07.04

Изменение микромеханики ударного разрушения керамики MgAl₂O₄ в результате высокотемпературного изостатического прессования

© И.П. Щербаков¹, Е.В. Афанасьева², А.А. Дунаев³, С.Б. Еронько², А.Г. Кадомцев¹, М.В. Нарыкова¹, А.Е. Чмель^{1,¶}

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
² Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия
³ Государственный оптический институт им. С.И. Вавилова, Санкт-Петербург, Россия
[¶] E-mail: chmel@mail.ioffe.ru

Поступила в редакцию 12 мая 2022 г. В окончательной редакции 12 мая 2022 г. Принята к публикации 14 мая 2022 г.

Керамика MgAl₂O₄, изготовленная предварительным спеканием при одноосным прессовании в вакууме синтезированного порошка, выдерживалась под изостатическим давлением при высокой температуре (hot isostatic pressing, HIP). Образцы подвергались точечной ударной нагрузке, которая возбуждала акустическую и электромагнитную эмиссию (АЭ и ЭМЭ, соответственно). До обработки HIP распределение энергии во временных сериях импульсов АЭ и ЭМЭ следовало экспоненциальному закону, а после горячего изостатического прессования оба типа эмиссионной активности показали степенное распределение энергии импульсов во временных развертках. Изменение характера выделения энергии удара в акустических и электромагнитных импульсах объяснено переходом от образования/коллапсирования микротрещин в исходных образцах к самоорганизованному движению дислокаций к границам зерен без образования разрывов сплошности ввиду достижения посредством процедуры HIP плотности материала, близкой плотности монокристалла MgAl₂O₄.

Ключевые слова: керамика MgAl₂O₄, горячее изостатическое прессование, ударная нагрузка, акустическая эмиссия, электромагнитная эмиссия.

DOI: 10.21883/FTT.2022.10.53097.377

1. Введение

Керамика из алюмомагниевой шпинели (AMIII) MgAl₂O₄ является поликристаллическим материалом высокой прочности, достаточной для использования в индивидуальных средствах защиты людей и оборудования от точечных механических воздействий в качестве заменителя тяжелых, толстых изделий из металла [1]. Благодаря прозрачности в спектральной области $0.2-5.5\,\mu$ m, керамика AMIII также применяется для создания защитных экранов оптических приборов на внешних устройствах [2], где они подвергаются ударам твердых пылевых частиц и атмосферных осадков [3]. Кубическая кристаллическая структура делает AMIII оптически изотропной, что исключает долю рассеянного света, связанную с эффектом двулучепреломления.

В промышленности АМШ производят из мелкодисперсного порошка горячим прессованием/спеканием при температуре до 1500–1600°С и давлении 100–200 МРа. Однако такая обработка не устраняет в керамике мелкие поры, существенно снижающие прозрачность. Эффективным средством увеличения плотности материала является высокотемпературная изостатическая обработка (hot isostatic pressing, HIP) изделий, при которой плотность может достигать 99.94% от теоретической плотности [4].

В предлагаемом исследовании был рассмотрен микромеханический аспект изменения специфических особенностей разрушения АМШ в результате применения финишной обработки материала процедурой НІР. В соответствии с упомянутой выше областью применения шпинели, испытания проводились точечным ударным повреждением поверхности образцов. При ударе регистрировались временные развертки сигналов акустической эмиссии (АЭ) и электромагнитной эмиссии (ЭМЭ), и проводилось сравнение параметров отклика АМШ на механическое воздействие до и после обработки HIP.

2. Образцы и оборудование

Исходное порошкообразное сырье MgAl₂O₄ для получения керамических образцов готовили золь-гель синтезом (метод Печини [5]), в котором полученный из солей металлов полимерный материал, многоосновные кислоты и многоатомный спирт, подвергались прокаливанию при температурах до 1000°C. Для предот-

Плотность, g/cm ³		Микротвердость V _h , GPa	
До обработки HIP	После обработки НІР	До обработки HIP	После обработки HIP
3.550±0.002	3.559±0.002	17.89±0.16	19.16±0.55

Таблица 1. Плотность и микротвердость керамики MgAl₂O₄ до и после применения HIP

Рис. 1. Фотографии отпечатков пирамиды Виккерса на пластине АМШ до (*a*) и после (*b*) применения НІР.

вращения сильной агломерации и спекания частиц [6] применена дополнительная термообработка в расплаве хлорида калия. Затем проводилось горячее вакуумное одноосное прессование порошка (hot pressing, HP) под давлением 150 MPa и температуре 1250°C в течение 30 min. Изостатический нагрев проводился в атмосфере аргона под давлением также 150 MPa и температуре 1275°C в течение 100 min.

Измерение плотности образца производилось методом гидростатического взвешивания на аналитических весах Simadzu AUW 120D с использованием приставки SMK-301. Для прецизионного определения плотности использовались образцы массой порядка 1.5 g, в качестве жидкости - дистиллированная вода.

Микровердость образцов измерялась на приборе ПМТ-3 с использованием микроскопа Axio Vert.A1, оснащенного цифровой камерой Carl Zeiss Axiocam 208 color. Отпечатки производились при помощи пирамиды Виккерса при нагрузке 200 g (1.96 N) и выдержке 10 s. На рис. 1 приведены фотографии характерных отпечатков в образце до (a) и после (b) изостатического воздействия температуры и давления.

Повреждение образцов, изготовленных в виде полированных дисков диаметром 20 mm и толщиной 1 mm, производилось ударом груза, падающего на стальной боек, поставленный на образец. При ударном воздействии на его поверхность записывались сигналы акустической эмиссии (АЭ) и электромагнитной эмиссии (ЭМЭ). Широкополосный детектор АЭ, изготовленный из высокочувствительной пьезокерамики $Pb(Zr_xTi_{1-x})O_3$, регистрировал сигнал в полосе частот 80–500 kHz, исключавшей низкочастотное влияние колебаний эксперимен-

тальной установки. ЭМЭ регистрировалась с помощью диполя Герца; наиболее интенсивное излучение ЭМЭ наблюдалось в полосе 600–900 kHz. Сигналы ЭМЭ и АЭ поступали на вход аналого-цифрового преобразователя АСК-3106 и в цифровой форме сохранялись в компьютере. Временное разрешение импульсов было 20 ns.

3. Результаты

Изменения плотности и микротвердости материала после изостатической обработки приведены в табл. 1. Относительная погрешность определения плотности $\Delta \rho / \rho$ составляла 0.02%. Увеличение микротвердости превысило 7%.

Результаты применения эмиссионных методов для оценки влияния НІР на динамическое разрушение АМШ представлены в виде индуцированных ударом бойка временных серий импульсов АЭ и ЭМЭ (рис. 2) с последующим анализом распределений выделенной энергии в импульсах. Энергия E, выделенная в импульсе АЭ или ЕМЭ, пропорциональна квадрату амплитуды импульса: $E \propto A^2$. Можно видеть, что длительность излучения звука в образце, не подвергнутом изостатическому нагреву (рис. 2, *a*), существенно ниже продолжительности сигнала из образца, прошедшего процедуру НІР (рис. 2, *b*). Причем последний не имеет выраженного пика.

Развертки сигнала ЭМЭ в образцах, не прошедших HIP, имели бо́льшую протяженность, чем развертки АЭ, но не выходили за пределы 1 ms. Кроме того, многократное повторение опыта показало, что пик излучения ЭМЭ в образцах до обработки HIP всегда запаздывал относительно пика АЭ приблизительно на 200 μ s (ср. рис. 2, *а* и 2, *b*). После изостатической обработки сигнал ЭМЭ в повторных опытах проявлялся беспорядочно по отношению к времени излучения АЭ, которое имело гораздо большую длительность, чем до изостатической обработки. В некоторых случаях развертка ЭМЭ включала в себя 2–3 "вспышки", как показывает пример на рис. 2, *d*.

Закономерности выделения энергии в сериях импульсов были определены построением распределений числа импульсов того или иного типа в виде зависимостей $N(E > \varepsilon)$ versus ε , где по вертикальной координате откладывается число импульсов N, энергия которых Eвыше величины ε , принимающей ряд значений энергии в импульсах, пришедших за время регистрации сигнала

Рис. 2. Развертки возбужденных ударом сигналов АЭ (*a*, *c*) и ЭМЭ (*b*, *d*) для образцов после горячего прессования НР (*a*, *b*) и после дополнительной экспозиции HIP (*c*, *d*).

Рис. 3. Распределения энергии в импульсах АЭ (*a*) и ЭМЭ (*b*), рассчитанные из временных серий для образцов до экспозиции HIP, показанных на рис. 2, *a*, *b*.

(горизонтальная координата). На рис. 3, *а*, *b* показаны распределения энергии в индуцированных ударом импульсах АЭ и ЭМЭ, излученных из образца до обработки НІР. Графики построены в полулогарифмических координатах, в которых экспериментальные точки, как АЭ, так и ЭМЭ, укладываются на отрезки прямых с наклоном *a*:

$$\log_{10} N(E > \varepsilon) \propto -a\varepsilon. \tag{1}$$

Рис. 4. Распределения энергии в импульсах АЭ (a, c) и ЭМЭ (b, d), рассчитанные из временных серий для образцов, прошедших процедуру HIP, представленные в полу-логарифмических (a, b) и двойных логарифмических (c, d) координатах.

Соотношение (1) эквивалентно экспоненциальному закону пуассоновского типа:

$$N(E > \varepsilon) \propto \exp(-a\varepsilon),$$
 (1a)

который описывает распределение случайных событий, возникающих независимо друг от друга.

Такие же графики $N(E > \varepsilon)$ versus ε были построены для образцов после прохождения ими процедуры НІР (рис. 4, *a*, *b*). Можно видеть, что распределения энергии в эмиссиях обоих типов не проявили линейных участков в полулогарифмических координатах, то есть не следовало экспоненциальному закону по типу уравнения (1а). Те же графики были перестроены в двойных логарифмических координатах (рис. 4, *c*, *d*), где проявились логлинейные отрезки

$$\log_{10} N(E > \varepsilon) \propto -b \log_{10} \varepsilon, \tag{2}$$

эквивалентные степенному закону

$$N(E > \varepsilon) \propto \varepsilon^{-b}.$$
 (2a)

Таким образом, после обработки АМШ посредством НІР изменился качественный характер эмиссионной активности. Акустическое и электромагнитное излучения проявилось степенным законом распределения энергии, который характерен для коррелированных, самоорганизованных процессов

4. Обсуждение

Проведенное исследование выявило ряд изменений в возбужденной ударом эмиссионной активности в АМШ после проведения высокотемпературного изостатического прессования образца. Сформулируем их в табл. 2.

Изменение продолжительности и взаимного расположения временных серий АЭ и ЭМЭ относительно друг друга указывает на смену микромеханического поведения АМШ в результате обработки НІР. Для интерпретации полученного результата обратимся к данным, полученным в исследованиях акустического и электромагнитного излучений из геоматериалов, обладающих подобно керамикам высокой гетерогенностью. Лабораторные эксперименты и натурные наблюдения во время землетрясений и горных ударов имеют многолетнюю историю в геофизике. Вариативность параметров зарегистрированных АЭ и ЭМЭ привела к появлению двух моделей, описывающих микромеханику разрушения горных пород при различных тектонических явлениях. Суть

До обработки HIP	После обработки НІР	
В необработанном HIP материале сигнал АЭ короче	Продолжительность эмиссионной активности существенно	
сигнала ЭМЭ, причем пик последнего запаздывает	возросла, причем излучения ЭМЭ возникают беспорядочно	
по отношению к пику АЭ.	на фоне течения АЭ.	
Выход энергии во временных сериях импульсов	Распределение энергии импульсов АЭ и ЭМЭ описывалось	
обоих типов до изотактической обработки следовал	степенным законом, типичным для коррелированных процессов,	
экспоненциальному закону, характерному	когдавозникновение одного события влияет на вероятность	
для случайных событий.	возникновение следующего вследствие дальнеговзаимодействия	

Таблица 2. Влияние обработки HIP на характер распределений энергии в импульсах АЭ и ЭМЭ

их заключается в следующем. При прохождении ударной волны в породах появляются микротрещины, появление которых сопровождается акустической эмиссией. При этом на берегах трещин образуются электрические заряды противоположного знака. После прохождения ударной волны значительная доля трещин релаксирует, и заряды на сомкнувшихся стенках аннигилируют возникает эффект ЭМЭ [7].

Однако не все силовые воздействия генерируют появление разрывов сплошности с открытыми поверхностями. В зависимости от физико-механических свойств породы и характера действующего давления может возникать скольжение фрагментов массива друг относительно друга. В лабораторных опытах, моделирующих этот процесс, было показано, что при динамическом контакте естественных негладких поверхностей происходит генерация электромагнитного излучения в широком диапазоне — вплоть до видимого свечения [8].

Мы полагаем, что в наших экспериментах с АМШ проявились оба механизма. Как упоминалось выше, только изостатическое прессование позволяет удалить мельчайшие поры из керамики. Плотность материала до НІР недостаточна, чтобы исключить образование открытых микротрещин при прохождении ударной волны в гетерогенном материале. Релаксация трещин после пиковой нагрузки вызывала быструю аннигиляцию электрических зарядов. Оба эмиссионных эффекта были кратковременными (до нескольких сотен микросекунд) и имели четкую последовательность.

Плотность обработанной HIP керамической AMIII близка к плотности монокристалла MgAl₂O₄ [4]. Этим можно объяснить отсутствие открытых микротрещин, релаксирующих после удара. В то же время сверхвысокое уплотнение AMIII давлением ведет к формированию дислокаций [9]. Контакт бойка с поверхностью вызывал кооперативное движение дислокаций с выходом на границы зерен, которое сопровождалось генерацией АЭ и ЭМЭ [10].

Этот механизм для уплотненной HIP AMШ подтверждается полученным в настоящем исследовании степенным распределением энергии в импульсах АЭ и ЭМЭ (рис. 4, b), что характерно для самоорганизованного поведения ансамбля дислокаций [11]. Авторы [8] также отмечали степенное распределение энергии в импульсах ЭМЭ при трении образцов гранитов, но не указали причину эффекта.

5. Заключение

Методами АЭ и ЭМЭ показано, что выдержка керамики MgAl₂O₄ под изостатическим давлением при высокой температуре (HIP) привела к смене механизма передачи энергии ударного воздействия испытуемому материалу. Образование микротрещин с эффектом АЭ и последующее излучение ЭМЭ после прохождения ударной волны в результите аннигиляции электрических зарядов, возникших на берегах трещин, наблюдалось только на не подвергнутых HIP-образцах. Зарождение и коллапсирование трещин характеризовалось случайным (экспоненциальным) законом. Изостатическая обработка привела к увеличению плотности керамики до 98% от значения таковой в монокристалле, то есть к почти полному удалению микрополостей, которые могли служить центрами зарождения микротрещин при ударной нагрузке. Распределения энергии во временных сериях как АЭ, так и ЭМЭ, были самоподобными (степенными), которое возникает в ансамбле дислокаций при их движении.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- C. Gajdowski. Thèse pour obtenir le grade de Docteur. Université de Valenciennes et du Hainaut-Cambresis, NNT: VALE0022 (2018).
- [2] M. Ramisetty, S. Sastri, U. Kashalikar, L.M. Goldman, N. Nag. Am. Ceram. Soc. Bull. 92, 20 (2013).
- [3] G.H. Jilbert, J.E. Field. Wear. 243, 6 (2000).
- [4] D.S. Tsai, C.T. Wang, S.J. Yang. Mater. Manuf. Proc. 9, 709 (1994).

- [5] Д.В. Толстикова, Е.В. Гольева, В.С. Лебанин, М.Д. Михайлов, А.А. Дунаев, В.Н. Ветров, Б.А. Игнатенков. Опт. журн. 81, 69 (2014).
- [6] Д.В. Толстикова, М.Д. Михайлов, В.М. Смирнов. Журн. общей химии **84**, 1744, (2014).
- [7] K.A. Eftaxias, V.E. Panin, Ye.Ye. Deryugin. Tectonophys. 431, 273 (2007).
- [8] J. Muto, H. Nagahama, T. Miura, I. Arakawa. Tectonophys. 431, 113 (2007).
- [9] C.W. Zh. Zhao. Scripta Materialia 61, 193 (2009).
- [10] Б.Ц. Манжиков, Л.М. Богомолов, П.В. Ильичев, В.Н. Сычев. Геол. Геофиз. 10, 1690 (2001).
- [11] Г.А. Малыгин. УФН, 169, 979 (1999).

Редактор Ю.Э. Китаев