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Spectral response of a microresonator containing a double quantum dot

modified by Coulomb interaction of localized electrons
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A theoretical model of a semiconductor nanostructure consisting of a single-mode microresonator containing two

quantum dots is considered. It is shown that the Coulomb interaction between electrons localized in the quantum

dots modifies a spectral response of the system to an external laser field. The possibility of its use for detecting an

elementary charge in the third (optically inactive) quantum dot is discussed. The influence of both diagonal (Stark
effect) and non-diagonal (Foerster effect) Coulomb matrix elements of the Hamiltonian on the detection accuracy

is studied. The dependences of a measuring contrast on the parameters of the resonator and the quantum dots are

calculated. The existence of such structural configurations for which the contrast retains an optimal value even at

large distances to the measured dot is established.
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Introduction

Nanostructures consisting of semiconductor quantum dots

(QDs) [1] are often considered as elementary information
carriers of a new generation. Arrays of single-electron
QDs are proposed to be used for storing, moving and

processing data in both classical and quantum computing
devices [2–4]. In addition, there are diagrams of high-tech

devices that are also related to practical application of QDs
in modern information and communication networks [5].
These include sources of single photons [6] and correlated
photon pairs [7], cellular automata [8], phase and frequency

converters [9, 10], as well as sensor devices — single-
electron transistors [11,12] and quantum point contacts [13].
The operating principle of capacitive sensors is based on the
dependence of the energy levels position of an electron in

QD which is a part of the device, and hence the quantum
nanoampere current through QD from the external electric

field.
The Coulomb interaction of QD electrons with each other

and with external charged systems modifies the device
state, therefore can serve as an additional resource for

optimizing the measurement procedure. The main feature
of the electron-electron interaction (unlike, e.g., electron-

photon effects) is that it cannot be turned off. This must be
taken into account when creating quantum registers, since

the Coulomb shift of the electronic levels of a given QD
qubit in the field of neighboring qubits? electrons leads

to an additional phase shift of its state, which requires the
use of additional corrective algorithms. Design of sensors
where charged QDs are used requires the same careful

approach.
In this article we consider a model of a hybrid op-

toelectronic system, where, in contrast to the traditional

charge measurement design, we analyze the dependence

not of the electric current flowing from the source to

the drain directly through the QD, but of the subphoton

signal passing from the laser to the photodetector through a

microcavity (MC) [14]. Since photons do not interact with

a charged object outside MC, it is necessary to organize

an effective contact between them by supplementing the

circuit with a transducer element. One can take one or

several charged QDs located in the antinodes of the MC

mode as such an element for exchanging an energy quantum

with it and, at the same time, interacting with the object

according to the Coulomb law. Thus, indirect connection

is implemented between the photons going from the source

to the detector through MC and the charged object [15].
Here, the role of the object is played by QD, which is

located at a considerable distance from MC. In the course

of a theoretical study, an analytical expression was obtained

for the response of a system with two QD transducers in

the subphoton mode. The effect of the Stark and Foerster

components on the measurement contrast is studied within

the scope of the density matrix formalism. It is shown

that enhancement of the Foerster energy exchange between

resonant QDs when they approach each other can help to

maintain high values of the measurement contrast even for

distant QDs.

Model of the optoelectronic structure
and basic equations

A necessary component of many quantum-optical devices

are photonic crystals (PC), which are rods or plates with

lithographically made vertical holes [16]. These holes
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form an ordered Bragg structure (lattice), which makes

it possible to localize the photon field inside PC. The

PC spectrum is divided into forbidden and allowed zones

(frequency intervals with a quasi-continuous distribution

of eigenmodes). In this case, lattice defects — missed

holes — help to carry out further engineering of the spectral

properties of PC. Extended one-dimensional defects can

function as waveguides connecting the QD structure with

a photon source or detector. Defects formed by just a

few missed holes are microcavities with a discrete set of

eigenmodes. PC-based structures are used as optical sensors

for pressure, temperature, mechanical stresses, and chemical

composition of samples under study [17]. However, to use

them as detectors of electric fields and individual elementary

charges, it is necessary to organize the interaction of

photons, transported through PC, with these fields (charges).
In themselves, they do not interact, therefore, for this

purpose, a special circuit element — a transducer is used,

which is simultaneously connected to both subsystems.

We will consider one-dimensional PC with a lattice defect

(MC), which supports isolated modes with frequencies

close to the frequencies of electronic transitions in semicon-

ductor QDs (Fig. 1). If there is one QD in the high-Q MC

region, the frequency of which corresponds to the frequency

of the MC mode, the system is described by the well-known

Jaynes-Cummings model, demonstrating Rabi oscillations

(periodic transformation of the QD electronic excitation to

a MC photon and vice versa). If the MC contains two or

more such QDs, evolution of this system will be determined

by the ratio of the characteristic energies of the electron-

photon and Coulomb interactions. It is these QDs whose

frequencies, on the one hand, depend on external fields and

charges and, on the other hand, affect passage of photons

through MC can serve as a transducer.

Let there be two QDs inside MC, each of which contains

two one-electron states (ground and excited). The ground

state of the |gk〉 QD with number k (k = 1, 2) has energy

εg,k , and its excited state |ek〉 — energy εe,k . The laser

with the frequency ωL is focused on the PC input port. The

rate �L of photons arrival to the structure is determined

by the degree of overlap between the fields of the PC

mode and the laser. We will assume that the frequency

ωc of the MC mode and the frequencies of QD 1 and

QD 2 are close enough to speak about the possibility of

resonant photon exchange between them. The third QD,

whose electron population is to be determined, has one

(ground) state |g3〉 with energy εg,3 . It is assumed that the

power of the potential barrier separating QDs is so high that

the tunneling and exchange effects can be neglected: each

electron remains localized in its own QD.

If we take the energy εg,1 as the origin, then the

Hamiltonian of the MC and three one-electron QDs that

do not interact with each other has the form (hereinafter,
we assume ~ ≡ 1):

H0 = ωca†a + 12,1|g2〉〈g2| + 13,1|g3〉〈g3| + ω1|e1〉〈e1|

+ (ω2 + 12,1)|e2〉〈e2|,
(1)

where ωk = εe,k−εg,k — electronic transition frequencies

of QD, 12,1 = εg,2−εg,1 and 13,1 = εg,3−εg,1 — energy

differences of the QD ground states. The Stark shifts of the

QD levels due to the Coulomb interaction of electrons and

equal to the diagonal matrix elements of the corresponding

operator are taken into account using the Hamiltonian

HS = V gg
1,2|g1g2〉〈g1g2| + V gg

1,3|g1g3〉〈g1g3|

+ V gg
2,3|g2g3〉〈g2g3| + V eg

1,2|e1g2〉〈e1g2| + V eg
1,3|e1g3〉〈e1g3|

+ V eg
2,1|g1e2〉〈g1e2| + V eg

2,3|e2g3〉〈e2g3|.
(2)

Off-diagonal Coulomb matrix elements describe resonant

excitation quantum exchange between QD 1 and QD 2

without electron displacement (Foerster effect [18]):

HF = V F
1,2

(

|g1e2〉〈g2e1| + |g2e1〉〈g1e2|
)

. (3)

This process will be effective only if the transition frequen-

cies in both QDs are close, i.e. when the condition of their

resonance |ω1−ω2| ≪ |V F
1,2| is fulfilled. Matrix elements in

expressions (2) and (3)

V g(e)g
k,m = 2

∫

drk

∫

drm|ψg(e),k(rk)|2|ψg,m(rm)|2/|rk − rm|

and

V F
1,2=2

∫

dr1

∫

dr2ψ
∗
e,1(r1)ψ

∗
g,2(r2)ψg,1(r1)ψe,2(r2)/|r1−r2|

(hereinafter referred to as V F
1,2 ≡ VF) are space integrals

depending on the form of one-electron wave functions, on

the distance between the QD centers, and on the relative

orientation of QDs. Here, effective atomic units are taken

as units of measurement: 1 e.a.u. = Ry∗ = m∗Ry/meε
2 for

energy and 1 e.a.u. = a∗
B = aBmeε/m∗ for length, where

Ry = 13.6 eV — Rydberg energy, aB = 0.52 · 10−10 m —
Bohr radius, me — free electron mass, m∗ — electron

effective mass, ε — semiconductor permittivity. For

gallium arsenide (GaAs: ε = 12 and m∗ = 0.067me) we

have Ry = 6meV and a∗
B = 10 nm. The processes of

Jaynes−Cummings coherent electron-photon exchange be-

tween QD and the MC mode, as well as the pumping

of the MC mode by laser photons, are described by the

Hamiltonians

HJC = −�1

(

|e1〉〈g1|a + |g1〉〈e1|a†
)

−�2

(

|e2〉〈g2|a + |g2〉〈e2|a†
)

(4)

and

HL = 2�L cos(ωLt)(a† + a). (5)

Equation (4) was derived using the rotating wave ap-

proximation, which assumes fulfillment of the ωk ≫ �k

conditions. Thus, the Hamiltonian of our system is

represented as a sum of Hamiltonians (1)−(5):

H = H0 + HS + HF + HJC + HL. (6)
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Figure 1. Diagram of one-dimensional photonic crystal with a defect (microcavity) containing two quantum dots. Their centers are

located on the symmetry axis x in the antinodes of the MC mode field at a distance a from each other. The origin of the coordinates is

aligned with the center of the first QD. The laser pumps the system with photons, which, passing through MC, interact with two QDs and

then enter the detector or are scattered. The third (measured) QD with center coordinates (Lx , Ly), located outside MC, does not interact

directly with photons, but affects the transition frequency in other (sensor) QDs due to the Coulomb interaction between them.

In addition, it is necessary to take into account noncoherent

processes of photon dissipation associated with uncontrolled

escape of energy from MC to the continuum at a rate κ,

and electronic relaxation at rates γk due to the interaction of

the kth QD with the phonon environment. Strict account

of these phenomena is possible only within the density

matrix formalism and the Lindblad equation (see below),
however, an approximate solution valid for small (≤ 0.1)
probability of system excitation from vacuum state can

be found using a simpler (computationally) Schrodinger’s

equation formalism. To do this, in the expression (1) one

should replace ωc → ωc → iκ and ωk → ωk − iγk .

If we assume that the laser pump power is low

(�L ≤ κ), then we can assume that no more than one

excitation photon is present in the structure. Then

the state space is reduced to four basis vectors. The

vector |1〉 = |g1, g2, g3〉|0c〉 corresponds to the vac-

uum state of the electron-photon system, the vectors

|2〉 = |e1, g2, g3〉|0c〉 and |3〉 = |g1, e2, g3〉|0c〉 describe ex-

citation of an electron in QD 1 and QD 2, and the

vector |4〉 = |g1, g2, g3〉|1c〉 — presence of one photon

in MC mode. The system state vector |9〉 =
4

∑

k=1

ck |k〉
is represented as an expansion in basis vectors with time

dependent coefficients ck . Evolution of the state vector

obeys the Schroedinger?s equation i∂t |9〉 = H|9〉 with the

initial condition |9(0)〉 = |1〉. The steady-state solution of

interest to us (the average photon population of the MC) in
the reference frame associated with the laser has the form

〈n〉 = |c4|2 ≈
�2

L|1F |2
|(δc − iκ)1F −�2

1(δ2 − 12,1 + G2 − iγ2)

−�2
2(δ1 + G1 − iγ1) + 2VF�1�2|2

,

1F = (δ1 + G1 − iγ1)(δ2 − 12,1 + G2 − iγ2) −V 2
F , (7)

where detunings of the MC and QD frequencies

from the laser frequency are introduced: δc = ωc−ωL

and δk = ωk−ωL, and also the Stark shifts

of the QD 1 and QD 2 frequencies are

determined: G1 = V eg
1,2−V gg

1,2 + V eg
1,3−V gg

1,3 and

G2 = V eg
2,1−V gg

2,1 + V eg
2,3−V gg

2,3, respectively. In the absence

of interaction between QD and MC, when |�k/δk | ≪ 1,

the system response coincides with the Lorentz curve for

”
empty“ MC. If only QD 1 is optically active (|�1/δ1| ≫ 1,

|�2/δ2| ≪ 1), and Coulomb effects can be neglected

(|VF/�1|, |G1/�1| ≪ 1), then the response curve has

two polariton peaks predicted by the Jaynes−Cummings

model. QD 2 involvement into resonance with the MC

mode and QD 1 (|�2/δ2| ≫ 1, |G2/�2| ≪ 1) under these

conditions provides an increase in splitting of the polariton

doublet by sqrt2 times according to the Tavis−Cummings

model [15]. The spatial approach of two QDs leads to an

increase in influence of Coulomb effects on the spectrum

and dynamics. When the shifts G1 and G2 turn out to

be comparable with the Rabi frequencies, the transition

of the system to the dispersive regime begins. In this

case, the response curve of an
”
empty“ MC is restored,

and the effect of QD is preserved in the dispersion shift

∼ (G2
1/�1 + G2

2/�2) of the peak frequency. Finally, taking

into account the Foerster components under conditions of

resonance of the QD transition frequencies removes their

degeneration, generating a splitting of the order of 2VF .

If the energies of the Foerster and optical interactions

are approximately the same and exceed detunings and

frequency shifts, hybridization of the MC photon and

correlated electronic excitations in the QD group takes

place. It is necessary to remember that the Stark and

Foerster contributions depend on the distance between

the QD centers and are, therefore, interrelated. However,

QD frequency shifts due to the interaction of their

electrons can be compensated by attracting an additional

(independent) resource — external electrostatic field

created by gates near QDs. Below, we study the effect of

Coulomb contributions on the photon spectrum, focusing

on the Foerster effect, and also calculate the measurement

contrast by varying the distance from the structure to the

measured QD.
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Figure 2. Graphs of dependences of the Stark (left) and Foerster (right) energies on the rotation angle ϕ2 of QD 2 around the z axis,

passing through its center, for three values of the distance between the centers of QD 1 and QD 2. The energies are given in units of

frequency of transition to QD 1(2), and the distances — in effective atomic units.
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Figure 3. Graphs of dependences of the MC photon average number (upper panel) and the energies of the electron-photon

Tavis−Cummings states and the
”
dark“ state (lower panel) on the angle of rotation ϕ2 of QD 2 around the axis z passing through

its center. The MC frequency corresponds to the frequency of one of the Foerster doublets. All quantities are given in units of the

frequency of transition to QT 1(2).
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Influence of the Foerster effect
on spectral response of the system

To study the spectral response of the structure, it is

necessary to calculate the energies G1,G2 and VF . Let us

use the exponential-power approximation for the potential

of the two-dimensional QD [19]:

U(x , y) = U0 exp
[

−(x/rx )
2p − (y/ry )

2p
]

, (8)

where U0 — depth of the QD potential, 2rx(y) – length

of the QD along the direction x(y), and p — parameter

specifying potential smoothness. At p ≥ 3, the shape

of such QD is close to rectangular. Let us select the

parameters of the QD potential (8) as follows: rx = 0.7,

ry = 0.8, U0 = −22 and p = 5. The transition frequency

ωQD = ω1(2) between the ground and excited states of QD,

corresponding to the MC frequency under resonance condi-

tions, is approximately 10 e.a.u., and later on we will use

this frequency as energy unit. Having found the wave

functions ψg,k(r) and ψe,k(r) of one-electron states, we plot

the dependences of the matrix elements G1, G2 and VF on

the distance a between the centers of two identical QDs

and the rotation angle ϕ2 of QD 2 relative to its center

in the absence of external QD 3 (Fig. 2). The frequency

shift of QD 1 G1 remains virtually unchanged upon rotation

of QD 2, which is in the ground state s , whose wave

function is characterized by a weak angular dependence.

The frequency shift of the rotated QD 2 is well described by

the formula G2 ≈ a2
p

a3 (2−3 sin2 ϕ2), obtained in the classical

approximation of point charges for the effective radius of the

excited p-states a p = 0.56. The dependence of the Foerster

energy has a feature that can not be explained using classical

concepts, as in the case of Stark shifts. It can be seen from

the graph that when QD 2 is rotated by an angle π and the

initial charge distribution density of two QDs is restored,

the Foerster energy takes on a value equal in amplitude,

but opposite in sign to its initial value, VF(π) = −VF(0).
To obtain the initial value of this parameter, it is necessary

to make a complete rotation through the angle 2π. As the

distance a between QD centers increases, a rapid decrease

(∼ 1/a3) of all dependences is observed.

Formula (7), obtained using the Schroedinger?s equation,

can be used for a qualitative analysis of the response of

structures in which dephasing of the QDs’ electronic state

is not the predominant channel for coherence loss. In the

general case, it is necessary to apply the Lindblad equation,

whose solution gives the dependence of the density matrix

ρ(t) on time, for a given initial state ρ(0):

dρ
dt

= −i[H, ρ] + κD(a) +

2
∑

k=1

γkD(|gk〉〈ek |)

+

2
∑

k=1

γd,k D(|ek〉〈ek〉 − |gk〉〈gk |), (9)

where γd,k – the electron dephasing rate in the k-th QD.

Dissipative photon and electronic processes are modeled

by Lindblad superoperators D(O) = OρO† − [O†O, ρ]/2.
According to comparison of the graphs of the dependences

of the photon average number in MC on the laser frequency,

obtained using approximation (7) and equation (9), the

resonant frequencies coincide for both types of data.

Accounting for dephasing leads to additional broadening

and a decrease in the amplitude of the peaks. Thus,

the analytical formula (7) gives the correct values of the

natural frequencies of the system as functions of the Stark

and Foerster energies.

We will consider a compact structure with a small

distance between QDs and, therefore, having a noticeable

Foerster exchange energy, VF ≥ �1,2. In addition, we will

assume that the Stark intrastructural shifts are compensated

by selecting the depths of the QD potentials. In this case,

the spectrum of two one-electron QDs, provided that their

frequencies are close, is a doublet with energies of the order

of ωQD ±VF . Tuning the MC frequency into resonance with

each of them leads to further splitting and the formation of

TC1 and TC2 Tavis−Cummings doublets. The dependences

of the system spectral response on the angle ϕ2, as well as

the eigenenergies of the Hamiltonian (1) without imaginary

components and the laser field, are shown in Fig. 3 for

two resonances ωc = ωQD ±VF . It can be seen that in

addition to the optically active states with the electronic

component (|2〉 + |3〉)/
√
2, the spectrum also contains the

”
dark“ state (|2〉−|3〉)/

√
2, not excited by an external

field. Increasing the distance between QD centers leads

to smoothing of the angular dependence and restoration of

the Tavis−Cummings spectrum. In the absence of com-

pensation for shifts, the Hamiltonian symmetry decreases,

and each of the eigenstates contains a light component.

Here and below, the following set of parameters is used

in calculations: �L = 8 · 10−6, �1(2) = 10−4, κ = 10−5,

γ1(2) = 10−6, γd,1(2) = γ1(2)/2 and 12,1 = 13,1 = 0.

Influence of the Foerster effect
on measurement contrast

Detection of an external charge using an electron-photon

structure consisting of one QD in MC is based on the

difference in the values of its spectral response in the ab-

sence and presence of a charge. The external charge causes

an additional Stark shift of the QD transition frequency

and, as a consequence, a change in the effective energy

of interaction between QD and MC. Comparing the system

response 〈n〉 with the calibration dependence 〈n0〉 obtained
in the absence of an electron in the measured QD, one

can determine whether the given QD contains an electron

or not. The measurement is best done at laser frequency

for which the difference in response is maximum. In

order to quantitatively characterize the structure sensitivity

to external charges and fields, we determine the measuring

contrast

S = max |
(

〈n(ωL)〉 − 〈n0(ωL)〉
)

/〈n0(ωL)〉|. (10)

Optics and Spectroscopy, 2022, Vol. 130, No. 2
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Figure 4. Spectral response of two identical single-electron

QDs in MC in a steady state subphoton pumping regime with

compensation for intrastructural Stark shifts. The MC frequency is

tuned to resonance with the frequency of the lower hybridized

two-electron state. The position of the outer QD 3 with the

electron determines the frequency shifts of QD 1 and QD 2, on

which the response shape depends. The vertical dashed line marks

the position of the MC frequency that does not interact with the

structure. All quantities are given in units of the frequency of

transition to QT 1(2).

The value of S depends both on the properties of the QD

and MC array and on the distance to the test object (in our

case — to QD 3).
Addition of new resonant QDs to MC leads to an increase

in splitting of the polariton peaks of the Tavis−Cummings

doublet, which should increase the measurement accuracy.

In this case, however, the QD frequencies are shifted due to

the interaction of the QD electrons, which can significantly

affect the response of the structure even in the absence of

an external charge. In addition, the Foerster effect causes

hybridization of the electronic states of resonant QDs due

to energy exchange with each other, which also leads to

frequency shifts. As was shown above, these intrastructural

shifts can be partially compensated by selecting the QD

parameters (dimensions, depth, orientation). If minimiza-

tion of Stark shifts, which weaken connection between

the electron and photon subsystems, looks justified, then

the influence of the Foerster effect on the measurement

accuracy requires more careful consideration. Figure 4

shows graphs of the spectral response of the structure

with compensation of internal Stark shifts of QD 1 and

QD 2 depending on external Stark shifts Gs ,k = V eg
k,3 −V gg

k,3
generated by an electron in QD 3. The Foerster energy

VF = −4 · 10−4 is fixed, and the MC frequency corresponds

to the frequency of the lower hybridized state of QD 1

and QD 2. In the absence of an electron in the measured

QD 3, the response is represented by two symmetrical

Tavis−Cummings peaks shifted to the left and right of the
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Figure 5. Graphs of dependence of contrast on QD 2 rotation

angle (Foerster energy) for the distance between QD 1 and QD 2

a = 6 (top) and a = 8 (bottom). The measured QD 3 has center

coordinates Lx = a/2 and Ly = 4 (solid line), Ly = 8 (dashed
line), Ly = 12 (dash-and-dot line).

MC frequency by �1(2)

√
2. The electron interaction, which

generates small Stark shifts compared to Stark shifts |VF |,
causes peaks? amplitude asymmetry and shift of their

frequencies. With an increase in shifts, when Gs ,1(2) ≥ |VF |,
”
dissociation“ of the optical and electronic subsystems

occurs due to violation of the resonance conditions for their

frequencies. In this case, the right peak transforms to an

MC peak without QD, and the amplitude of the left peak

tends to zero. Under these conditions, in accordance with

definition (10), the measuring contrast takes values close

to unity. However, a small difference between the Stark

frequency shifts of QD 1 and QD 2 (thin lines in Fig. 4)
leads to a certain difference in the responses, which allows

us to speak about the possibility of using the structure for

differential electrometry (tracking small displacements of an

external charge). Calculations show that the highest values

of the difference in responses are obtained under the action

of a laser with frequency corresponding to the resonant

frequency of one of the peaks of the structure in the absence

of an electron in QD 3.

The issue of the distance between the measured QD 3

and the structure at which the contrast S retains high values

is of practical importance. Let this QD have a horizontal

coordinate Lx = a/2 and be shifted vertically from the x
axis connecting the centers of QD 1 and QD 2 by Ly .

Let us set the MC frequency to be equal to the frequency

ωQD + VF of the two-electron state of QD 1 and QD 2.

The laser frequency is scanned in the vicinity of the lower

state TC1 of the Tavis-Cummings doublet (Fig. 3) At a small

distance to QD 3 (Ly ≤ a), the shifts Gs ,1(2) are comparable

with �1(2) and |VF |, which causes system transition to

a nonresonant regime (solid curve in Fig. 5). In this

case, the values of S ≈ 1 are observed almost over the
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entire range of the angle ϕ2. (Let us recall that all the

results presented in this article were obtained under the

assumption that the Stark shifts are compensated by one

of the methods mentioned above.) At the same time, the

graphs of S(ϕ2) contain characteristic features, namely, two

sharp minima, where S ≈ 0. They narrow with increasing

distance between QD 1 and QD 2, which indicates their

intrastructural origin. An increase in the Ly distance

reduces the effect of the charged QD 3 on the structure

electron-photon spectrum, leading to the expected decrease

in contrast. The function S(ϕ2) itself exhibits oscillations

with an amplitude that decreases with increasing Ly . But, as

follows from Fig. 5, for a = 6 there is a rotation angle

of QD 2 ϕ2 ≈ 2 rad, at which the contrast retains the

maximum value S = 1 for all three distances Ly . Since

there is no similar point for a more extended structure

with a = 8, then, taking into account the compensation of

Stark shifts, this feature is uniquely associated with the

Foerster effect. A similar situation is observed for the

TC 2 state. As for the state of two QDs with the energy

ωQD−VF and the corresponding Tavis−Cummings doublet,

here the areas with a high contrast value (neighborhoods
of the points ϕ2 = 0 and ϕ2 = π) are characterized by low

photocurrent values, and therefore its use as a sensor state

will be ineffective. At the end of our study, we point out that

in the dispersive regime (without compensation for Stark

shifts), the contrast decreases much faster with the distance

from the structure to QD 3 [15].
The results obtained by us can be useful in development

of optical sensor devices based on one-dimensional photonic

crystals [20] using the principle of subphoton laser pumping

in the regime of strong interaction between QD and

a photon [21].

Conclusion

In this article, we consider a model of a quantum

nanostructure based on a microcavity with two charged

QDs with optical subphoton control, which is designed to

detect individual electrons. Issues related to the influence

of Coulomb effects on the measurement accuracy are

studied. An approximate analytical expression is obtained

for the average number of photons in the microcavity

mode as a function of the control laser frequency and

system parameters. The dependences of the contrast on the

Foerster energy, which varies due to the rotation of one of

QDs, are calculated with full compensation of intrastructural

Stark shifts. It is shown that at a small distance between

sensory QDs, there are configurations for which a high

contrast value is retained even at a considerable distance

from the structure of the measured QD. An increase in

the structure size leads to the suppression of the Foerster

interaction between sensory QDs, while these configurations

are absent. Generally, the calculation data indicate the

need to correctly take into account both diagonal and off-

diagonal Coulomb matrix elements of the Hamiltonian when

modeling the spectral response of such systems.
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