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Based on the current-voltage characteristics of single colloidal QDs -InSb, -PbS, -HgSe, -CdSe quantum dots,

on random samples statistically determined and investigated the mechanisms of barrier and ballistic tunneling,

Coulomb confinement, quasi-periodic modulation of electron transport in the model of a deep extended potential

well and depending on QDs size and de Broglie wavelength for the electron. The possibility of manifestation of

Bloch oscillations has been experimentally confirmed. The parameters of all investigated processes were determined

and tabulated.
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Properties of the electron transport in quantum-size

particle (QP) are their major characteristic, and studying of

its mechanisms is of big scientific and practical importance.

A detailed investigation is carried out of the mechanism

of tunnel jump over a single ultra-small (∼ 1 nm) QP that

takes place under the energy condition required for such

a jump [1]. A model of single-electron transport in QP

as a large atom is investigated [2]. A number of works,

for example [3–5], investigated the electron transport for

the cases of a complex configuration composed of several

interrelated QPs. In contrast to the above-mentioned cases,

interesting is the case of large (up to 10 nm) quantum-

size particle as a deep extended potential well with an

electron inside moving in conditions of size quantization

and resonance state. A detailed theoretical consideration

of all possible variants of electron transport through a

nanoparticle is carried out in [6]. There are extremely

few experimental investigations in this field, which may be

caused by technological difficulties of producing quantum-

size particles.

In this work we experimentally studied and explained

properties of the electron transport using single quantum-

sized nanoparticles of the most interesting semiconductors

synthesized by us: InSb, PbS, HgSe, CdSe. The specimens

were synthesized using technologies described in a number

of our works, with selection of required conditions for

different variants of composition [7,8]. Each lot of specimens

was controlled on a random sample of QPs by methods of

scanning electron microscopy used to control stoichiometric

composition and transmission electron microscopy (TEM)

used to control geometry and sizes. QP samples were

selected for the measurements as polygonal nanocrystals

with minimum dispersion of dimensions.

The study was carried out on the basis of current-

voltage curves (CVC) measured at room temperatures

by the method of scanning probe microscopy developed

and described in our works [9,10]. Immediately before

the measurements the nanoparticles were made free from

ligands by sediment detachment through centrifugation and

redispersion in hexane and set out as an island monolayer

on a conducting substrate using the technology of the

Langmuir−Blodgett film (LBF) [11]. Fig. 1 shows TEM-

images of QP sample fragments in a LBF-matrix. In each

specimen at least 20 points-particles of random samples

were measured. For each of four types of specimens a

total of at least 200 points-particles were measured.

The main experimental and calculated data, as well as

parameters of semiconductors are represented in the table:

Eg — energy gap width, m — effective mass, m0 — free-

electron mass [12].

Fig. 2 shows typical CVCs having three variants of

curve shape in each of four groups: without singularities

(curves 1, 1’); with poor singularities (curves 2, 2’) and with

definite singularities (curves 3, 3’). In this case statistical

fractions p of QP number with definite singularities of CVC

were distributed as shown in the table.

CVCs of nanoparticles without singularities, as shown in

a number of our works [10,13], are defined by mechanisms

of electron tunneling through potential barrier (the barrier

tunneling) (I ∼ exp[αV ]) and Coulomb current limitation

by space charge (I ∼ V β). Fig. 3, a, b shows an example

of CVCs for QP-InSb that make it possible to conclude

that in the interval of low voltages V current I is limited

by the limitations of Coulomb’ law, and in the interval

of high voltages it is limited by tunneling. The same

regularities were observed for other variants. The table

shows statistically average values determined for α and β

54



Electron transport in single colloidal quantum dots in an interelectrode... 55

50 nm 50 nm 50 nm

1 2 3

Figure 1. TEM-images of LBF-monolayers of QP-CdSe (1), QP-InSb (2), QP-PbS (3).

Summary

Semi- Eg , m/m0 α β a , Ẽ1, Ẽ2, Ẽexp, n 31, 32, p, ∼ 1Ẽ, ∼ 1Ẽexp, γ

conductor eV nm eV eV eV nm nm % eV eV

InSb 0.23 0.014 1.4 2.4 2−4 2.5 10 3.2 1 5.3 2.7 70 0.3 0.3 1.18

PbS 0.41 0.08 3.4 3.6 2−5 0.35 1.4 1.2 2 5.6 2.8 50 0.15 0.15 1.38

HgSe ∼ 0.1 0.045 1.8 1.5 3−7 0.2 0.8 0.9 2 5.3 2.6 45 0.1 0.1 1.72

CdSe 1.74 0.13 2.7 1.1 3−5 0.15 0.6 0.7 2 8.0 3.5 30 0.1 0.1 1.94

parameters, that make it possible to conclude that from the

QP-CdSe specimen to the QP-InSb specimen α decreases

due to decrease in the effective electron mass, while β

increases due to increase in their mobility. An exception

is the QP-PbS, which are characterized by a string impact of

polarization effects due to high values of dielectric constant.

The size quantization properties in QP are defined

by processes of electron motion in it described by the

Schrodinger’s equation. Solution to the equation exists

only for a countable set of energy values Ẽn and is a set

of wave functions countable by quantum numbers n that

form a general solution as an additive superposition of

particular solutions [6]. For the case of one-dimensional

linear motion in a deep rectangular potential well with

a width of a the solution to the Schrodinger’s equation

with respect to eigenfunctions Ẽn and formula for the de

Broglie wavelength 3 can be obtained in the following

form [6]: Ẽn ∼ h2n2(8ma2)−1; 3 ∼ h(2mẼn)
−1/2 (h —

Plank’s constant).

In a QP, as a deep elongated potential well, a selection

of electron steady states takes place. Any affecting energy

impact on an electron in the QP results in its transition

from one steady state to another. The stability of state

of an electron moving in a deep elongated potential well

and the shape of its standing wave function may mean that

its motion between the QP boundaries has a quasiperiodic

resonance character. The most important specifics of motion

of an electron injected into QP is the manifestation of

quasiperiodic oscillations of the transmission coefficient

with changes in the electron energy [6]. In our case it is

manifested as pulsations of current. It can be interpreted

physically as a result of interference of the de Broglie

waves reflected from potential jumps at the boundary of

the potential well.

The crystalline structure, expressed in the polygonal

shape of the nanocrystal, and the size of QP are critical

for all processes of size quantization. In our case all

nanocrystals, except for QP-CdSe, have cubic crystal system,

and we can presumably consider the most simple variant of

resonance motion of the electron — between parallel planes

of a right parallelepiped with maximum distance between

them equal to one of dimensions of the QP. Actually, the

results of CVC measurements will be dependent on the

positioning of the QP monocrystal between electrodes in

the nanogap in relation to field lines. Direct measurements

of dimensions by TEM method for the selected lots of

samples allowed us to obtain information on dispersions

of a dimensions (see the table).

For values of a energies were calculated in resonance

states n = 1 (Ẽ1) and n = 2 (Ẽ2) (see the table) by the fol-

lowing formula: Ẽn ∼ h2n2(8ma2)−1
∼ 0.3n2(a2m/m0)

−1.

The calculated values can be compared with the voltages

in the points of CVC singularities — Ẽexp (see the

table). The table also shows de Broglie wave-

lengths for electron calculated by the following formula:

3 ∼ h(2mẼn)
−1/2

∼ 1.2(Ẽnm/m0)
−1/2 . In the process of all

calculations a and 3 are expressed in nanometers, Ẽn — in

electron-volts.

The degree of manifestation of the size quantization in

QP depends on the ratio between a and 3. With a > 3 it

does not manifest and the CVC has almost no nonlinear

distortions (curves 1, 1’ in Fig. 2). With a ∼ 3 the
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Figure 2. Current-voltage curves of quantum-sized particles.

a — QP-InSb (transition coefficient K = 1) (1−3) and QP-HgSe

(K = 2.5) (1’−3’); b — QP-PbS (1−3).

size quantization is poorly manifested, the CVC follows

the shape of the previous case, but is characterized by

quasiperiodic nonlinear distortions (curves 2, 2’ in Fig. 2).
With a < 3 the size quantization is severely manifested,

the CVC in the figures has the shape of curves 3, 3’.

In this case, the lower is dispersion of a dimensions in

relation to 3, the greater is the fraction of p curves with

singularity. With increase in the manifestation of size

quantization a significant increase in current is observed

(curves are shifted left in Fig. 2), which can be explained

by competitive predominance of the size quantization and

resonance motion over the mechanisms of barrier tunneling

and Coulomb current limitation by space charge.

In case of finite motion of electron in QP Bloch

oscillations are theoretically possible [14]. However, in

this case, the main obstacle for them is their short life

time caused by the electron scattering on defects of the

crystal lattice and phonons. In a quantum-size particle with

dimensions of a ∼ 3 the electron moves in a ballistic and,

perhaps, resonant manner, as if it
”
does not respond“ to

the structural interference, and the path of its motion in a

three-dimensional QP
”
is selected“ by quantum selection of

impulse in the Brillouin zone. These circumstances may be

indicative of a real possibility of Bloch oscillations acting

in the QP in the case of current flow or any other energy

impacts on the electron. This can explain the behavior of

such CVCs as curves 2 in Fig. 2 with a character similar to

the Coulomb staircase. The energy step 1V ∼ 1Ẽ of this

oscillation in CVCs can be calculated by differentiating the

formula for the energy of electron as a function of Ẽ(a):
1Ẽ ∼ 0.6a3(m/m0)

−11a . By assuming 1a equal to the

lattice spacing of the QP nanocrystal, approximate values of

1Ẽ can be calculated and compared with the data obtained

from curves 2 in Fig. 2 — 1Ẽexp (see the table).

With applied voltage V from zero and above, the electron

injected from the electrode to the QP is transferred to a

steady resonant state of n = 1. The first zone of singularity

V1 ∼ Ẽ1 is manifested on the CVC. With further increase

in V the electron is removed from this state by tunneling

through the boundary and creating current until some next

electron is transferred to the steady resonant state of n = 2.

In this case, the second zone of singularity V2 ∼ Ẽ2 is

manifested on the CVC. CVC of the transition gap is defined

by the ballistic tunneling of electrons that are successively

flowing through the QP as a rectangular potential barrier.

The probability of this tunneling can be calculated as

follows [15]:

exp[−a [8m(Ẽ −V )]1/2/h] ∼ exp[−γ(n2
− 3Va2m/m0)

1/2].

Here γ > 1, an artificially introduced parameter, takes into

account the decrease in the probability of electron tunneling

due to deviation of its wave vector from the electric field line

depending on the electron velocity (energy) : the higher is

the energy Ẽ1,2, the lower is γ , that follows from the table

as well.

Fig. 3, c shows CVCs plotted in accordance with

the following formula: I ∝ exp[−γ(n2
− 3Va2m/m0)

1/2]
or I ∼ I0 exp[−γC], while the table shows values of γ .

Here we have introduced C, a dimensionless parameter

depending on voltage.

Thus, the electron transport in single colloidal quantum-

sized particles of InSb, PbS, HgSe, CdSe semiconductors

is defined by the character of current-voltage curves having

three variants depending on the ratio between the particle

size and de Broglie wavelength for the electron: 1) smooth

monotone curve caused by mechanisms of barrier tunneling

and Coulomb limitation; 2) quasiperiodic modulated curve

similar to the Coulomb staircase; 3) curve with clearly

manifested singularities in the form of sharp oscillations of

current in some voltage ranges defined by the energies of

quantum selection. Observed singularities are defined by the

mechanism of size quantization and the state of periodically-

oscillating resonance of the electron motion between QP

boundaries, while the quasiperiodic modulation can be

explained by the model of Bloch oscillations. In this work

the parameters that characterize the observed phenomena

and properties are determined and represented in a tabular

form.
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Figure 3. Current-voltage curves of QP-InSb in coordinates of formulae of tunneling (a) and Coulomb limitation (b). c — curves

ln I ∼ C = (n2
− 3Va2m/m0)

1/2: 1 — QP-HgSe, a = 4 nm, n = 2; 2 — QP-CdSe, a = 4 nm, n = 2; 3 — QP-InSb, a = 3 nm, n = 1; 4 —
QP-PbS, a = 5.5 nm, n = 2.
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