи расчета координаты места утечки газа по модели (1)-(4) приведено в работе [5]. Анализ этих расчетов показал, что существует область изменения параметров Q^0 , P(0), T(0), R, L, β , λ , T^* , в которой с приемлемой точностью допустим расчет распределений давления и температуры в потоке газа по упрощенным моделям. Существенно, что упрощенные модели приводят к простым формулам расчета координаты места стационарной утечки газа.

О возможных упрощениях. Для многих задач трассу прокладки газопровода можно считать горизонтальной. Давление на входе, расход газа и внутренний радиус газопровода в реальных задачах выбираются таким образом, чтобы скорость течения в любой точке газопровода не превышала критического значения, при котором начинается вибрация газопровода. Это приводит к тому, что в реальных задачах транспортировки газа силы инерции в потоке на несколько порядков меньше сил давления и слагаемым ρu^2 в левой части уравнения движения можно пренебречь по сравнению с давлением. Таким образом, при условиях

 $\forall z \in [0, L]$

1) трасса горизонтальна,

2)
$$p \gg \rho u^2 \rightarrow \frac{d}{dz} \left(p + \rho u^2 \right) = \frac{dp}{dz}$$
 (11)

уравнение движения и тепловое уравнение модели (1)-(4) упрощаются и записываются следующим образом:

$$\frac{dp}{dz} = -\frac{\lambda \rho u |u|}{4R},\tag{12}$$

$$\frac{dT}{dz} = \frac{1}{c_p} \left(T \left(\frac{\partial V}{\partial T} \right)_p - V \right) \frac{dp}{dz} - \frac{2\beta}{R\rho u c_p} (T - T^*).$$
(13)

Множитель перед $\frac{dp}{dz}$ в уравнении (13) является известным [10] коэффициентом Джоуля—Томсона \mathscr{D}_* , это позволяет представить тепловое уравнение (13) в виде

$$\frac{dT}{dz} = \mathscr{D}_* \frac{dp}{dz} - \frac{2\beta}{R\rho u c_p} \left(T - T^*\right).$$
(14)

Журнал технической физики, 2022, том 92, вып. 10

Из уравнения (14) следует, что при $T > T^*$ в любой точке газопровода падение температуры обусловлено двумя причинами: остыванием газа за счет падения давления (так называемый "дроссель-эффект") и остыванием газа в результате теплообмена с внешней средой.

Правая часть уравнения движения (12) с учетом уравнений (1) и (4) может быть выражена через T, p и Z(p, T):

$$\frac{dp}{dz} = -\left(\frac{\lambda Q^{0^2} R_g}{4RS^2}\right) \frac{TZ(p,t)}{p}.$$
(15)

Упрощенная система уравнений (1), (15), (14) и (4), следующая из общей системы (1)–(4) при условиях (11), намного проще системы (1)–(4), однако и она не допускает простых аналитических решений. Ситуация существенно упрощается, если допустить, что коэффициент сжимаемости Z(p, T) можно считать постоянной величиной:

$$Z(p, T) = \text{const} = Z^*.$$
(16)

Упрощение (16) непосредственно, конечно, не имеет места для неидеальных газов. Допустимость его использования в реальных задачах может быть обоснована только совпадением с требуемой точностью расчетов распределений давления и температуры, а также координаты места утечки газа по общей и упрощенной моделям. При условии (16) коэффициент Джоуля—Томсона \mathcal{D}_* обращается в нуль, это позволяет расщепить замкнутую систему уравнений (14), (15). Тепловое уравнение (14) при выполнении условия (16) упрощается

$$\frac{dT}{dz} = -\frac{2\beta}{R\rho u c_p} \left(T - T^*\right) \tag{17}$$

и легко интегрируется. Интегралом уравнения (17) является известная [11] формула В.Г. Шухова. При выполнении условия (16) интегрируется аналитически и уравнение движения.

Запишем общую и упрощенную модели в безразмерной форме. Введем безразмерные величины по формулам:

$$\tilde{z} = \frac{z}{L}, \quad \tilde{T} = \frac{T}{T_c}, \quad \tilde{p} = \frac{p}{p_c}, \quad \rho_c = \frac{p_c}{R_g T_c Z_c}, \\ Z_c = Z(p_c, T_c) = 0.65, \quad \tilde{\rho} = \frac{\rho}{\rho_c}, \quad \tilde{u} = \frac{u\rho_c S}{Q^0}, \\ T_s = \frac{T^*}{T_c}, \quad p_0 = \frac{P(0)}{p_c}, \quad T_0 = \frac{T(0)}{T_c}, \quad p_L = \frac{P_L}{p_c}.$$
(18)

Указание волны в безразмерных величинах далее опущено везде, где это не приводит к двусмысленности.

Для горизонтальной трассы общая система уравнений (1)-(4) и граничное условие (5) в безразмерной форме имеют вид

Модель І

$$\begin{cases} \rho u = 1, \\ \frac{d}{dz} \left(p + m_1 \frac{TZ}{p} \right) = -m_2 \frac{TZ}{p}, \\ \frac{dT}{dz} = m_3 \frac{T}{p} \left(Z + T \frac{\partial Z}{\partial T} \right) \frac{dp}{dz} + m_2 m_3 \left(\frac{TZ}{p} \right)^2 - m_4 (T - T_s), \\ p = \rho TZ/Z_c, \quad Z = 1 + 0.07 \frac{p}{T} - 0.42 \frac{p}{T^3}. \end{cases}$$

$$(I)$$

$$z = 0: \quad p = p_0, \quad T = T_0. \qquad (19)$$

При выполнении условий (11), (16) модель (I) преобразуется в упрощенную

Модель II

$$\begin{cases} \rho u = 1, \\ \frac{dp}{dz} = -m_2 \frac{TZ^*}{p}, \\ \frac{dT}{dz} = -m_4(T - T_s), \\ \rho = \frac{pZ_c}{TZ(p, T)}. \end{cases}$$
(II)

В модели II безразмерную плотность точнее рассчитывать не при постоянном коэффициенте сжимаемости, а при коэффициенте сжимаемости, определенном уравнением Бертло (4), в котором величины давления и температуры найдены в результате интегрирования упрощенной системы уравнений. Расчет эффективного постоянного коэффициента сжимаемости Z^* приведен далее (23).

Безразмерные комплексы, входящие в модели I и II, равны

$$m_1 = \left(\frac{Q^0}{S}\right)^2 \frac{R_g T_c}{p_c^2}, \quad m_2 = m_1 \frac{\lambda L}{4R}, \quad m_3 = \frac{R_g}{c_p},$$
$$m_4 = \frac{2L\beta S}{Rc_p O^0}, \quad S = \pi R^2.$$
(20)

Расчет распределений давления и температуры по модели II

Распределение температуры определяется в результате интегрирования теплового уравнения модели II при граничном условии (19):

$$T(z) = T_s + (T_0 - T_s) \exp(-m_4 z).$$
 (21)

Распределение давления находится в результате интегрирования уравнения движения модели II при найденной зависимости T(z) (21) при граничном условии (19):

$$p(z) = \left[p_0^2 - 2m_2 Z^* T_s z + 2 \frac{m_2}{m_4} Z^* (T_0 - T_s) \right]^{1/2} \times \left(\exp(-m_4 z) - 1 \right)^{1/2}.$$
(22)

Величину эффективного коэффициента сжимаемости Z^* можно определять по-разному. Как показали расчеты, целесообразно определять Z^* по величине давления на выходе из газопровода, измеренной экспериментально или рассчитанной по общей модели процессов. В этом случае Z^* определяется равенством

$$Z^* = \frac{p_0^2 - p_L^2}{2m_2 \left(T_s - \left(T_0 - T_s\right) \left(\exp(-m_4) - 1\right)/m_4\right)}.$$
 (23)

Расчет координаты места утечки газа по модели ІІ

В настоящей работе рассматриваются установившиеся режимы течения газа и предполагается, что, спустя некоторое время после возникновения стационарной утечки газа δQ малой или средней интенсивности, в газопроводе устанавливается новый стационарный режим течения, при котором место утечки газа можно рассматривать как особую точку в распределении расхода.

Обозначим через z_a размерную координату сечения, в котором происходит утечка газа, через l — безразмерную координату места утечки газа ($l = z_a/L$). Разобьем газопровод на два участка:

первый участок: $z \in [0, l]$, второй участок: $z \in [l, 1]$.

Расход газа на первом участке равен расходу Q^0 на входе в газопровод. Расход газа на втором участке в новом установившемся режиме равен расходу на выходе: $Q_L = Q^0 - \delta Q$.

Распределения давления и температуры на первом участке определяются зависимостями (21), (22). В частности, давление p_a и температура T_a на границе первого участка (при z = l) равны:

$$p_a^2 = p_0^2 - 2m_2 Z^* T_s l + 2 \frac{m_2}{m_4} Z^* (T_0 - T_s) (\exp(-m_4 l) - 1),$$
(24)

$$T_a = T_s + (T_0 - T_s) \exp(-m_4 l).$$
 (25)

Для второго участка в новом установившемся режиме при известной величине расхода Q_L на выходе в упрощенной модели (II) изменяются величины безразмерных комплексов $m_2 \rightarrow \hat{m}_2$, $m_4 \rightarrow \hat{m}_4$ и граничное условие:

$$z = l: \quad p = p_a, \ T = T_a, \tag{26}$$

$$\hat{m}_2 = \left(\frac{Q_L}{S}\right)^2 \frac{R_g T_c}{p_c^2} \frac{\lambda L}{4R}, \quad \hat{m}_4 = \frac{2L\beta S}{Rc_p Q_L}.$$
 (27)

Журнал технической физики, 2022, том 92, вып. 10

В результате интегрирования теплового уравнения модели II при граничном условии (26) находим распределение температуры на втором участке:

$$z \in [l, 1]$$
: $T(z) = T_s + (T_0 - T_s) \exp(-l(m_4 - \hat{m}_4))$
 $\times \exp(-\hat{m}_4 z).$ (28)

В результате интегрирования уравнения движения модели II при T(z) (28) при граничном условии (26) находим распределение давления на втором участке:

$$z \in [l, 1]: \ p(z) = \left[p_a^2 - 2\hat{m}_2 Z^* T_s(z-l) + 2\frac{\hat{m}_2}{\hat{m}_4} Z^*(T_0 - T_s) \right] \times \exp\left(-l(m_4 - \hat{m}_4)\right) \left(\exp(-\hat{m}_4 z) - \exp(-\hat{m}_4 l)\right) \right]^{1/2}.$$
(29)

В равенстве (29) величина p_a^2 определена равенством (24). Пусть экспериментально определена величина размерного давления P_L на выходе.

Трансцендентное уравнение для определения безразмерной координаты l места стационарной утечки газа по измеренным величинам Q_L и P_L следует из уравнения (29) при z = 1, $p_L = p(1) = P_L/p_c$. Это уравнение имеет следующий вид:

$$p_0^2 - 2m_2 T_s Z^* l + 2 \frac{m_2}{m_4} Z^* (T_0 - T_s) \left(\exp(-m_4 l) - 1 \right)$$

$$- 2\hat{m}_2 Z^* T_s (1 - l) + 2 \frac{\hat{m}_2}{\hat{m}_4} Z^* (T_0 - T_s) \exp\left(-l(m_4 - \hat{m}_4)\right)$$

$$\times \left(\exp(-\hat{m}_4) - \exp(-\hat{m}_4 l) \right) - p_L^2 = 0.$$
(30)

Решение трансцендентного уравнения (30) не представляет трудности. Размерная координата z_a места стационарной утечки газа определяется по найденной величине $l: z_a = l \cdot L$.

Упрощенная модель III для теплоизолированного газопровода

Для теплоизолированного газопровода суммарный коэффициент теплопередачи β равен нулю. Безразмерные комплексы m_4 (20) и \hat{m}_4 (27) обращаются в нуль. В тепловом уравнении (14) при $\beta = 0$ единственным механизмом остывания газа в потоке является падение температуры за счет падения давления. При условии постоянства коэффициента сжимаемости (16) коэффициент Джоуля-Томсона обращается в нуль, это приводит к постоянству температуры в модели III. При граничном условии (19) для температуры газа следует равенство: $T = \text{const} = T_0$.

Распределение давления (22) при $m_4 = 0$ с учетом предельного перехода

$$\lim_{m_4 \to 0} \frac{\exp(-m_4 z) - 1}{m_4} = -z$$

записывается в виде

$$p(z) = \left[p_0^2 - 2m_2 Z^* T_0 z\right]^{1/2}.$$
 (31)

Равенство (23) при $m_4 = 0$ приводит к следующему выражению для эффективного коэффициента сжимаемости Z_0^* :

$$Z_0^* = \frac{p_0^2 - p_L^2}{2m_2 T_0}.$$
(32)

При наличии стационарной утечки газа распределение давления на первом участке задается формулой (31), в частности при z = l давление p_a в модели III равно

$$p_a^2 = p_0^2 - 2m_2 Z_0^* T_0 l. ag{33}$$

На втором участке после установления нового стационарного режима в модели III при $m_4 \rightarrow 0$, $\hat{m}_4 \rightarrow 0$ из формулы (29) предельным переходом получается следующее выражение для распределения давления:

$$p(z) = \left[p_a^2 - 2\hat{m}_2 Z_0^* T_0(z-l)\right]^{1/2},$$
(34)

в котором величина p_a определена равенством (33).

Как и при выводе уравнения (30), положим z = 1: $p_L = p(1) = P_L/p_c$ и получим следующую простую аналитическую формулу расчета безразмерной координаты l места утечки газа в модели III:

$$l = \frac{p_0^2 - p_L^2 - 2\hat{m}_2 Z_0^* T_0}{2Z_0^* T_0 (m_2 - \hat{m}_2)}.$$
(35)

Формула (35), как следует из ее вывода, может использоваться для расчета места стационарной утечки газа после выхода на новый установившийся режим течения при $\beta \rightarrow 0$ и при выполнении условий (11), (16).

4. Примеры тестовых расчетов

Приведем примеры расчетов по общей модели I и по упрощенным моделям II и III для четырех вариантов параметров задачи. Неизменными для всех вариантов примем следующие параметры:

$$R = 0.5 \text{ m}, \quad T(0) = 308.15 \text{ K},$$
$$T^* = 278.15 \text{ K}, \quad L = 5 \cdot 10^4 \text{ m},$$
$$T_c = 193.698 \text{ K}, \ p_c = 4.598 \text{ MPa}, \ R_g = 493.501 \text{ J/(kg} \cdot \text{K}).$$
(36)

Вариант 1.

$$P(0) = 60 \text{ atm}, \quad Q^0 = 250 \text{ kg/s}, \quad \delta Q = 25 \text{ kg/s},$$

 $\beta = 5 \text{ W/(m}^2 \cdot \text{K}), \quad c_p = \langle c_p \rangle = 2649.24 \text{ J/(kg} \cdot \text{K}),$
 $\lambda = 0.0087.$ (36.1)

Вариант 2.

$$P(0) = 90 \, \text{atm}, \quad Q^0 = 250 \, \text{kg/s}, \quad \delta Q = 25 \, \text{kg/s},$$

Журнал технической физики, 2022, том 92, вып. 10

$$\beta = 5 \text{ W}/(\text{m}^2 \cdot \text{K}), \quad c_p = \langle c_p \rangle = 2881.11 \text{ J}/(\text{kg} \cdot \text{K}),$$

 $\lambda = 0.0087.$ (36.2)

Вариант 3.

$$P(0) = 90 \text{ atm}, \quad Q^0 = 400 \text{ kg/s}, \quad \delta Q = 40 \text{ kg/s},$$

 $\beta = 5 \text{ W/(m}^2 \cdot \text{K}), \quad c_p = \langle c_p \rangle = 2853.69 \text{ J/(kg} \cdot \text{K}),$
 $\lambda = 0.0085.$ (36.3)

В наборах (36)–(36.3) приведены округленные значения величин, в расчетах использовались их точные значения. Средняя величина $\langle c_p \rangle$ удельной изобарной теплоемкости для всех вариантов рассчитывалась по общей модели I в соответствии с итерационным алгоритмом, приведенном выше (9). Значение коэффициента гидравлического сопротивления λ в реальных задачах должно, как отмечалось, определяться из решения обратной задачи идентификации параметров модели. В приведенных тестовых вариантах коэффициент гидравлического сопротивления λ рассчитывался по формуле Хааланда, которая входит, например, в ПК OLGA, коэффициент эквивалентной равномерно-зернистой шероховатости полагался равным 10^{-5} m, коэффициент динамической вязкости, входящий в выражение для числа

Таблица 1. Вариант 1 (60 atm, 250 kg/s)

z, km	10	20	30	40	50
$P_{\rm II}$	59.017	58.036	57.053	56.065	55.069
δP	0.0115	0.0159	0.0147	0.0090	0
T_{II}	28.665	23.669	19.727	16.617	14.165
δT	0.309	0.565	0.777	0.954	1.104

Таблица 2. Вариант 2 (90 atm, 250 kg/s)

z, km	10	20	30	40	50
P_{II}	89.381	88.769	88.162	87.557	86.954
δP	0.0116	0.0163	0.0153	0.0095	0
T_{II}	29.122	24.395	20.595	17.539	15.082
δT	0.181	0.331	0.454	0.556	0.641

Таблица 3. Вариант 3 (90 atm, 400 kg/s)

z, km	10	20	30	40	50
P_{II}	88.434	86.859	85.272	83.670	82.049
δP	0.0196	0.0282	0.0269	0.0171	0
T_{II}	31.143	27.782	24.853	22.301	20.076
δT	0.476	0.905	1.293	1.646	1.968

Рейнольдса, рассчитывался по формуле Дина-Стила [7] для вышеназванной смеси газов (10). Результаты расчетов по моделям I и II для вариантов (36.1)-(36.3) представлены в табл. 1-3.

Приняты следующие обозначения: $P, P_{\rm II}$ — давление [atm], рассчитанное по модели I и по упрощенной модели II соответственно, $\delta P = (P_{\rm II} - P)$ [atm] — погрешность вычисления давления по модели II; $T, T_{\rm II}$ — температура [°C], рассчитанная по модели I и по упрощенной модели II соответственно, $\delta T = (T_{\rm II} - T)$ [°C] — погрешность вычисления температуры по модели II; z [km] — координата вдоль оси газопровода.

Для каждого варианта тестовой задачи по заданным расходу и давлению на выходе из газопровода рассчитывалась координата z_k [m] места утечки газа (k — номер варианта параметров, k = 1, 2, 3).

В виду отсутствия экспериментальных данных для определения давления на выходе предварительно для заданного набора параметров при заданной утечке δQ газа и заданном ее местоположении z_a [m] рассчитывалось давление на выходе из газопровода, которое затем принималось в качестве экспериментально измеренного. Далее в соответствии с упрощенной моделью II из решения трансцендентного уравнение (30) определялась безразмерная величина l_k для k-го варианта и по ней находилась размерная координата z_k [m] места утечки газа, затем рассчитывалась погрешность определения места утечки по упрощенной модели II, характеризуемая величиной δz_k [m], равной: $\delta z_k = (z_k - z_a)$ [m], k = 1, 2, 3 (табл. 4).

Таблица 4. Погрешность расчета координаты места утечки газа

z_a, m	104	$2\cdot 10^4$	$3\cdot 10^4$	$4\cdot 10^4$	$4.5\cdot 10^4$
δz_1 , m	-81.3	58.8	105.9	76.6	45.1
δz_2 , m	-89.2	119.2	189.4	142.5	81.8
δz_3 , m	-103.9	57.0	117.1	92.4	53.6

Пример расчета по модели III

Рассмотрим вариант 3, положив в нем $\beta = 0$. Как и раныше, в табл. 5 обозначим *P*, *P*_{III} — давление [atm], рассчитанное по модели I и по упрощенной модели III соответственно, $\delta P = (P_{\text{III}} - P)$ [atm] — погрешность вычисления давления по модели III; *T* — температура [°C], рассчитанная по модели I при $\beta = 0$ для варианта параметров 3, в упрощенной модели III температура постоянна и равна: *T* = const = *T*₀. Обозначим $\delta T = (T_0 - T)$ [°C]— погрешность вычисления температуры по модели III; *z* [km] — координата вдоль оси газопровода.

z, km	10	20	30	40	50
Р	88.400	86.766	85.103	83.407	81.677
δP	0.0007	0.0010	0.0010	0.0007	0
δT	0.51	1.04	1.57	2.12	2.69

Таблица 5. Вариант 4 (90 atm, 400 kg/s, $\beta = 0$)

Таблица 6. Погрешность расчета места утечки газа по модели III

z_a, m	10 ⁴	$2\cdot 10^4$	$3\cdot 10^4$	$4\cdot 10^4$	$4.5\cdot 10^4$
δz_4 , m	2.04	1.73	1.33	0.76	0.40

Вариант 4.

$$\begin{split} P(0) &= 90 \, \mathrm{atm}, \quad Q^0 = 400 \, \mathrm{kg/s}, \quad \delta Q = 40 \, \mathrm{kg/s}, \\ \beta &= 0, \quad c_p = \langle c_p \rangle = 2821.45 \, \mathrm{J/(kg \cdot K)}, \quad \lambda = 0.0085. \end{split}$$

В табл. 6 приведены значения погрешности расчета координаты места утечки газа по формуле (35) упрощенной модели III, $z_4 = l_4 \cdot L$ [m], $\delta z_4 = (z_4 - z_a)$ [m].

Выводы. Проведенные расчеты, часть из которых представлена выше, показали, что существует область изменения параметров задачи, в которой координата места стационарной утечки газа может быть с приемлемой точностью рассчитана по полученному трансцендентному уравнению, следующему из упрощенной модели течения. Данные табл. 3 и 4 свидетельствуют о том, что увеличение неточности расчета температуры (вариант параметров 3) практически не отражается на погрешности расчета местоположения утечки газа. Этот вывод подтверждается и расчетами при других вариантах параметров, он также следует из данных расчета места стационарной утечки газа (табл. 6) в упрощенной изотермической модели, для которой температура отличается от истинной температуры, рассчитанной по общей модели, более, чем на 2°С (табл. 5).

Заключение

Целью работы являлось сравнение точности расчета места стационарной утечки газа в исследуемом участке на основе разной степени общности математических моделей установившейся транспортировки газа.

Получены аналитические зависимости от давления и температуры изобарической удельной теплоемкости и ее среднеинтегральной величины на исследуемом участке для газовой смеси, подчиняющейся уравнению состояния с коэффициентом сжимаемости Бертло. Эти зависимости наряду с алгоритмом идентификации трудноопределимых параметров модели позволяют в реальных условиях обеспечить адекватность модели транспортировки газа в установившемся режиме. В работе используется предположение о стационарности процессов как до образования стационарной утечки газа, так и спустя некоторое время после него. Это предположение сужает область практического использования полученных результатов. Для упрощенной стационарной модели, предполагающей малость сил инерции и преимущественное влияние на температуру газа теплообмена с внешней средой, получено трансцендентное уравнение расчета координаты места стационарной утечки газа малой и средней интенсивности по экспериментальным данным о давлении и расходе на выходе из исследуемого участка газопровода. Приведены результаты сравнения характеристик потока, рассчитанных по общей и по упрощенным стационарным моделям для разных вариантов параметров, представляющих практический интерес. Обоснован вывод о незначительном влиянии неточности расчета температуры газа по упрощенной модели на погрешность вычисления по упрощенной модели координаты места стационарной утечки газа.

Простые аналитические формулы, полученные в рамках упрощенных моделей, могут служить хорошим начальным приближением при расчете координаты места стационарной утечки газа малой и средней интенсивности в приведенном ранее итерационном алгоритме решения задачи идентификации места стационарной утечки газа на основе общей стационарной модели.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- О.Ф. Васильев, Э.А. Бондарев, А.Ф. Воеводин, М.А. Каниболотский. *Неизотермическое течение газа в трубах* (Наука, Новосибирск, 1978)
- [2] Т.И. Лаптева, М.Н. Мансуров. Нефтегазовое дело, 2, 1 (2006). http://ogbus.ru/article/view/obnaruzhenie-utechek-prineustanovivshemsya-techenii-v-trubax
- [3] А.Ф. Воеводин, В.С. Никифоровская. Сибирский журнал индустриальной математики, **12** (37), 25 (2009).
- [4] Obibuike Ubanozie Julian, Ekwueme Stanley Toochukwu, Ohia Nnaemeka Princewill, Igwilo Kevin Chinwuba, Onyejekwe Ifeanyi Michael, Igbojionu Anthony Chemazu. International Journal of Oil, Gas and Coal Engineering, 7 (4), 95 (2019). https://doi.org/10.11648/j.ogce.20190704.12
- [5] Г.И. Курбатова, В.А. Клемешев. Математическое моделирование. 33 (8), 27 (2021). [G.I. Kurbatova, V.A. Klemeshev. Math. Models Comput. Simul., 14, 203 (2022). https://doi.org/10.1134/S2070048222020090]
- [6] Справочник государственных стандартов. Большая база ГОСТов, СНиПов [Электронный ресурс]: СТО Газпром 2-3.5-051-2006. Нормы технологического проектирования магистральных газопроводов. — URL: https://gostinform.ru/proizvodstvenno-otraslevye-standarty/ sto-gazprom-2-3-5-051-2006-obj55852.html.
- [7] Г.И. Курбатова, Н.Н. Ермолаева, В.Б. Филиппов, К.Б. Филиппов. Проектирование газопроводов в северных морях (Лань, СПб., 2020)

- [8] Р. Беллман, Р. Калаба. Квазилинеаризация и нелинейные краевые задачи (Мир, М., 1968)
- [9] G.I. Kurbatova, V.A. Klemeshev, V.B. Filippov. J. Phys. Conf. Ser., 2162, 012023 (2022). https://doi.org/10.1088/1742-6596/2162/1/012023
- [10] Д.В. Сивухин. Общий курс физики. Термодинамика и молекулярная физика. Т. II (Физматлит, М., 2006)
- [11] М.В. Лурье. Теоретические основы трубопроводного транспорта нефти, нефтепродуктов и газа: учебник. Т. I (ООО "Издательский дом Недра", М., 2017)