11,14,19

Оценка температурной полосы, характеризующей интервал перехода жидкость–стекло, для халькогенидных стекол

© А.А. Машанов¹, М.В. Дармаев^{1,2}, А.Б. Лубсанова¹

 ¹ Бурятский государственный университет им. Доржи Банзарова, Улан-Удэ, Россия
 ² Институт физического материаловедения СО РАН, Улан-Удэ, Россия
 E-mail: Mashanov@bsu.ru

Поступила в Редакцию 29 апреля 2022 г. В окончательной редакции 19 мая 2022 г. Принята к публикации 20 мая 2022 г.

Температурная зависимость вязкости неорганических стекол в области стеклования успешно описывается уравнением Вильямса–Ландела–Ферри (ВЛФ). У исследованных стекол величина $f_g = 1/C_1$ слабо зависит от природы стекол. Между δT_g и T_g наблюдается линейная корреляция. По данным о параметрах уравнения ВЛФ C_1 и C_2 проведен расчет δT_g , а также время релаксации структуры τ_g при температуре стеклования исследуемых стекол.

Ключевые слова: вязкость в области стеклования, уравнение Вильямса–Ландела–Ферри, кинетический критерий стеклования, халькогенидные стекла, доля флуктуационного объема, переход жидкость–стекло.

DOI: 10.21883/FTT.2022.10.53103.370

1. Введение

У разных классов аморфных веществ в области стеклования замораживается подвижность различных кинетических единиц, связанных с различным характером взаимодействия между частицами. Однако примечательно то обстоятельство, что основные закономерности перехода жидкость-стекло в качественном отношении оказываются одинаковыми для различных стеклующихся систем независимо от их природы, что подтверждается наличием в области стеклования универсальных правил и уравнений [1,2].

Вязкость стеклообразных веществ резко возрастает в области стеклования при охлаждении расплавов. Они стеклуются при достижении одной и той же предельной вязкости $\eta_g = \eta(T_g)$

$$\eta_g \approx \text{const} \approx 10^{12} \,\text{Pa} \cdot \text{s.}$$
 (1)

Это соотношение представляет собой приближенное правило постоянства вязкости при температуре стеклования T_g . Из обзора Мазурина [3] следует, что у большинства исследованных до сих пор стекол значение T_g соответствует температурам, при которых значения вязкости η_g находится в пределах от 10^{11} до 10^{12} Ра · s, т.е. они колеблются в области приближенного значения (1) с заметным разбросом. Постоянство η_g = const лучше выполняется у стеклообразных систем одного класса.

Температурная зависимость вязкости простых маловязких жидкостей описывается уравнением Френкеля [1,4]:

$$\eta = \eta_0 \exp\left(\frac{U}{RT}\right) \tag{2}$$

с постоянной энергией активации U = const (η_0 — высокотемпературный предел вязкости). У стеклообразующих расплавов энергия активации вязкого течения в области стеклования довольно сильно зависит от температуры U = U(T). В связи с этим, широкое распространение получило соотношение Вильямса–Ландела– Ферри (уравнение ВЛФ) [5]:

$$\ln a_T = -C_1 \frac{T - T_g}{T - T_g + C_2}, \quad a_T = \frac{\eta(T)}{\eta(T_g)} \cong \frac{\tau(T)}{\tau(T_g)}, \quad (3)$$

где τ — время структурной релаксации. Оправданность этого уравнения для различных стеклующихся жидкостей показана во многих работах [1,5]. В табл. 1 приводятся значения параметров данного уравнения C_1 и C_2 и рассчитанные на их основе характеристики процесса стеклования для различных халькогенидных стекол [6].

Настоящая работа посвящена исследованию кинетического критерия стеклования в стеклах As–S, Se–Ge, As–Se.

2. Применимость уравнения ВЛФ к исследуемым стеклам

Представим соотношение ВЛФ (3) в виде уравнения прямой

$$\ln a_T = -C_1 \, \frac{T-T_g}{T-T_g+C_2},$$

и проверим линейность зависимости $y = -(T - T_g)/\ln a_T$ от $x = (T - T_g)$. Экспериментальные данные о температурной зависимости вязкости халькогенидных стекол были использованы из электронного справочника SciGlass [7] (табл. 2).

No	Стекло	, mol.%	<i>C</i> ₁	<i>C</i> ₂ ,	T_g ,	δT_g ,	f	$C \cdot 10^{3}$	$ au_{g},$ s	
1 12	As	S		K	K	K	Jg	Cg·10		
1	12.5	87.5	12.0	81.20	318.5	6.7	0.083	33.3	134.8	
2	15.0	85.0	13.0	101.5	326.0	7.8	0.077	30.0	156.3	
3	17.5	82.5	12.3	86.50	337.5	7.0	0.081	32.2	140.1	
4	20.0	80.0	13.9	112.8	351.5	8.1	0.072	27.4	162.5	
5	25.0	75.0	14.5	120.7	379.1	8.3	0.069	25.8	166.6	
6	27.0	73.0	17.2	174.8	386.7	10.1	0.058	20.4	202.8	
7	28.6	71.4	19.2	216.7	391.6	11.3	0.052	17.6	225.4	
8	30.0	70.0	18.9	210.6	396.4	11.2	0.053	18.0	223.2	
9	32.5	67.5	18.2	210.4	403.5	11.6	0.055	19.0	231.4	
10	35.0	65.0	22.2	286.9	418.8	12.9	0.045	14.5	258.2	
11	36.7	63.3	22.7	303.9	423.4	13.4	0.044	14.1	267.4	
12	37.6	62.4	26.3	364.2	432.2	13.8	0.038	11.6	276.8	
13	39.0	61.0	25.6	350.5	441.3	13.7	0.039	12.0	273.4	
14	40.0	60.0	27.0	355.7	449.6	13.2	0.037	11.2	263.2	
15	40.6	59.4	27.8	379.2	446.1	13.7	0.036	10.8	273.0	
16	41.1	58.9	26.3	359.7	444.2	13.7	0.038	11.6	273.4	
17	42.1	57.9	27.0	360.5	440.4	13.3	0.037	11.2	266.8	
18	42.7	57.3	27.0	359.7	433.5	13.3	0.037	11.2	266.2	
	Se	Ge								
1	97	3	12.8	63.7	317	5.0	0.078	30.6	99.3	
2	95	5	11.8	41.8	330	3.5	0.085	34.5	71.0	
3	92	8	12.7	64.0	352	5.1	0.079	31.1	101.2	
4	90	10	19.6	183.9	356	9.4	0.051	17.1	187.6	
5	85	15	19.2	225.4	396	11.7	0.052	17.6	234.4	
6	83	17	18.5	243.9	411	13.2	0.054	18.5	263.4	
7	80	20	21.7	354.1	430	16.3	0.046	14.9	325.8	
8	75	25	13.5	200.4	487	14.8	0.074	28.4	296.6	
	As	Se								
1	3	97	11.8	41.8	316	3.5	0.085	34.5	71.0	
2	5	95	12.7	48.8	320	3.9	0.079	31.1	77.2	
3	10	90	17.5	108.4	331	6.2	0.057	19.9	123.5	
4	14.9	85.1	16.7	110.6	344	6.6	0.060	21.3	132.7	
5	25	75	23.3	238.6	364	10.3	0.043	13.7	205.2	
6	26.5	73.5	25.0	299.5	365	12.0	0.040	12.4	239.6	
7	28.6	71.4	29.4	368.2	370.5	12.5	0.034	10.1	250.4	
8	40	60	18.5	169.9	443	9.2	0.054	18.5	183.5	
9	42.2	57.8	21.7	245.0	437	11.3	0.046	14.9	225.4	
10	43.3	56.7	21.3	247.9	435	11.7	0.047	15.4	233.0	
11	45	55	20.4	244.3	433	12.0	0.049	16.2	239.4	
12	48.5	51.5	20.0	245.0	425.5	12.3	0.050	16.7	245.0	
13	49	51	22.7	278.0	431	12.2	0.044	14.1	244.6	
14	50	50	15.6	138.9	440	8.9	0.064	23.3	177.8	
15	50.6	49.4	17.2	185.3	426	10.8	0.058	20.4	215.0	
16	51	49	16.1	165.8	425	10.3	0.062	22.3	205.6	
17	52.7	47.3	16.4	153.4	422	9.4	0.061	21.8	187.2	
18	53.7	46.3	15.2	135.5	415	8.9	0.066	24.3	178.9	

Таблица 1. Параметры уравнения ВЛФ (3) C_1 и C_2 для стекол As–S, Se–Ge, As–Se и характеристики процесса стеклования [7]

Рис. 1. Температурная зависимость вязкости As-S стекол в координатах, соответствующих уравнению Вильямса-Ландела-Ферри. Использованы данные [7]. Содержание As — 32.5 mol. %; S — 67.5 mol.%.

Из рис. 1 видно, что указанная зависимость y(x) в области стеклования является линейной, что подтверждает применимость уравнения ВЛФ. Аналогичные графики построены для всех составов исследуемых стекол. Из этих прямых y-x определены значения параметров уравнения ВЛФ C_1 и C_2 (табл. 1).

Из интерпретации уравнения ВЛФ в рамках модели делокализованных атомов [6,8,9] следует, что параметр C_1 является обратной величиной доли флуктуационного объема f_g , замороженной при температуре стеклования,

$$C_1 = \frac{1}{f_g}.$$
 (4)

Флуктуационный объем аморфного вещества ΔV_e обусловлен тепловыми смещениями атомов (кинетических единиц) [8,9]:

$$\Delta V_e = N_e \Delta V_e,$$

где N_e — число делокализованных атомов, ΔV_e — элементарный флуктуационный объем, необходимый для делокализации атома — его предельного смещения из локального равновесного положения. Объемная доля флуктуационного объема f_g , полученная по данным о параметре C_1 , естественно, слабо зависит от природы аморфных веществ [6,8] (табл. 1)

$${f}_g = \left(rac{\Delta V_e}{V}
ight)_{T=T_g} pprox {
m const} pprox 0.03 - 0.08.$$

3. Релаксационные аспекты перехода жидкость-стекло

В области стеклования молекулярные перегруппировки становятся настолько медленными, что изменение структуры расплава при охлаждении не успевает следовать за изменением температуры. При этом, как и

N₂	Стекло, mol.%		$\lg(\eta, P)$, при температуре T , К									
	As	S	13	12	11	10	9	8	7	6	5	4
1	12.5	87.5	318.5	324.7	333.0	345.3	362.0	384.0	410.5	440.5	476.5	531.0
2	15.0	85.0	326.0	333.3	344.0	357.6	373.9	392.5	418.0	450.0	489.5	539.0
3	17.5	82.5	337.5	344.0	353.0	365.3	381.3	403.5	429.4	458.7	496.0	546.0
4	20.0	80.0	351.5	360.8	370.6	380.9	395.5	415.2	439.0	467.5	504.5	561.5
5	25.0	75.0	379.1	389.1	399.4	410.2	421.6	438.0	461.0	491.0	532.5	586.0
6	27.0	73.0	386.7	398.3	410.7	424.0	438.5	454.5	473.0	500.0	537.5	593.0
7	28.6	71.4	391.6	404.3	417.8	432.2	447.6	464.3	484.0	511.5	547.5	599.0
8	30.0	70.0	396.4	409.0	422.4	436.6	451.9	468.3	489.0	516.5	552.0	603.0
9	32.5	67.5	403.5	416.2	429.7	444.1	461.0	483.0	508.0	537.5	570.5	610.5
10	35.0	65.0	418.8	432.7	447.6	463.6	480.8	500.6	524.9	552.0	583.0	620.0
11	36.7	63.3	423.4	437.4	453.1	469.6	487.4	507.0	531.0	557.8	588.8	626.5
12	37.6	62.4	432.2	446.8	462.6	479.4	497.6	516.9	538.4	562.7	591.0	630.0
13	39.0	61.0	441.3	455.8	471.3	487.9	506.0	525.6	546.2	569.7	598.0	639.0
14	40.0	60.0	449.6	463.7	478.7	494.1	510.6	528.5	548.7	571.0	599.3	636.5
15	40.6	59.4	446.1	460.5	475.8	492.3	510.6	528.5	548.7	571.0	599.3	636.5
16	41.1	58.9	444.2	458.7	474.3	490.9	508.7	527.5	549.0	573.0	601.5	641.0
17	42.1	57.9	440.4	454.5	469.6	485.7	503.0	521.4	542.0	565.2	592.0	629.0
18	42.7	57.3	433.5	447.7	462.7	478.8	496.0	514.5	533.7	555.5	583.0	624.5

Таблица 2. Температурная зависимость вязкости $\eta(T)$ As-S стекол [7]

вязкость, резко возрастает время релаксации структуры $\tau(T)$, которое тесно связано со скоростью охлаждения жидкости q = (dT/dt). Бартеневым [10], предложена связь между этими величинами (кинетический критерий стеклования)

$$q\tau_g = C, \tag{5}$$

где τ_g — время структурной релаксации при температуре стеклования T_g , C — эмпирический параметр с размерностью температуры. Под q следует понимать абсолютную величину скорости изменения температуры |q| при охлаждении расплава или при нагревании стекла.

Волькенштейн и Птицын [11] разработали строгую физическую теорию, где исследуется поведение кинетических единиц, которые могут находиться в двух состояниях с различными энергиями, разделенных энергетическим барьером. Решение кинетического уравнения показывает, что при некоторой температуре T_g происходит замораживание доли частиц в возбужденном состоянии, что означает стеклование системы. Температура T_g отвечает условию

$$\left(\frac{d\tau}{dT}\right)_{T=T_g} = -\frac{1}{q}.$$
(6)

В данной теории кинетическим критерием перехода жидкость-стекло служит уравнение стеклования [9]

$$q\tau_g = \delta T_g. \tag{7}$$

Обозначение правой части этого равенства через δT_g предложено Немиловым [12]. Величина δT_g характеризует температурный интервал перехода от жидкости к стеклу при охлаждении.

Остановимся на оценке параметра уравнения стеклования δT_g для исследуемых стекол.

Подстановка зависимости $\tau(T)$ из уравнения ВЛФ (3) в соотношение (6) приводит к равенству

$$q\tau_g = \frac{C_2}{C_1},\tag{8}$$

сравнение которого с уравнением стеклования (7) позволяет получить формулу для расчета полосы температур δT_g по данным о параметрах уравнения ВЛФ

$$\delta T_g = \frac{C_2}{C_1}.\tag{9}$$

Для исследованных стекол (табл. 1) величина δT_g составляет As-S: $\delta T_g = 6.7-13.8$ K; Se-Ge: $\delta T_g = 3.5-16.3$ K; As-Se: $\delta T_g = 3.5-13.4$ K.

Второй параметр уравнения ВЛФ C_2 равен отношению f_g к коэффициенту теплового расширения флуктуационного объема при температуре стеклования β_f [8]:

$$C_2 = \frac{f_g}{\beta_f},\tag{10}$$

причем произведение $\beta_f T_g$ является однозначной функцией f_g

$$\beta_f T_g = f_g \ln(1/f_g). \tag{11}$$

Из равенств (4), (9) и (10) с учетом (11) следует, что параметр уравнения стеклования (7) δT_g определяется температурой стеклования и долей флуктуационного объема f_g

$$\delta T_g = \frac{f_g}{\ln(1/f_g)} T_g. \tag{12}$$

Рис. 2. Линейная корреляция между полосой температур δT_s , характеризующей интервал стеклования и температурой стеклования T_s стекол системы As–S. Номера точек соответствуют номерам стекол в табл. 1.

Рис. 3. Линейная корреляция между δT_g и T_g для стекол Se-Ge. Номера точек соответствуют номерам стекол в табл. 1.

Рис. 4. Корреляция между δT_g и T_g для стекол As—Se. Номера точек соответствуют номерам стекол в табл. 1.

Поскольку у стекол одного класса $f_g \approx$ const, можно ожидать линейную корреляцию между величинами δT_g и T_g . В самом деле, как видим из рис. 2 и 3, у стекол As–S, Se–Ge полоса температур δT_g , в пределах которой происходит переход от жидкости к стеклу, линейно зависит от температуры стеклования T_g . Для стеклообразной системы As–Se практически не наблюдается линейной зависимости (рис. 4).

Расчет времени релаксации структуры при температуре стеклования

Температура стеклования хотя и слабо, но зависит от скорости охлаждения расплава q. Температура, при которой достигается предельная вязкость $\eta_g \approx 10^{12} \,\mathrm{Pa} \cdot \mathrm{s}$, названа стандартной температурой стеклования T_g , а соответствующая скорость охлаждения

$$q = 3 \,\mathrm{K/min} = 0.05 \,\mathrm{K/s}$$
 (13)

принимается стандартную скорость за охлажления [1,3,13,14]. В дилатометрии стекол и полимеров практически во всех странах мира используют, как правило, примерно такую же скорость охлаждения (13). В виду слабой (логарифмической) зависимости T_g, от q небольшие колебания q около стандартного значения (13) особо не оказываются на величине T_g . Поэтому обычно полагают, что подавляющее большинство имеющихся данных о T_g относится фактически к стандартной охлаждения. Для скорости других скоростей q мало данных.

По формуле (8) при стандартной скорости охлаждения q = 0.05 K/s по данным о параметрах уравнения ВЛФ C_1 и C_2 мы рассчитали время структурной релаксации τ_g при температуре стеклования (табл. 1) As-S: $\tau_g = 135-277$ s; Se-Ge: $\tau_g = 71-325$ s; As-Se: $\tau_g = 71-267$ s.

Примерно к таким же результатам приводит известная формула Максвелла: $\tau = \eta/G$, где G — модуль сдвига. У большинства оксидных неорганических стекол, мгновенный модуль сдвига G_{∞} составляет около $G_{\infty} = (20-25) \cdot 10^9$ Ра и мало изменяется с температурой. У большой совокупности оксидных неорганических стекол при стандартной скорости охлаждения q = 0.05 K/s логарифм вязкости при температуре стеклования составляет $\lg(\eta_g, \text{Pa} \cdot \text{s}) = 12.76 \pm 0.26$. Повидимому, при стандартной скорости охлаждения приближенное постоянство вязкости при температуре стеклования можно представить в виде $\eta_g \approx 10^{12} - 10^{13}$ Ра · s. Из этих данных о величинах G_{∞} и η_g на уровне качественных оценок имеем [3,12,13,15,16]:

$$au_g = rac{\eta_g}{G_\infty} pprox 10^2 \, {
m c},$$

что по порядку величины совпадает с результатами расчета по формуле (8) по данным о параметрах уравнения ВЛФ C_1 и C_2 . Стеклование жидкости представляет собой ярко выраженный релаксационный процесс и подчиняется кинетическим закономерностям. При приближении к области перехода жидкость-стекло молекулярные перегруппировки в стеклообразующих расплавах становятся настолько медленными, что изменение структуры не успевает следовать за уменьшением температуры. С точки зрения релаксационного подхода в процессе стеклования жидкости решающую роль играет соотношение между временем структурной релаксации τ и скоростью охлаждения расплава q = dT/dt. Взаимосвязь этих величин выражается уравнением стеклования: $q\tau_g = \delta T_g$, где τ_g — время релаксации при $T = T_g$, δT_g — полоса температур.

По данным о параметрах уравнения Вильямса– Ландела–Ферри при стандартной скорости охлаждения проведен расчет полосы температур δT_g , в пределах которой жидкость переходит в стекло. У исследованных халькогенидных стекол величина δT_g находится в диапазоне от 3.5 до 16.3 К.

При построении корреляции между величинами δT_g и T_g у стекол As–S, Se–Ge наблюдается выраженная линейная зависимость, а у As–Se отсутствует.

Финансирование работы

Работа выполнена при финансовой поддержке ФГ-БОУ ВО "Бурятский государственный университет имени Доржи Банзарова" грант № 22-06-0502.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Д.С. Сандитов, Г.М. Бартенев. Физические свойства неупорядоченных структур. Наука, Новосибирск (1982). 259 с.
- [2] В.Г. Ростиашвили, В.И. Иржак, Б.А. Розенберг. Стеклование полимеров. Химия, Л. (1987). 192 с.
- [3] О.В. Мазурин. Физ. и хим. стекла 33, 34 (2007).
- [4] Я.И. Френкель. Введение в теорию металлов. Гостехиздат, Л.-М. (1948). 291 с.
- [5] Дж. Ферри. Вязкоупругие свойства полимеров. Изд-во ИЛ, М. (1963). 535 с.
- [6] Д.С. Сандитов. ЖЭТФ 150, 501 (2016).
- [8] Д.С. Сандитов. ЖЭТФ 142, 123 (2012).
- [9] Д.С. Сандитов, С.С. Бадмаев. Неорган. материалы **55**, 99 (2019).
- [10] Г.М. Бартенев. ДАН 76, 227 (1951).
- [11] М.В. Волькенштейн, О.Б. Птицын. ЖТФ 26, 2204 (1956).
- [12] С.В. Немилов. Физ. и хим. стекла 39, 857 (2013).

- [13] J.W.P. Schmelzer. J. Chem. Phys. 136, 074512 (2012).
- [14] Г.М. Бартенев, И.А. Лукьянов. Журн. физ. химии 29, 1486 (1955).
- [15] M.I. Ojovan. Adv. Cond. Matter. Phys. Article ID 817829.23p (2008).
- [16] Д.С. Сандитов. ФТТ 64, 241 (2022).

Редактор Т.Н. Василевская