11,05

Температурные исследования магнитных свойств при анализе структурно-фазового состояния модельного нанокомпозита состава карбидостали

© А.И. Ульянов, А.А. Чулкина[¶], А.Л. Ульянов

Удмуртский федеральный исследовательский центр УрО РАН, Ижевск, Россия

[¶] E-mail: chulkina@udman.ru

Поступила в Редакцию 17 мая 2022 г. В окончательной редакции 17 мая 2022 г. Принята к публикации 22 мая 2022 г.

Исследованы фазовый состав, магнитное состояние фаз и их влияние на формирование магнитных гистерезисных свойств нанокомпозита состава (Fe_{0.85}Mn_{0.10}Ni_{0.05})₈₃C₁₇ после механосинтеза и последующих отжигов. Показано, что, хотя зависимости коэрцитивной силы от температуры отжига $H_c(T_{ann})$ сплава, измеренные при комнатной температуре и при T = -196°C, представляют собой кривые с максимумами, формирование H_c обеспечивается разными механизмами. При комнатной температуре измерения максимальное значение H_c композита формируется в результате приближения размера выделений ферритной фазы к критическому размеру однодоменности, а при низкой температуре — изменением при отжигах структурного состояния цементита.

Ключевые слова: нанокристаллические Fe–C–Mn–Ni-сплавы, механическое сплавление, термообработка, коэрцитивная сила, магнитная восприимчивость, температура Кюри, мессбауэровская спектроскопия.

DOI: 10.21883/FTT.2022.10.53104.381

1. Введение

Сплавы на основе системы Fe-C широко используются в различных отраслях промышленности. Традиционные возможности создания новых более прочных материалов на их основе уже в значительной степени исчерпаны. В настоящее время интерес исследователей в значительной мере направлен на изучение наноразмерных структурно-фазовых состояний сталей и сплавов, лежащих, по современным представлениям, в основе повышения их прочностных характеристик [1,2]. Эффективным способом получения наноструктурного состояния объемных материалов считается интенсивная пластическая деформация, возникающая в процессе кручения под высоким давлением или равноканального углового прессования [3,4]. Наноструктурное состояние сплавов на основе железа легко достигается также методом механического сплавления (МС) исходных порошков в шаровой планетарной мельнице [5,6]. Для исследовательских целей этот метод привлекателен тем, что на базе МС-сплавов путем легирования и последующей термической обработки можно получить нанокомпозиты с заданным фазовым составом. Структурнофазовый анализ нанокомпозитов проводят чаще всего рентгеновскими методами. В то же время известна взаимосвязь фазового состава, структурного состояния и легирования фаз с магнитными свойствами, в частности, с намагниченностью насыщения, коэрцитивной силой, температурой Кюри соответственно [7]. Фазы высоколегированных сталей и сплавов в зависимости от

степени легирования могут находиться при комнатной температуре как в ферромагнитном, так и в парамагнитном состоянии. В связи с этим становятся актуальными температурные измерения магнитных характеристик наноструктурных сталей и сплавов. Результаты магнитных измерений могут быть использованы как для подтверждения результатов рентгенофазового анализа, так и для получения более полной информации о структурнофазовом состоянии, в частности, о легировании фаз исследуемых композитов [8,9]. В данной работе для структурных и магнитных исследований был выбран механосинтезированный модельный сплав состава карбидостали (Fe_{0.85}Mn_{0.10}Ni_{0.05})₈₃C₁₇. Выбор марганца в качестве карбидообразующего элемента обусловлен тем обстоятельством, что, во-первых, он способствует упрочнению твердой фазы — цементита. Во-вторых, Мп также является элементом, который расширяет у-область углеродистых сплавов и, следовательно, наряду с Ni будет способствовать формированию более прочной связующей фазы композита — аустенита. Кроме того, легирование Mn эффективно понижает температуру Кюри T_C цементита [10]. В связи с этим появляется возможность исследования закономерностей перераспределения атомов Mn между цементитом и аустенитом в процессе отжигов исследуемого нанокомпозита. Представляет также интерес формирование магнитных гистерезисных свойств нанокомпозита, H_c которого может находиться в сильной зависимости от дисперсности ферромагнитных фаз [11]. Ожидается, что после высокотемпературных отжигов будет сформирован нанокомпозит, состоящий из смеси легированной никелем и, возможно, марганцем связующей фазы — аустенита и твердой фазы — легированного марганцем цементита.

2. Образцы и методы исследования

Модельный сплав (Fe_{0.85}Mn_{0.10}Ni_{0.05})₈₃C₁₇ был получен методом MC смеси порошков карбонильного железа марки OCЧ 13-2 чистотой 99.98%, никеля и марганца чистотой 99.99%, графита чистотой 99.99% в шаровой планетарной мельнице Pulverisette-7 в течение 16 h в атмосфере аргона. Средний размер частиц порошка сплавов ~ 5 μ m. Размольные сосуды мельницы и шары диаметром 8 mm были изготовлены из стали ШХ15. Образцы отжигали в атмосфере аргона на установке по измерению температурной зависимости их дифференциальной магнитной восприимчивости. Скорость нагрева и охлаждения образцов после отжигов составляла 30 deg/min.

Рентгеновские исследования проводили при комнатной температуре на дифрактометре Miniflex 600 в геометрии Брэгга-Брентано в Со K_{α} -излучении. Для расшифровки фазового состава и определения размеров блоков когерентного рассеяния использовали пакет программ для полнопрофильного анализа дифрактограмм [12]. Мессбауэровские спектры получали на спектрометре SM2201DR в режиме постоянных ускорений с источником γ -излучения ⁵⁷Со(Rh). Для восстановления из спектров функции распределения сверхтонких полей P(H) применялся обобщенный регуляризованный алгоритм [13] Удельную намагниченность насыщения и коэрцитивную силу измеряли на вибрационном магнитометре с максимальным намагничивающим полем 13 kA/cm.

Магнитные и мессбауэровские измерения проводили как при комнатной температуре, так и при низких температурах, вплоть до температуры жидкого азота $(-196^{\circ}C)$.

3. Результаты и их обсуждение

Видно, что после МС в сплавах содержатся в основном аморфная фаза и цементит, а также небольшое количество (~ 10 vol.%) χ -карбида и феррита. В процессе отжигов до 500°С происходит преобразование аморфной фазы и χ -карбида в цементит и феррит, начинается формирование аустенита (табл. 1). Фазовые изменения находят отражение на магнитных характеристиках образцов (рис. 1). Из кривой *I* на рис. 1, *a* видно, что удельная намагниченность насыщения σ_s сплава изменяется при этом слабо. В то же время в интервале T_{ann} от 300 до 500°С интенсивно (на порядок) возрастает его коэрцитивная сила H_c (рис. 1, *b*, кривая *I*). Для понимания

Таблица 1. Рентгенофазовый состав композита (Fe_{0.85}Mn_{0.10}Ni_{0.05})₈₃C₁₇

	Фазы, vol.%						
$T_{\rm ann}, \ ^{\circ}{\rm C}$	Аморфная фаза	Цементит	Феррит	χ-карбид	Аустенит		
После МС	44.4	34.1	11.5	10.0	_		
200	29.9	43.6	17.0	9.5	0		
300	25.3	48.2	22.5	3.7	0.3		
400	20.4	51.5	25.6	1.4	1.1		
500	0	66.5	30.1	0	3.4		
600	_	65.0	13.0	_	22.0		
700	_	64.7	1.8	_	33.5		
800	-	59.0	0	—	41.0		

высоких значений H_c сплава после отжига при 500°С необходима информация о магнитном состоянии его фаз, которую могут дать мессбауэровские исследования. На рис. 2, *а* представлены измеренные при комнатной температуре мессбауэровские спектры сплава.

Математическая обработка спектров, проведенная в дискретном представлении, позволяет определять долю атомов железа в фазах и магнитное состояние фаз. Из рис. 2, a и табл. 2 следует, что после отжига при 500°C в композите находятся две основные фазы: феррит (компонента I) и парамагнитный цементит (компонента 3), в которых содержится 41 и 55% от всех атомов Fe сплава соответственно.

В составе образца имеется также небольшое количество ($\sim 4\%$) атомов Fe слабомагнитной фазы (компонен-

Рис. 1. Зависимость от температуры отжига: a — удельной намагниченности насыщения σ_s , b — коэрцитивной силы H_c композита. Температура измерения: I — комнатная, $2 - (-196)^{\circ}$ С.

T °C	Парамагнитные фазы, at.% Fe		Ферромагнитные фазы, at.% Fe	
I _{ann} , C	Аустенит	Цементит	Феррит	Цементит/аустенит
	Из	мерения при комнатной	температуре	•
500	0	55	41	—/4
700	29	68	0	3/—
800	36	61	-	3/—
	Изм	ерения при температуре	$T = -196^{\circ}\mathrm{C}$	
500	0	-	37	63
700	32	_	0	68/—
800	41	_	_	59/—

Таблица 2. Результаты анализа мессбауэровских спектров композита (Fe_{0.85}Mn_{0.10}Ni_{0.05})₈₃C₁₇

Рис. 2. Спектры Мессбауэра композита после отжига при температурах: *a* — 500; *b* — 800°С. Компоненты дискретного разложения: *1* — феррит, *2* — парамагнитный аустенит, *3* — парамагнитный цементит; *4* — слабомагнитный аустенит, *5* — слабомагнитный цементит. Температура измерений — комнатная.

та 4). Исходя из количественных соотношений табл. 1, такой фазой является, скорее всего, легированный аустенит. Таким образом, после отжига при 500°С сплав представляет собой в основном композит, в котором выделения (частицы) феррита находятся в окружении парамагнитного цементита. Коэрцитивная сила феррита обычно не превышает 5–10 А/ст [7]. Но в данном

случае можно предположить, что частицы феррита, изолированные в магнитном отношении, имеют средний размер, близкий к критическому размеру однодоменности *d*_{cr}.

Известно [11,14,15], что в процессе измерения H_c перемагничивание однодоменных частиц железа происходит необратимым вращением намагниченности, что обеспечивает высокие (500 A/cm и выше) значения их H_c . Для частиц железа $d_{\rm cr} \approx 14-18$ nm. Легированные преимущественно Ni частицы Fe имеют, скорее всего, более высокие значения $d_{\rm cr}$, так как для частиц никеля $d_{\rm cr} \approx 72$ nm [14].

У отожженных образцов определили средний размер областей когерентного рассеяния $\langle D \rangle$, которые с большой вероятностью определяют средний размер выделений фаз. Так, например, феррит в образце, отожженном при $T_{\rm ann}=500^{\circ}{
m C}$, имеет $\langle D
angle pprox 60\,{
m nm}$. Принимая во внимание эти данные, можно заключить, что критический размер однодоменности d_{cr} частиц легированного преимущественно Ni феррита находится вблизи ~ 60 nm. Таким образом, повышение значений H_c композита вплоть до 250 A/cm в интервале температур отжигов от 300 до 500°C, обусловлено, скорее всего, приближением среднего размера выделений феррита, находящихся в окружении парамагнитного цементита, к критическому размеру их однодоменности. Предложенный механизм перемагничивания объясняет также уменьшение H_c композита в интервале T_{ann} от 500 до 700°С, в пределах которого интенсивно с ~ 30 vol.% и, практически, до нулевых значений понижается содержание ферритной фазы (табл. 1). В результате H_c композита резко падает до значения $\sim 3 \,\text{A/cm}$ (рис. 1, *b*, кривая 1), которое обеспечивает, как будет показано ниже, фаза слабомагнитного, с Т_С вблизи комнатной температуры, цементита. Спектр Мессбауэра образца, отожженного при 700°С, на рис. 2 не приведен, так как он во многом аналогичен спектру образца после отжига при 800°C.

Уменьшение содержания ферритной фазы в интервале $T_{\rm ann}$ от 500 до 700°С (табл. 1), а также рост количества

Рис. 3. Мессбауэровские спектры и функции P(H) исследуемого композита после отжига при температурах: a - 500; $b - 800^{\circ}$ С. Компоненты дискретного разложения: I - феррит, 2 — парамагнитный аустенит, $3 - ферромагнитные цементит и аустенит (смесь); <math>4 - ферромагнитный цементит. Спектры измерены при <math>T = (-196)^{\circ}$ С.

парамагнитной аустенитной фазы (табл. 1, 2) вызывают снижение σ_s композита (рис. 1, *a*, кривая *I*).

Парамагнитное состояние цементита сплава, находящегося при комнатной температуре, означает, что его Т_С находится в области отрицательных температур. В связи с этим возникает необходимость информации о магнитном состоянии фаз при низких температурах измерений. С этой целью при $T = (-196^{\circ}C)$ были сняты спектры Мессбауэра образцов сплава, отожженных при 500, 700 и 800°С. На рис. 3 представлены (за исключением образца с $T_{ann} = 700^{\circ}$ C) спектры и компоненты дискретной обработки спектров исследуемых образцов. Справа приведены также результаты обработки спектров в непрерывном представлении в виде функции P(H), отражающей распределение сверхтонких магнитных полей Н на ядрах изотопов Fe от атомов ближайшего окружения. Так, для феррита функция P(H) представляет собой ярко выраженный пик с максимумом в поле $H = 337 \,\mathrm{kOe}$ (рис. 3, *a*). Для легированного в основном Mn цементита функция P(H)лежит в интервале полей $\sim 60-230$ kOe (рис. 3, *a* и *b*). Для парамагнитного аустенита максимум функции P(H)находится вблизи поля $H \approx 0$ kOe (рис. 3, *b*). Из рис. 3, *a* и табл. 2 следует, что феррит и цементит сплава, отожженного при 500°C, при Т измерения -196°C находятся в ферромагнитном состоянии (компоненты 1 и 3 на рис. 3, a). В феррите содержится 37% от общего количества атомов Fe сплава. Остальное железо (63 аt.%) находится в цементите и в небольшом количестве (3.4 vol.%, табл. 1) ферромагнитного аустенита. О присутствии в сплаве ферромагнитного аустенита свидетельствует широкое распределение функции P(H) в интервале H от ~ 50 до 300 kOe, разделить которое с распределением функции P(H) ферромагнитного цементита не представляется возможным. Таким образом, при температуре измерения $T = -196^{\circ}$ C композит после отжига при 500°C в магнитном отношении представляет собой выделения ферритной фазы, находящиеся в матрице из магнитожесткого цементита. Коэрцитивная сила выделений феррита в этой ситуации не может быть выше Hc цементита, даже если они после намагничивания находятся в однодоменном состоянии.

После отжигов при 700–800°С композит состоит из смеси фаз — ферромагнитного цементита и парамагнитного аустенита (компоненты 2, 4 на рис. 3, b, табл. 2). Поскольку при температуре жидкого азота цементит после отжигов находится в ферромагнитном состоянии, то зависимость $H_c(T_{ann})$ композита (рис. 1, b, кривая 2) во всем интервале T_{ann} определяются структурным состоянием цементита [9,16] и количеством ферритной фазы. Более высокие значения σ_s зависимости $\sigma_s(T_{ann})$, измеренной при температуре жидкого азота (рис. 1, a), обусловлены, главным образом, переходом цементита из парамагнитного в ферромагнитное состояние.

Переход фаз, в частности цементита, из парамагнитного в ферромагнитное состояние при понижении температуры измерения T позволяет определять его T_C магнитным методом. Информация о T_C цементита открывает возможность исследований перераспределения Мп между фазами композита при отжигах.

Известно несколько магнитных методов определения Т_С ферромагнитных фаз [9,17,18]. В натоящей работе для нахождения Т_С ферромагнитного цементита в области положительных температур измерений Т использован метод температурной зависимости магнитной восприимчивости $\chi(T)$ образцов. При этом T_C фаз определяли по температуре максимумов кривых $\chi(T)$. Были измерены зависимости $\chi(T)$ в процессе охлаждения образцов сплава до комнатной температуры после отжигов в интервале $T_{ann} = 300 - 800^{\circ}$ С. Обнаружено, что после отжига при T_{ann} < 700°С максимумы на кривых охлаждения $\chi(T)$ образцов не наблюдаются. Следовательно, T_C цементита таких образцов находится в области ниже комнатной температуры Troom. Например, кривой 1 на рис. 4 представлена зависимость $\chi/\chi_{20}(T)$, снятая при охлаждении образца после отжига при 500°С. Горизонтальный участок кривой 1 отражает нахождение в образце сильномагнитной ферритной фазы с $T_C > 500^{\circ}$ C. Пологий подъем кривой 1 свидетельствует, во-первых, о приближении температуры измерения к Т_С цементита, которая находится в области ниже T_{room} , а во-вторых, о неоднородном легировании цементита Mn.

Для определения *T_C* легированного Mn цементита, которая находится в области температур измерения

Рис. 4. Зависимости относительной магнитной восприимчивости χ/χ_{20} от температуры измерения, снятые при охлаждении образцов исследуемого композита после отжига при температурах: $1 - 500, 2 - 700, 3 - 750, 4 - 800^{\circ}$ С. Здесь χ_{20} — магнитная восприимчивость, измеренная при температуре 20°С.

ниже Т_{гоот}, был использован метод температурной зависимости коэрцитивной силы $H_c(T)$ образцов. На рис. 5 приведены зависимости $H_c(T)$, снятые при охлаждении отожженных образцов композита от Т_{гоот} до Т жидкого азота (ввиду большой загруженности рис. 5, а кривыми, участки кривых 6 и 7 перенесены на рис. 5, b). Видно, что на кривых $H_c(T)$ наблюдаются минимумы, температура которых по [9] близка к T_C цементита. После отжига при 300°С температуру Кюри неоднородно легированного цементита с сильно искаженной кристаллической решеткой определяет слабо выраженный и размытый по температуре измерения минимум кривой $H_c(T)$ в области $T \approx -40^{\circ}$ С (рис. 5, *a*, кривая *1*). После снятия в результате отжигов при T_{ann} > 300°C искажений кристаллических решеток и повышения однородности легирования фаз, особенно цементита, минимумы на кривых $H_c(T)$ становятся выраженными более ярко (кривые 2-7 на рис. 5).

На рис. 6 представлены зависимости $T_C(T_{ann})$ цементита, анализ которых позволяет судить о тенденциях в перераспределении легирующих элементов, в частности Мп, между фазами сплава. Кривая *I* отражает изменение T_C от T_{ann} "первичного" цементита, т.е. цементита, который образовался в процессе МС и кристаллизации аморфной фазы при отжигах. Понижение T_C цементита в интервале T_{ann} от 300 до 500°С (кривые 1-3, рис. 5, *a*) можно объяснить дополнительным легированием его атомами Мп, находящимися после МС в большом количестве в сегрегациях по межзеренным границам [19], а также возможным уходом из цементита атомов Ni.

Отжиги в интервале от 500 до 700°С (кривые 4–5, рис. 5, a) приводят уже к возрастанию T_C "первичного"

цементита (кривая *1* на рис. 6), что свидетельствует о снижении в его составе содержания марганца. По всей вероятности, при отжигах некоторая часть атомов Mn уходит из цементита на формирование никельмарганцевого аустенита. Это предположение подтверждается сравнением данных рентгеновских и мессбауэровских измерений. В образцах композита, отожженных

Рис. 5. Температурные зависимости коэрцитивной силы H_c композита, снятые после отжига образцов при температурах: *a*) 1 - 300, 2 - 400, 3 - 500, 4 - 600, 5 - 700, 6 - 750, 7 - 800°C;*b*) 6 - 750, 7 - 800°C.

Рис. 6. Зависимость температуры Кюри T_C "первичного" (кривая I) и "вторичного" (кривая 2) цементита от температуры отжига исследуемого композита.

в этом интервале T_{ann}, объемное содержание цементита примерно одинаково (табл. 1). Однако, как следует из мессбауэровских данных, измеренных при Troom, после отжига при 500°С в цементите находится 55%, а после отжига при 700°С — уже 71% от всех атомов Fe, содержащихся в композите (табл. 2), то есть содержание атомов Mn в решетке цементита после отжига при 700°С действительно становится меньше. После отжига при 700°С легирование цементита Мп становится настолько низким, что минимум кривой 5 на рис. 5, а уже лежит в области $T > 0^{\circ}$ С. Значение T_{C} цементита этого образца, находящееся вблизи комнатной температуры, было найдено методом измерения зависимости $\chi(T)$ (рис. 4, кривая 2). Кроме того, из мессбауэровских данных следует, что при Troom основная часть цементита сплава, отожженного при 700°С, которая содержит 68% от всех атомов Fe в составе композита, парамагнитна. И только малая часть цементита, в которой находится 3% от всех атомов Fe, является слабомагнитным ферромагнетиком, который и формирует при Т_{гоот} магнитные свойства этого образца.

После отжига при 750 и 800°С композит состоит практически из двух фаз: аустенита, парамагнитного даже при T = -196°С, и цементита, магнитное состояние которого зависит от температуры измерений (табл. 1, 2). Из вышеизложенного следует, что температуры минимумов ($T \approx -20$ °С и $T \approx -40$ °С) на зависимостях $H_c(T)$ (кривые 6 и 7 на рис. 5, b), а также максимумов на зависимостях $\chi(T)$ (кривые 2–4 на рис. 4) характеризуют температуру Кюри цементита, но разного. В области отрицательных температур находятся T_C "первичного" цементита, а в области положительных температур — T_C цементита, который в рамках данной статьи назовем "вторичным".

Известно [20], что в процессе высокотемпературных (свыше 700°С) отжигов некоторая часть цементита сплавов растворяется в аустените. Причем в первую очередь растворяются участки нелегированного, а затем и слаболегированного цементита. Концентрация Мп в оставшемся объеме "первичного" цементита становится более высокой, что, естественно, понижает его Т_С (рис. 6, кривая 1). При охлаждении из аустенита выделяется избыточный цементит ("вторичный"), содержание Мп в котором ниже, а T_C — выше, чем у "первичного" цементита. В связи с этим логично предположить, что максимумы на зависимостях $\chi/\chi_{20}(T)$ композита (Fe_{0.85}Mn_{0.10}Ni_{0.05})₈₃C₁₇, отожженного при 750 и 800°С (кривые 3, 4 на рис. 4), отражают появление "вторичного" цементита с $T_C \approx 34$ и 77°С соответственно (рис. 6, кривая 2). Появление "вторичного" цементита, содержание марганца в котором снижается по мере повышения $T_{\rm ann}$, является, по [6], основной причиной увеличения H_c композитов после отжигов при T_{ann} > 700°C (кривая 1 на рис. 1, b). Таким образом, после высокотемпературных отжигов в сплаве формируются области цементита с различными значениями температуры Кюри, то есть с различным содержанием марганца.

Отжиг при максимальной (для данной работы) температуре 800°С завершает основные фазовые превращения, характерные для твердого состояния исследуемого сплава (табл. 1, 2). После такого отжига сплав представляет собой нанокомпозит, состоящий из связующей фазы — легированного Ni и Mn парамагнитного аустенита, в которой размещены выделения упрочняющей фазы — легированного в основном Mn парамагнитного цементита и небольшого количества слаболегированного цементита. Размер выделений обоих фаз, согласно рентгеновским исследованиям, не превышает 60 nm.

4. Выводы

1. Исследован фазовый состав формирование магнитных характеристик композита $(Fe_{0.85}Mn_{0.10}Ni_{0.05})_{83}C_{17}$ после механосинтеза и последующих отжигов. Показано, что после отжига при 500°C композит представляет собой матрицу из парамагнитного цементита, в которой находятся выделения ферритной фазы, близкие к критическому размеру однодоменности, что обеспечивает высокое значение его $H_c \approx 250 \,\text{A/cm}$.

2. Зависимость $H_c(T_{ann})$, измеренная при температуре жидкого азота, также представляет собой кривую с максимумом при 600°С, который обусловлен уже другим механизмом — изменением при отжигах структурного состояния цементита.

3. Показано, что при $T_{ann} \ge 500^{\circ}$ С происходит выделение атомов Mn из цементита. Высказано предположение, что выделившийся из цементита марганец идет на образование никель-марганцевого аустенита.

4. Отжиги при температуре свыше 700°С приводят к растворению малолегированной части цементита в аустените и выделению из него в процессе последующего охлаждения обедненного марганцем "вторичного" цементита. В результате после высокотемпературных отжигов в композитах наблюдается цементит с различными значениями температуры Кюри и, следовательно, с различным содержанием Mn.

5. После отжига при 800° C сплав (Fe_{0.85}Mn_{0.10}Ni_{0.05})_{83}C_{17} представляет собой нанокомпозит, состоящий из связующей фазы — аустенита, в котором размещены наноразмерные выделения твердой фазы — ементита.

Финансирование работы

Работа выполнена в рамках госзадания Минобрнауки РФ (проект № ББ_2021_121030100003-7) с использованием оборудования ЦКП "Центр физических и физико-химических методов анализа, исследования свойств и характеристик поверхности, наноструктур, материалов и изделий" УдмФИЦ УрО РАН, поддержанного Минобрнауки РФ в рамках Федеральной целевой программы (уникальный идентификатор проекта — RFMEFI62119X0035).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] А.И. Гусев. Наноматериалы, наноструктуры, нанотехнологии. Физматлит, М. (2009). 416 с.
- [2] Н.А. Конева, А.И. Жданов, Э.В. Козлов. Изв. РАН. Сер. физ. **70**, *4*, 577 (2006).
- [3] Yu. Ivanisenko, W. Lojkowski, R.Z. Valiev, H.-J. Fecht. Acta Materialia 51, 18, 5555 (2003).
- [4] Р.З. Валиев, И.В. Александров. Объемные нанокристаллические материалы: получение, структура и свойства. Академкнига, М. (2007). 398 с.
- [5] Y.Z. Chen, A. Herz, Y.J. Li, C. Borchers, P. Choi, D. Raabe, R. Kirchheim. Acta Materialia 61, 9, 3172 (2013).
- [6] Z.G. Liu, X.J. Hao, K. Masuyama, K. Tsuchiya, M. Umemoto, S.M. Hao. Scripta Materialia 44, 8, 1775 (2001).
- [7] М.Н. Михеев, Э.С. Горкунов. Магнитные методы структурного анализа и неразрушающего контроля. Наука, М. (1993). 252 с.
- [8] F.G. Caballero, M.K. Miller, C. Garcia-Mateo, C. Capdevila, S.S. Babu. Acta Materialia 56, 2, 188 (2008).
- [9] А.И. Ульянов, А.А. Чулкина, В.А. Волков, Е.П. Елсуков, А.В. Загайнов, А.В. Протасов, И.А. Зыкина. ФММ 113, 12, 1201 (2012).
- [10] E. Bruck. In: Handbook of Magnetic Materials/Ed. K.H.J. Buschow. 17, Ch. 4. Elsevier, Amsterdam, North Holland (2008). P. 235.
- [11] С.В. Вонсовский. Магнетизм. Наука, М. (1971). 1032 с.
- [12] Н.П. Дьяконова, Е.В. Шелехов, Т.А. Свиридова, А.А. Резников. Завод. лаб. **63**, *10*, 17 (1997).
- [13] E.V. Voronina, N.V. Ershov, A.L. Ageev, Yu.A. Babanov. Phys. Status Solidi B 160, 2, 625 (1990).
- [14] В.И. Петинов. ЖТФ 84, 1, 8 (2014).
- [15] Г.И. Фролов, О.И. Бачина, М.М. Завьялова, С.И. Равочкин. ЖТФ 78, 8, 101 (2008).
- [16] A.K. Arzhnikov, L.V. Dobysheva, C. Demangeat. J. Phys.: Condens. Matter 19, 19, 196214 (2007).
- [17] Б.А. Апаев. Фазовый магнитный анализ сплавов. Металлургия, М. (1976). 280 с.
- [18] С. Тикадзуми. Физика ферромагнетизма. Магнитные свойства вещества. Мир, М. (1983). 304 с.
- [19] Е.П. Елсуков, Г.А. Дорофеев, В.В. Болдырев. ДАН **391**, *5*, 640 (2003).
- [20] М.И. Гольдштейн, С.В. Грачев, Ю.Г. Векслер. Специальные стали. МИСИС, М. (1999). 408 с.

Редактор Е.В. Толстякова