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The change in the thermal conductivity of a multilayer array of carbon

nanotubes during its lateral compression
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Numerical simulation of thermal conductivity across a multilayer array of single-walled carbon nanotubes is

carried out. The effect of transverse compression of the array on thermal conductivity has been studied. It is

shown that the compression of the array can occur uniformly when all the nanotubes of the array are compressed

equally, and it can occur inhomogeneously when a part of the nanotubes is strongly compressed, and the other

part is weakly compressed. With homogeneous compression, the thermal conductivity of the array increases, but

with inhomogeneous compression, it does not change and may even decrease in case of a large number of layers.

This effect is especially pronounced for arrays of nanotubes of small diameter (D < 2 nm).
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1. Introduction

Carbon nanotubes (CNTs) have the form of a graphene

sheet rolled into a cylinder with diameter of 0.4 nm and

a length of up to several cm. Topologically similar

molecular structures were first obtained by thermal de-

composition of carbon monoxide on an iron contact [1].
CNTs themselves as ideal cylindrical macromolecules were

obtained much later as by-products of the synthesis of

fullerene C60 [2]. Interest in CNTs is associated with

their unique properties [3,4]. By now, nanotubes with the

required geometric properties (i.e., with the desired diam-

eter, length, and chirality) can be easily synthesized [5,6]
and used to obtain bundles of parallel CNTs [7,8]. Such

materials, also called CNT scaffolds or arrays, have even

more superior mechanical properties compared to isolated

nanotubes due to van der Waals interactions between

them [9].

Isolated CNTs have high thermal conductivity [10–14],
their thermal conductivity can reach values above

3000W/mK. Numerical simulation of heat transfer along

an ideal single-walled nanotube shows that the thermal

conductivity coefficient increases monotonically with in-

creasing its length [15–17]. Detailed simulation of heat

transfer along a nanotube with a chirality index (6,6)
showed [18] that the thermal conductivity of an ideal

nanotube increases in direct proportion to the logarithm of

its length. Macroscopic assemblies of nanotubes, such as

their arrays, fibers (bundles) and films, have lower thermal

conductivity due to poor nanotube alignment and low

density of their packages [19–22]. Films of highly aligned

CNTs were obtained in [23], their thermal conductivity can

reach values up to 700W/mK. In a bundle of highly aligned

(parallel) nanotubes, the thermal conductivity across the

bundle is much lower than the thermal conductivity along

the bundle. According to calculations [24], the transverse

thermal conductivity of a bundle of parallel CNTs (10,10)
has a very low value of 0.05W/mK, since weak van

der Waals bonds are responsible for heat transfer across

the bundle and strong valence bonds are responsible for

heat transfer along the bundle. The transverse thermal

conductivity can be increased by introducing intermolec-

ular valence bridges between adjacent nanotubes [25,26].
Please note that no detailed numerical simulation of heat

transfer across multilayer CNT arrays has been carried

out (only individual elements of such arrays have been

considered).

Nanotubes have high longitudinal (axial) rigidity and

relatively weak transverse (radial) one. In view of this, with

a sufficiently large diameter, a nanotube due to non-valence

interaction of atoms on its surface can pass from a hollow

cylindrical shape to a implode (collapsed) state [27–33].
The collapsing of nanotubes should significantly affect the

transverse rigidity and thermal conductivity of multilayer

arrays of parallel CNTs.

Due to the cavity hollowness of CNTs, their crystals,

in contrast to dense materials, can exhibit very high

transverse compressibility in the elastic region. This makes

it possible to use CNT arrays for shock and vibration

protection [34,35]. In this work, we will study the

effect of transverse compression of a multilayer array of

single-walled nanotubes on its thermal conductivity. It
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will be shown that the compression of the array can

lead not only to an increase in heat transfer across the

array, but also, depending on the degree of compression,

to its decrease. To simulate heat transfer, we will use

the chain model proposed earlier for modeling of the

graphene sheets dynamics [36] and further modified to

analyze the structure of an array of CNTs [37]. The

simulation of heat transfer across a multilayer array of

CNTs at different degrees of its compression will be

carried out.

2. Chain model of graphene nanoribbon
and nanotube

Let us consider an array of parallel single-walled carbon

nanotubes lying between flat multilayer graphene sheets

(see Fig. 1). Under transverse compression, the shape

of this molecular structure is completely determined by

the shape of its cross section. Suppose the nanotubes of

the array lie along the z axis, and the graphene sheets

bounding the array — be parallel to the xz plane. In the

transverse section (in the xy plane), the array of CNTs

will have the form of a multilayer system of cyclic chains

lying between the linear chains. Therefore, it is convenient

to describe the array using the two-dimensional model,

in which to graphene sheets correspond the linear molec-

ular chains [36], and nanotubes — the cyclic molecular

chains [38].

Under transverse compression, the cross-sectional shape

of a nanotube completely describes its deformation. There-

fore, the compression of a bundle of parallel nanotubes

can be described as a deformation of their cross sec-

tions. This approach allows one to significantly reduce

the dimensionality of the simulated molecular system. This

model has been successfully used earlier to simulate rolls

of graphene nanoribbons [36], to winding nanoribbons on

nanotubes [38], to transverse compression of a nanotube

bundle [37] and to analyze the mechanical properties of

single-walled and multi-walled nanotubes located on flat

substrates [39,40].

When a graphene sheet (nanoribbon) is section in the

zigzag direction, it looks like a homogeneous chain with a

step R0 = rc

√
3/2 = 1.228 Å (rc = 1.418 Å is the valence

bond length C−C). The Hamiltonian of the cross section for

the graphene sheet will have the form

Hr =

Nr
∑

n=1

[

1

2
M(u̇n, u̇n) + V (Rn) + U(θn) + W0(yn)

]

, (1)

where the two-dimensional vector un = (xn, yn) specifies

the coordinates n-th atom of the chain, M = 12mp — the

mass of the carbon atom (mp = 1.6603 · 10−27 kg— proton

x

y z

Figure 1. Scheme for 2D model building Ny -layer array of

parallel CNTs lying between flat substrates formed by multilayer

graphene sheets. There are shown Ny = 3 layers of nanotubes with

a chirality index (10,0) lying between flat three-layer graphene

sheets, and the corresponding 2D model of the system. The CNTs

system is compressed along the y axis, and periodic boundary

conditions are used along the x axis.

mass), the number of chain atoms Nr is determined from

the nanoribbon length L = Nr R0.

The potential

V (R) =
1

2
K(R − R0)

2, (2)

describes the longitudinal stiffness of the chain, K —
the stiffness of the interaction, R0 — the equilibrium

bond length (chain pitch), Rn = |vn| — distance between

neighboring nodes n and n + 1 (vector vn = un+1 − un).

The potential

U(θ) = εθ[1 + cos(θ)], (3)

describes the bending stiffness of the chain, θ — the

angle between two adjacent bonds, the cosine of the

n-th
”
valence“ angle cos(θn) = −(vn−1, vn)/Rn−1Rn.

The parameters of the potentials (2) and (3) are de-

termined in [36,41] from the analysis of the dispersion

curves of the graphene nanoribbon: longitudinal rigidity

K = 405N/m, energy εθ = 3.5 eV.

In the Hamiltonian (1), the potential W0(y) describes the

interaction of the chain nodes with the substrate formed

by the flat surface of the molecular crystal. We assume

that the surface of the substrate coincides with the plane

y = 0. To determine this potential, the dependence of the

interaction energy of the carbon atom with the substrate on

its distance y from the flat surface of the crystal was found

numerically. Calculations [39,42] showed that the interaction

energy W0(y) can be described with good accuracy by the
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Lennard–Jones potential (k, l)

W0(y) = ε0[k(d0/y)l − l(d0/y)k ]/(l − k), (4)

where the degree l > k , ε0 is the binding energy of the atom

with the substrate, d0 is the equilibrium distance to the plane

of the substrate. For a flat surface of the hexagonal boron

nitride’s crystal (h-BN), the binding energy ε0 = 0.0903 eV,

the equilibrium distance d0 = 3.45 Å, the powers l = 10

and k = 3.75.

The cross section of a CNT with the chirality index

(m, 0) consists of Nt = 2m carbon atoms, each of which

describes the displacements of a straight line of nanotube

atoms parallel to the z axis. The Hamiltonian of the cross

section of a CNT (for cyclic chain of Nt atoms) will have

the form

Ht =

Nt
∑

n=1

[

1

2
M(u̇n, u̇n) + V (Rn) + U(θn)

+
1

2

Nt
∑

l=1, |l−n|>4

W1(rn,l)

]

, (5)

where the potential W1(rn,l) describes weak nonvalent

interactions of remote nodes of the chain n and l,
rn,l = |ul − un| — distance between nodes (the difference of
indices |n − l| is determined taking into account the cyclic

nature of the chain). This potential will also be used to

describe the interaction between nodes of different chains.

The non-valence interaction energy of chain nodes can be

described with high accuracy [42] by the Lennard–Jones
potential (5,11)

W1(r) = ε1[5(r0/r)11 − 11(r0/r)5]/6, (6)

with equilibrium length r0 = 3.607 Å and interaction

energy ε1 = 0.00832 eV.

3. Model of a limited multilayer array
of nanotubes

Let us consider the system of parallel Nxy = Nx Ny single-

walled CNTs (m, 0) limited above and below by two-

layer graphene sheets located between two flat substrates

(Nx is the number of nanotubes in one layer parallel to the

substrate, Ny is number of layers), see the left side of Fig. 1.

Along the x axis, we will use periodic boundary conditions

with the period ax .

Let’s the coordinates of the k-th nanoribbon (k-th linear

chain, k = 1, . . . , 4) are defined by the 2Nr --dimensional

vector xk = {(x k,n, y k,n)}Nr
n=1, Nr R0 = ax . Then the nanorib-

bon deformation energy

P1(xk) =

Nr
∑

n=1

[V (Rk,n) + U(θk,n) + W (y k,n)], (7)

where the interaction energy of the chain nodes with

a flat substrate is W (y k,n) = W0(y k,n) for k = 1.2 and

W (y k,n) = W0(h − y k,n) for k = 3, 4. Here, h is the distance

between the surfaces of flat substrates, the first two chains

interact with the first (lower) substrate, the second two —
with the second (upper) substrate.

The coordinates of the k-th cyclic chain,

the (k − 4)-th nanotube, are specified by the

2Nt -dimensional vector xk = {(x k,n, y k,n)}Nt
n=1, Nt = 2m,

k = 5, 6, . . . , Nc , where Nc = 4 + Nxy is the number of all

chains. Nanotube deformation energy

P2(xk)=

Nt
∑

n=1

[

V (Rk,n) + U(θk,n) +
1

2

Nt
∑

l=1, |l−n|>4

W1(rk,n,l)

]

.

(8)

Interaction energy of chains (nanoribbons and nanotubes)

with coordinatesxk i = {uk i ,n}
Nki
n=1, i = 1, 2,

P3(xk1
, xk2

) =

Nk1
∑

n1=1

Nk2
∑

n2=1

W (rk1,n1 ;k2,n2), (9)

where the distance between the nodes of the chains is

rk1,n1 ;k2,n2 = |uk2,n2 − uk1,n1 |, the number of links in chains

Nk = Nr for k = 1, . . . , 4 and Nk = Nt for k = 5, . . . , Nc .

The potential energy of an array of nanotubes, taking into

account the periodic boundary condition along the x axis,

will have the form

E =

4
∑

k=1

P1(xk) +

Nc
∑

k=5

P2(xk) + P3(x1, x2) + P3(x3, x4)

+

4
∑

k1=1

Nc
∑

k2=5

[P3(xk1
, xk2

) + P3(xk1
, xk2

+ axex )]

+

Nc−1
∑

k1=5

Nc
∑

k2=k1+1

[P3(xk1
, xk2

) + P3(xk1
, xk2

+ axex)],

(10)

where 2Nt -dimensional vector ex = {(1, 0)}Nt
n=1.

4. Stationary states of a compressed
multilayer array of nanotubes

To find the stationary state of a multilayer array of CNTs,

it is necessary to solve the problem in the minimum energy

of the system

E → min : {xk}Nc
k=1. (11)

The problem in the minimum energy (11) was solved

numerically by the conjugate gradient method. Each

stationary state of the array

{[(x0
n,k , y0

n,k)]
Nk
n=1}Nc

k=1

will be characterized by specific energy Ea = E/Na , where

Na =
∑Nc

k=1 Nk = 4Nr + Nxy Nt — the total number of
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atoms in the chain system, and the pressure on the plane of

the substrate

P =
1

2ax a z

2
∑

k=1

Nr
∑

n=1

[W ′
0(h − y0

k+2,n) −W ′
0(y

0
k,n)],

where the prime mark denotes the derivative of the

function, a z =3rc/2 is the width of the cross section of

the CNT array.

The analysis of the possible stationary states of single-

walled CNTs on a flat substrate [39] shows that a nanotube

with chirality index (m, 0) has only one stable configuration

at m < 32 and two stable configurations (a configuration

with an internal cavity and configuration without a cavity) at
m ≥ 32. Therefore, it should be expected that the packing of

nanotubes at m > 32 (with a diameter of D > 2.5 nm) can

have many stable stationary states, which will differ from

each other by the fraction of nanotubes in the collapsed

state.

Let us consider arrays of nanotubes with three character-

istic values of the chirality index m = 15, 30, 60 (isolated
nanotubes with these indices have diameters D = 1.17,

2.35, 4.69 nm).
First, let’s consider the array of CNT (15,0) with the

number of layers Ny = 11, the number of nanotubes in

one layer Nx = 18 and the period ax = 26.765 nm (number

of atoms in the linear chain Nr = 217) — see Fig. 2, a.

The numerical solution of the problem in the energy

minimum (11) showed that an 11-layer bounded array

of CNTs without compression has the thickness (distance
between compressing planes) h0 = 16 nm. By successively

decreasing the distance h, when solving the problem in the

minimum energy, we will obtain stationary states of an array

of CNTs with any value of h < h0.

The characteristic form of the stationary state of the

array of CNTs for various values of h is shown in Fig. 2.

The dependence of the array energy Ea and the pressure

on the substrate walls P on h is shown in Fig. 3, a, b.

The analysis of the change in the cross section structure

of the array with a decrease in its thickness showed that

there are two characteristic values h1 = 14.9, h2 = 11.3 nm,

at which the type of array of nanotubes compression is

changing. For h > h1, uniform compression of all nanotubes

occurs, at which they retain their cylindrical shape (see
Fig. 2, a). For h1 < h < h2, nanotubes are compressed

inhomogeneously, from the start, regions of strongly and

weakly compressed nanotubes are formed (see Fig. 2, b),
and further compression leads to an increase of the first

region (see Fig. 2, c). For h < h2, the region of weakly

compressed nanotubes disappears, and strongly compressed

nanotubes are flattening (see Fig. 2, d, e). For h2 < h < h1,

the energy of the Ea array increases linearly with decreasing

thickness, while the pressure on the walls P remains almost

constant.

The dependences of the energy Ea and pressure P on the

thickness of the 11-layer array of nanotubes (30.0) also have

the similar form (see Fig. 4, a,b). Here, the characteristic

a

b

c

d

e

Figure 2. The form of stationary states for the layered structure of

Nx × Ny nanotubes with a chirality index (15.0) and two boundary

two-layer graphene sheets (number of nanotubes in one layer

Nx = 18, number of layers Ny = 11, number of links in each cyclic

chain Nt = 30, the number of links in the linear chain Nr = 217)
with the distance between the compressive planes of the substrates:

(a) — h = 15.87, (b) — 14.27, (c) — 12.77, (d) — 11.37 and

(e) — 10.37 nm. Thick horizontal straight lines show contraction

planes, dotted vertical ones show boundaries of the periodic cell

(period ax = 26.765 nm).
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thicknesses are h0 = 26.6, h1 = 25.8 and h2 = 15.0 nm. It

should be noted, that the compression of the array of

nanotubes (15,0) and (30,0) occurs elastically, when the

compressing walls are released, the array always returns to

the ground uncompressed state.

The compression of an array of large-diameter nanotubes

occurs according to a different scenario, which is associated

with their bistability (nanotubes can be in two stable states:

in open (cylindrical) and in imploded (collapsed) states).
The CNTs array (60.0) is compressed due to the collapsing
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Figure 3. Dependence (a) of specific energy Ea , (b) of

pressure P and (c) of heat flux magnitude J for the lay-

ered structure Nx × Ny of nanotubes (15,0) on the distance

between the compressing planes h at the temperature of the

boundary thermostats T± = T ± 1T (Nx = 18, Ny = 11, Nt = 30,

Nr = 217, ax = 26.765 nm). Curve 1 defines the dependence for

T± = 150± 15K, curve 2 — for T± = 300± 30K, curve 3 — for

T± = 600± 60K. The vertical dotted lines show the characteristic

values of h = h1 = 14.9 and h = h2 = 11.4 nm.
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Figure 4. Dependence (a) of specific energy Ea , (b) of

pressure P and (c) of heat flux magnitude J for the layered

structure Nx × Ny of nanotubes (30,0) on the distance between

the compressing planes h at the temperature of the boundary ther-

mostats T± = 300± 30K (Nx = 18, Ny = 11, Nt = 60, Nr = 392,

ax = 48.145 nm). The vertical dotted lines show the characteristic

values of h = h1 = 25.8 and h = h2 = 15.0 nm.

for a part of the nanotubes. The number of collapsed

nanotubes increases monotonically with decreasing h, and
the energy of the array initially decreases slightly, then

also increases, while the pressure on the compressing walls

does not change (see Fig. 5, a, b). This occurs until the

characteristic value of the array thickness h = h2 is reached,

at which all nanotubes are already in the collapsed state.

Further compression already leads to a sharp increase in

energy and pressure.

The array of Ny = 11 layers of open nanotubes (60,0)

has a thickness of h0 = 38.9 nm. For h > h2 = 16 nm, the

array is compressed only due to an increase in the fraction

of collapsed nanotubes. Such compression is not elastic,

it (only due to the collapse of a part of the nanotubes)

transfers the array from one stable state to another one.
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Figure 5. Dependence (a) of specific energy Ea , (b) of

pressure P and (c) of heat flux magnitude J for the layered

structure Nx × Ny of nanotubes (60,0) on the distance between

the compressing planes h at the temperature of the bound-

ary thermostats T± = 300± 30K (Nx = 18, Ny = 11, Nt = 120,

Nr = 841, ax = 103.294 nm). The vertical dotted lines show the

value of h = h2 = 16.0 nm.

Compression becomes elastic only at h < h2, when all

nanotubes in the array are in a collapsed state.

5. Heat transfer transversely the
multilayer array of CNTs

Let us simulate heat transfer transversely the multilayer

array of CNTs and analyze the dependence of the heat

flux on the thickness of the compressed array. To do this,

we place the lowest linear chain with number k = 1 into

the Langevin thermostat with temperature T+ = T + 1T ,
and the topmost chain with k = 4 — into the thermostat

with temperature T− = T − 1T , where T is the average

temperature of the system, and 21T is the temperature

difference of thermostats.

The dynamics of the considered system of molecular

chains is described by the system of Langevin equations

M ẍk = − ∂E
∂xk

− ŴM ẋk − 4k , k = 1, 4 (12)

M ẍk = − ∂E
∂xk

, k = 2, 3, 5, 6, . . . , Nc , (13)

where x k is the 2Nk -dimensional vector that specifies the

coordinates of k-th chain, E is the potential energy of

the chain system (10), Ŵ = 1/tr is the friction coefficient

characterizing the intensity of interaction of the outermost

linear chains with thermostats (time of particle velocity

relaxation due to interaction with the thermostat tr = 1 ps),
4k = {(ξk,n,1, ξk,n,2)}Nr

n=1 is 2Nr -dimensional vector of nor-

mally distributed random Langevin forces with correlation

functions

〈ξk1,n1,i (t1)ξk2,n2, j(t2)〉 = 2MkBTk1
Ŵδk1k2

δn1n2δi jδ(t1 − t2)

(kB is the Boltzmann constant, Tk = T ± 1T is the thermo-

stat temperature).

It is convenient to define the value of the heat flow

through the array as the value of the heat flow between

the edge linear chains with k = 1.2 and k = 3.4

J1,2 =

Nr
∑

n1=1

Nr
∑

n2=1

(u̇2,n2 , F1,n1 ;2,n2),

J3,4 =

Nr
∑

n1=1

Nr
∑

n2=1

(u̇4,n2 , F3,n1 ;4,n2),

where the force vector is

Fk1,n1 ;k2,n2 = (uk2,n2 − uk1,n1)W
′
1(rk1,n1 ;k2,n2)/rk1,n1 ;k2,n2 ,

a rk1,n1 ;k2,n2 = |uk2,n2 − uk1,n1 | — the distance between

node n1 of chain k1 and node n2 of chain k2.

Let us integrate numerically the system of motion

equations (12), (13). As the initial condition, we define the

stationary state of the compressed nanotube array {x0k}Nc
k=1

(let us assume that {xk(0) = x0k , ẋk(0) = 0}Nc
k=1). Initially,

we integrate the system of motion equations in the course of

time t0 until the linear temperature profile and the stationary

heat flux are formed in the array, integrating further, we find

the temperature distribution in the chains system

Tk = lim
t→∞

M
2Nk kB(t − t0)

t0+t
∫

t0

(

ẋk(τ ), ẋk(τ )
)

dτ ,

k = 1, 2, . . . , Nc , and the value of the specific heat flux

through the CNT array

J = 〈J1,2〉 = 〈J3,4〉, (14)
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Figure 6. Transverse temperature profile of compressed layered

structure of Nx × Ny nanotubes with the chirality index of (15.0)
and two boundary two-layer graphene sheets (Nx = 18, Ny = 11,

Nt = 30, Nr = 217) at a distance between the compressive planes

h = 12.97 nm. At the top one period of the layered structure

(ax = 26.765 nm) is shown, at the bottom the dependence of the

structure temperature T on the transverse coordinate y is shown.

Temperature of edge thermostats T± = 300± 30K.

where the heat flux between adjacent linear circuits is

〈Jk1,k2
〉 = lim

t→∞

1

(t − t0)ax a z

t0+t
∫

t0

Jk1,k2
(τ )dτ .

The fulfillment of equality (14) can serve as the criterion for

the accuracy of calculations.

The characteristic temperature distribution transversely

the multilayer CNT array is shown in Fig. 6. As can be seen

in the figure, the linear temperature gradient is formed in the

array between the two-layer graphene sheets bounding it.

Numerical simulations of heat transfer showed that the

form of the previously obtained dependences of the specific

energy Ea and the pressure on the compressing planes P
on the distance between them (on the thickness of the

CNT array) h is practically independent of the temperature

value (see Fig. 3, a, b). The heat flux magnitude transversely

the array, normalized to the temperature difference of the

edge thermostats J/1T , also weakly depends on the average

temperature value of the array T , but depends significantly

on the transverse compression of the array h (see Fig. 3, c).
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Figure 7. Dependence of (a) pressure P and (b) multiple of

the number of the heat flux layer magnitude JNy for the layered

structure Nx × Ny of nanotubes (15.0) on relative compression

array (h − 4d0)/Ny at temperature of boundary thermostats

T± = 300± 30K (Nx = 18, Nt = 30, Nr = 217, ax = 26.8 nm).
Curves 1 and 2 are for the structure of Ny = 5 layers, curves 3

and 4 are for Ny = 11, curves 5 and 6 are for Ny = 22.
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In an array of nanotubes with chirality index of (15.0)
(in an array of nanotubes of small diameter) at h > h1 and

h < h2, when uniform compression of all nanotubes occurs,

the heat flux magnitude J increases linearly with approach-

ing the walls compressing the array (as h decreases). But

for h2 < h < h1, when nonuniform compression of the CNT

array occurs, the heat flux magnitude practically does not

change when the walls approach each other (see Fig. 3, c).
With an increase in the number of layers of nanotubes

in the array, the heat flux magnitude can even decrease

under transverse compression of the array (see Fig. 7, b).
Please note that the dependence of the pressure P on the

compressive walls on the relative transverse compression

of the array (h − 4d0)/Ny is practically independent of the

number of layers Ny (see Fig. 7, a). It also follows from

the figure that, for all values of relative compression, the

heat flux magnitude multiplied by the number of layers JNy

increases with the number of layers, i.e., for the considered

maximum number of layers Ny = 22, the convergence of

the transverse thermal conductivity of the CNT array does

not occur (with convergence, there should be the finite limit

limNy→∞ JNy).
For (30.0) and (60.0) nanotubes, transverse compression

of their multilayer arrays for h > h2 always leads to a slow

but linear increase in the heat flux magnitude J (see Fig. 4, c
and 5, c). Therefore, it is possible to most effectively

change the magnitude of the heat flux during transverse

compression only for multilayer arrays of small diameter

nanotubes (for CNT (15.0)).

6. Conclusion

The study carried out shows that the transverse com-

pression of a multilayer CNT array can occur uniformly,

when all nanotubes in the array are equally compressed,

and inhomogeneously, when some of the nanotubes are

compressed strongly, and some one are weakly compressed.

The uniform compression scenario is realized under weak

compression, when all nanotubes remain in the open state,

or under very strong compression, when all nanotubes

are in the flattened state. With medium compression,

the heterogeneous scenario is always realized. Numerical

simulation of heat transfer across the array showed that with

uniform compression of the array, its thermal conductivity

increases. Under inhomogeneous compression of the array,

the thermal conductivity does not change, and with the

large number of layers of nanotubes, it can even decrease.

This effect is most noticeable for nanotube arrays of small

diameter (D < 2 nm).
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[28] G. Gao, T. Çağin, W.A. Goddard III. Nanotechnology 9, 184

(1998).
[29] J. Xiao, B. Liu, Y. Huang, J. Zuo, K.-C. Hwang, M.-F. Yu.

Nanotechnology 18, 395703 (2007).
[30] T. Chang. Phys. Rev. Lett. 101, 175501 (2008).

Physics of the Solid State, 2022, Vol. 64, No. 3



The change in the thermal conductivity of a multilayer array of carbon nanotubes during... 387

[31] J.A. Baimova, Q. Fan,1 L. Zeng, Z. Wang, S.V. Dmitriev,

X. Feng, K. Zhou. J. Nanomater. 2015, 186231 (2015).
[32] A. Impellizzeri, P. Briddon, C.P. Ewels, Phys. Rev. B 100,

115410 (2019).
[33] M.M. Maslov, K.S. Grishakov, M.A. Gimaldinova, K.P. Katin.

Fuller. Nanotub. Car. Nanostructures 28, 97 (2020).
[34] A.Y. Cao, P.L. Dickrell, W.G. Sawyer, M.N. Ghasemi-Nejhad,

P.M. Ajayan, Science 310, 1307 (2005).
[35] L.K. Rysaeva, E.A. Korznikova, R.T. Murzaev, D.U. Ab-

dullina, A.A. Kudreyko, J.A. Baimova, D.S. Lisovenko,

S.V. Dmitriev. Facta Univ. Ser. Mech. Eng. 18, 1 (2020).
[36] A.V. Savin, E.A. Korznikova, S.V. Dmitriev. Phys. Rev. B 92,

035412, (2015).
[37] E.A. Korznikova, L.K. Rysaeva, A.V. Savin, E.G. Soboleva,

E.G. Ekomasov, M.A. Ilgamov, S.V. Dmitriev. Materials 12,

3951 (2019).
[38] A. Savin, E. Korznikova, S. Dmitriev, E. Soboleva, Comp.

Mater. Sci. 135, 99 (2017).
[39] A.V. Savin, O.I. Savina. Physics of the Solid State 61, 11, 2257

(2019).
[40] A.V. Savin, O.I. Savina. Physics of the Solid State 63, 1, 137

(2021).
[41] A.V. Savin, E.A. Korznikova, S.V. Dmitriev. Physics of the

Solid State 57, 11, 2278 (2015).
[42] A.V. Savin, E.A. Korznikova, S.V. Dmitriev. Phys. Rev. B 99,

235411 (2019).

6∗ Physics of the Solid State, 2022, Vol. 64, No. 3


