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The squares of the velocities of the longitudinal and transverse acoustic waves separately are practically not

associated with anharmonicity, and their ratio (ν2
L/ν

2
S ) turns out to be a linear function of the Grüneisen parameter

γ — the measure of anharmonicity. The obtained dependence of (ν2
L/ν

2
S ) on γ is in satisfactory agreement with

the experimental data. The relationship between the quantity (ν2
L/ν

2
S ) and anharmonicity is explained through its

dependence on the ratio of the tangential and normal stiffness of the interatomic bond λ, which is a single-valued

function of the Grüneisen parameter λ(γ). The relationship between Poisson’s ratio µ and Grüneisen parameter γ ,

established by Belomestnykh and Tesleva, can be substantiated within the framework of Pineda’s theory. Attention

is drawn to the nature of the Leont’ev formula, derived directly from the definition of the Grüneisen parameter

by averaging the frequency of normal lattice vibration modes. The connection between Grüneisen, Leontiev

and Belomestnykh–Tesleva relations is considered. The possibility of a correlation between the harmonic and

anharmonic characteristics of solids is discussed.
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1. Introduction

It is known that an atom in solids shifted slightly from its

equilibrium position by x undergoes harmonic oscillations

with parabolic potential U(x), which corresponds to a linear

dependence of interatomic interaction force f (x) on dis-

placement x . Anharmonicity manifests itself at significantly

large values of x : force f (x) deviates from a linear de-

pendence, and an atom undergoes anharmonic oscillations

with a cubic potential. Anharmonically oscillating atoms

and groups of atoms produce a considerable contribution

to the thermal expansion, thermal conductivity, and other

physical properties of solids [1–6]. The nonlinearity of

the interatomic and intermolecular interaction force plays

a significant part at almost all stages of deformation and

fracture of amorphous polymers and other materials. The

emergence of fracture nuclei in solids is associated primarily

with anharmonicity [3,4].

The Grüneisen parameter is the measure of anharmonic-

ity. This parameter is defined by the variation of frequency

of normal modes of lattice oscillations νi with volume of a

body

γi = −
V
ν

(

dνi

dV

)

= −
d ln νi

d lnV
. (1)

The following approximation with all normal modes of

oscillations having the same dependences of frequency on

volume is used in most cases: γ = −d ln ν/d lnV .

The Grüneisen equation (law, formula) is the primary

relation for the experimental determination of γ [1]:

γ =
βV B
CV

, (2)

where β is the coefficient of volume thermal expansion,

V is the molar volume, B is the isothermal bulk com-

pression modulus, and CV is the molar heat capacity

at constant volume. This relation is derived from the

equation of state of a solid that contains Grüneisen

parameter γ as a measure of nonlinearity of the in-

teratomic interaction force and anharmonicity of lattice

oscillations.

It is generally assumed that the parameters of elasticity

theory (elastic moduli and Poisson’s ratio), being harmonic

linear quantities, should not normally be related to an-

harmonicity. Specifically, the harmonic and anharmonic

coefficients of the Taylor expansion of the potential lattice

energy are usually regarded as independent parameters.

However, studies hinting at a certain relation between

the harmonic and anharmonic properties of solids are still

published from time to time [7–15].

The interest in the relation between elastic proper-

ties and the Grüneisen parameter has been on the rise

lately [7–13]. For example, Belomestnykh and Tesleva [7]

have found relatively recently that Poisson’s ratio µ is a
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single-valued function of Grüneisen parameter γ

γ =
3

2

(

1 + µ

2− 3µ

)

, (3)

and it is worth mentioning that their approach is fairly

rigorous and relies on well-known postulates of the elasticity

theory, thermodynamics, and physical acoustics. No-

tably, Belomestnykh–Tesleva formula (3) is in satisfactory

agreement with Grüneisen equation (2) [7–10] (see, e.g.,

Fig. 1). The best fit is observed for quasi-isotropic

alkali-haloid crystals with central particle interaction forces.

Slight deviations for certain bodies [7–9] are probably

attributable to the spread of γ values determined by different

research groups. For example, Grüneisen parameter (2) for

aluminum was estimated at 2.11, 2.43, and 2.34 in three

different studies [8]. It is not improbable that the anisotropy

of certain crystals plays a role here.

Bodryakov et al. [11] have proposed a thermodynamic

generalization of the Grüneisen parameter concept. The

generalized version of this quantity is also related to elastic

properties (specifically, the Poisson’s ratio).
Relying on the elasticity theory, molecular physics,

thermodynamics, and physical acoustics, Leont’ev [12]
has averaged the frequency of normal modes of lattice

oscillations νi and derived the following formula for γ

directly from the definition of Grüneisen parameter (1):

γ =
3

2

(

BA

ρν2
k

)

, (4)

where ρ is the density, BA is the adiabatic bulk compression

modulus, and ν2
k is the mean-square sound velocity squared

ν2
k =

ν2
L + 2ν2

S

3
, (5)

where νL and νS are the velocities of longitudinal and trans-

verse acoustic waves, respectively. Leont’ev formula (4) is

in satisfactory agreement with Grüneisen equation (2) [10].
The relations of Belomestnykh–Tesleva (3) and

Leont’ev (4) have an advantage over Grüneisen equation (2)
in that they allow one to calculate γ based on more

readily available experimental data. At the same time, it

is noteworthy that anharmonicity measure γ is at the left-

hand sides of these equalities, while the right-hand parts

appear to contain only harmonic (linear) characteristics of

solids (ρ, BA, ν
2
k , µ). Thus, an apparent contradiction arises.

The present study is focused on the relation between

elastic properties and the Grüneisen parameter as an exam-

ple of interconnection between harmonic and anharmonic

characteristics of solids. We develop further the idea that

the right-hand parts of Belomestnykh–Tesleva and Leont’ev

formulae depend on anharmonicity via the dependence

of the ratio of squares of sound velocities (ν2
L/ν

2
S ) on

the Grüneisen parameter. In addition to novel insights,

little-known but poignant studies focused on the matter in

question are discussed briefly.
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Figure 1. Linear correlation between the values of γ deter-

mined using Grüneisen equation (2) and Belomestnykh–Tesleva
formula (3) for different crystals (the data from [7-9] were used).
1 — Be, 2 — LiF, 3 — NaCl, 4 — LiCl, 5 — KCl, 6 — KBr,

7 — Al, 8 — Ag, 9 — Pb, 10 — Au.

2. Linear dependence of (ν2
L/ν

2
S) on the

Grüneisen parameter

If one examines formulae (3) and (4), it becomes

apparent that their right-hand sides are functions of the

ratio of squares of propagation velocities of longitudinal and

transverse acoustic waves (ν2
L/ν

2
S ). For example, quantity ν2

κ

in Leont’ev equation (4) makes its right-hand side a function

of the mentioned ratio (νL/νS)
2 (see relation (5))

ν2
κ =

ν2
S

3

[

(

νL

νS

)2

+ 2

]

.

According to the well-known formula from the elasticity

theory [16], Poisson’s ratio µ at the right-hand side of

Belomestnykh–Tesleva equation (3) is also a function of

the ratio of squares of sound velocities (ν2
L/ν

2
S )

µ =
2− (νL/νS)

2

2− 2(νL/νS)2
. (6)

This feature of the discussed formulae suggests that their

right-hand sides may depend on anharmonicity via the

ratio of squares of velocities of longitudinal and transverse

acoustic waves (ν2
L/ν

2
S ). Our examination of a number of

metal and ionic and molecular crystals (Table 1) did indeed

demonstrate [10] that while Grüneisen parameter γ and the

squares of velocities ν2
L and ν2

S are not individually related

in any specific way (Fig. 2), their ratio (ν2
L/ν

2
S ) is a linear

function of Grüneisen parameter γ , which is a measure of

anharmonicity (Fig. 3). Vitreous solids [17] also feature a

similar linear correlation between the ratio of squares of

velocities of acoustic waves and the Grüneisen parameter

(Fig. 4, Table 2).
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Table 1. Sound velocities, Poisson’s ratio, and Grüneisen parameter of inorganic substances at standard conditions (p = 105 Pa and

T = 298K)

�

Elements and Sound velocity, m/s Ratio of velocities Poisson’s Grüneisen A DI

compounds νL νS
squared, (νL/νS)

2 ratio, µ parameter, γ (14) (16)

1 LiF 7323 4518 2.627 0.200 1.34 0.63 1.5

2 NaCl 4666 2755 2.869 0.243 1.46 0.59 1.7

3 LiCl 5260 3058 2.959 0.245 1.52 0.61 1.6

4 NaBr 3284 1885 3.35 0.270 1.56 0.55 1.7

5 KCl 4090 2312 3.130 0.259 1.60 0.58 1.7

6 KI 2623 1469 3.188 0.265 1.63 0.58 1.7

7 W 5233 2860 3.348 0.283 1.62 0.56 1.8

8 Fe 6064 3325 3.326 0.292 1.68 0.56 1.8

9 KF 4641 2587 3.218 0.274 1.73 0.57 1.7

10 RbI 2245 1198 3.512 0.309 1.73 0.53 1.9

11 Co 5827 3049 3.652 0.357 1.87 0.53 1.9

12 Cu 4726 2298 4.229 0.350 2.00 0.48 2.1

13 Ag 3686 1677 4.831 0.379 2.40 0.45 2.2

14 Pt 3960 1670 5.623 0.390 2.54 0.40 2.5

15 Pb 2158 860 6.30 0.372 2.93 0.43 2.3

Table 2. Density ρ, propagation velocities of longitudinal (νL) and transverse (νS) acoustic waves, bulk compression modulus BA,

Poisson’s ratio µ, and Grüneisen parameter γ for Na2O−Al2O3−SiO2 glasses (data from [17] were used)

�

Synthesis composition, mol.% ρ, νL, νS , BA · 10−8, µ γ
A D

Na2O Al2O3 SiO2
kg/m3 m/s m/s Pa (14) (16)

1 15 0 85 2339 5430 3340 342 0.196 1.28 0.65 1.5

2 15 5 80 2358 5570 3390 370 0.206 1.31 0.64 1.6

3 15 10 75 2410 5697 3510 386 0.194 1.26 0.65 1.5

4 15 15 70 2465 5737 3469 416 0.212 1.34 0.63 1.6

5 15 20 65 2428 5850 3540 425 0.211 1.34 0.63 1.6

6 15 25 60 2472 6000 3568 470 0.226 1.40 0.62 1.6

7 25 0 75 2439 5280 3140 359 0.226 1.40 0.62 1.6

8 25 5 70 2455 5480 3240 394 0.231 1.41 0.62 1.6

9 25 10 65 2461 5610 3330 411 0.228 1.40 0.62 1.6

10 25 20 55 2470 5680 3450 405 0.208 1.32 0.64 1.6

11 25 25 50 2499 5790 3490 432 0.215 1.35 0.63 1.6

12 25 30 45 2519 6026 3556 490 0.233 1.43 0.62 1.6

13 35 0 65 2497 5340 3070 398 0.253 1.52 0.60 1.7

14 30 5 65 2486 5500 3200 413 0.244 1.47 0.61 1.6

15 20 15 65 2450 5670 3490 390 0.195 1.28 0.65 1.5

16 17.5 17.5 65 2447 5746 3458 418 0.216 1.35 0.63 1.6

3. Theoretical version of the dependence
of (ν2

L/ν
2
S) on γ

Figures 3 and 4 demonstrate linear correlations between

the values of (ν2
L/ν

2
S ) and γ obtained empirically based on

experimental data. It is of some interest to establish the

relation between these quantities using the already known

relevant theoretical equations.

A formula for the dependence of ratio (ν2
L/ν

2
S ) on Grü-

neisen parameter γ may be derived from Belomestnykh–

Tesleva equation (3) and formula (6) of the elasticity theory.

We use this formula to determine (ν2
L/ν

2
S ) and rewrite it in

the following form [16]:

(

νL

νS

)2

=
2− 2µ

1− 2µ
. (7)

Using Belomestnykh–Tesleva equation (3) to obtain an ex-

pression for Poisson’s ratio µ as a function of γ and inserting

this expression in formula (7) of the elasticity theory, we
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Figure 2. Square of velocity of a longitudinal acoustic wave ν2
L

vs Grüneisen parameter γ . Numbers at points correspond to the

numbers of crystals in Table 1.
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Figure 3. Linear correlation between the ratio of squares of

longitudinal and transverse sound velocities (ν2
L/ν

2
S ) and Grüneisen

parameter γ for the crystals from Fig. 2. Numbers at points

correspond to the numbers of substances in Table 1.

arrive at the following dependence of ratio (ν2
L/ν

2
S ) on γ :

(

νL

νS

)2

= 4

(

3 + γ

9− 2γ

)

. (8)

The same result may be derived from the Belomestnykh

formula for the acoustic Grüneisen parameter [8].
Theoretical dependence (8) agrees with the experimental

data for glasses: the straight line plotted in coordinates

of Eq. (8) goes through the origin and has a slope equal

to unity (Fig. 5). The studied crystals (Table 1) largely

follow dependence (8), but they are divided into two groups

with respect to this dependence. One of these groups is

characterized by an equation of line that does not go through

the origin of coordinates (Figs. 6, a, b),

(

νL

νS

)2

= a1

(

3 + γ

9− 2γ

)

+ b1,

where a1 and b1 are constants.

This naturally poses the question how relation (8) may be

coordinated with the empirical linear correlation between

(ν2
L/ν

2
S ) and γ (Figs. 3 and 4). It turns out that a

linear dependence of (ν2
L/ν

2
S ) on γ may be derived from

g
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Figure 4. Linear correlation between the ratio of squares of

longitudinal and transverse sound velocities (ν2
L/ν

2
S ) and Grüneisen

parameter γ . Sodium aluminosilicate glasses with different

concentrations of oxides. Numbers at points correspond to the

numbers of glasses in Table 2.
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correspond to the numbers of glasses in Table 2.
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at points correspond to the numbers of crystals in Table 1.

formula (8) under condition that 2γ ≪ 9

(

νL

νS

)2

≈ 1.3 + 0.4γ. (9)

While this condition is suitable for the studied glasses with

γ ≈ 1.2−1.5 (Table 2), it is hardly satisfactory for some

of the studied crystals (Table 1). This issue warrants

further study with the application of approaches developed

in [5–15,18].

Note that condition (9− 2γ) > 0 is satisfied according to

formula (8). Therefore, γ < 4.5, which agrees with the

maximum Grüneisen parameter in polymorphic transfor-

mations in crystals. For example, when the cubic phase

of a rubidium cyanide crystal RbCN is cooled within

the interval from T = 380K to values in the vicinity of

polymorphic transformation temperature Tc = 110K, the

Grüneisen parameter increases from γ ≈ 2 to limit value

γc = 4.5 [19].

4. On the interrelation between
the Grüneisen, Leont’ev, and
Belomestnykh–Tesleva equations

The study of Leont’ev [12] was aimed primarily at estab-

lishing the relation between elastic and thermal properties

of matter. His formula (4) for the Grüneisen parameter was

intended to be used in solving this problem.

Relying on the fundamental principles of thermodynam-

ics, elasticity theory, molecular physics, and physical acous-

tics, Leont’ev managed to establish the relation between

thermal characteristics β and CV and the velocities of

propagation of longitudinal and transverse elastic waves (see
definition (5) of ν2

k ):

CV

βV
=

2

3
ρν2

k . (10)

This relation agrees with the experimental data [10,12].
We took note of the fact that Leont’ev formula (4) may

be derived from Grüneisen equation (2) with the use of

equality (10):

γ =
βV B
CV

=

(

βV
CV

)

B =
3

2

(

B

ρν2
k

)

∼=
3

2

(

BA

ρν2
k

)

.

The known B ≈ BA approximation was used here. Note

that Leont’ev [12] derived his formula (4) for γ in a more

rigorous fashion without the use of Grüneisen relation (2).
Let us demonstrate how Belomestnykh–Tesleva for-

mula (3) may be derived from Grüneisen equation (2).
Multiplying the numerator and the denominator of Eq. (2)
by shear modulus G and taking into account the known

relation between elastic moduli [16],:

B
G

=
2

3

(

1 + µ

1− 2µ

)

,

we obtain the following modification of Grüneisen equa-

tion (2):

γ = A

(

1 + µ

1− 2µ

)

, (11)

where

A =
2

3

(

BV G
CV

)

. (12)

Using Leont’ev relation (10) and expression G = ρν2
S for

the shear modulus, we present factor A (12) as a ratio of

squares of sound velocities

A =
ν2

S

ν2
k

. (13)

We then use expression (5) for ν2
k and formula (7) to

derive the relation between A and Poisson’s ratio mu from

equality (13)

A =
3

2

(

1− 2µ

2− 3µ

)

. (14)
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Notably, modified Grüneisen equation (11) may be

transformed into Belomestnykh–Tesleva formula (3) with

the use of relation (14)

γ =

[

3

2

(

1− 2µ

2− 3µ

)](

1 + µ

1− 2µ

)

=
3

2

(

1 + µ

2− 3µ

)

.

Thus, Belomestnykh–Tesleva formula (3), which was de-

rived by its authors from different basic assumptions [7],
may be obtained from Grüneisen equation (2) by appealing

to the elasticity theory.

Let us focus on the physical meaning of factor A in

Eq. (11).
We note first that coefficient A in expression (13)

characterizes the proportion of mean interatomic interac-

tion energy U = ρν2
k V accounted for by elastic energy

1U = ρν2
SV, needed for shear deformation

A =
ν2

S

ν2
k

=
ρν2

SV

ρν2
k V

=
GV

U
=

1U

U
.

The behavior of a body being deformed is governed

by the processes of formation and evolution of dissipative

structures that scatter the supplied energy [20,21]. These

structures are characterized by a universal hierarchy of

spatial scales (structure levels) that is established due to the

fundamental property of a solid: its shear resistance that

specifies the difference between the characteristic spatial

scales of regions of localization and scattering of energy

supplied to a body being deformed under an external

influence.

The ratio between the spatial scales of dissipative

structures on neighboring levels (i.e., dimension D f of

the regions of energy localization) is defined by relation

(7) [20,21]:

D f =
Li+1

Li
=

Ll

LS
=

ν2
L

ν2
S

=
2(1 − µ)

(1− 2µ)
, (15)

where Li ∼ ρ · ν2
L is the characteristic size of the regions

of energy localization and LS ∼ ρ · ν2
S is the characteristic

scale of the regions of energy dissipation (shear stresses are
solely responsible for the energy dissipation in a body being

deformed [22]).
If we substitute quantity Ll ∼ ρ · ν2

L in formula (15) with

an averaged characteristic size of the regions of energy

localization Ll ∼ ρ · ν2
K , where νK is mean-square sound

velocity (5), a certain average dimension is obtained instead

of D f = ν2
L/ν

2
S (see (13) and (14)):

D f =
ν2

K

ν2
S

=
2

3

(

2− 3µ

1− 2µ

)

. (16)

It follows from the comparison of Eqs. (13) and (16) that

factor A has the meaning of a reciprocal value of the average

dimension of the localization regions of energy supplied to

a body:

A =
ν2

S

ν2
K

=
1

D f
. (17)

If we assume that the value of µ of different solids varies

approximately within the 0.165 ≤ µ ≤ 0.475 range [20],
the range of variation of D f is 1.5 ≤ D f ≤ 7.7, which

is quite acceptable. The range of D f variation is wider:

2.5 ≤ D ≤ 21.

Thus, coefficient A in equality (11) may be regarded as a

reciprocal value of the average dimension of the localization

regions of energy supplied to bodies being deformed. It is

equal to the fraction of energy dissipated in the process of

deformation.

It is easy to see that the results of determination of A
with the use of formulae (13) and (14) are the same.

Since the numerator and the denominator of expression (14)
for factor A vary with the Poisson’s ratio symbatically, the

value of A is almost independent of the nature of a solid

and remains almost constant (A ≈ const) within a group of

solids of the same structural type. For example, sodium

aluminosilicate glasses have (Table 2)

A ≈ const ≈ 0.62−0.64,

and the average dimension of the regions of localization of

stored energy is

D f ≈ const ≈ 1.6−1.7.

The studied crystals (Table 1) may be divided tentatively

into two groups according to their values of D f = 1/A:
(1) halide alkali salts with the structure of NaCl, which have

D f ≈ 1.7 (µ = 0.200−0.270), and (2) metals with a face-

centered cubic structure and D f ≈ 2.1 (µ = 0.309−0.390).
It is noteworthy that average dimensions D f of the

regions of localization of stored energy for a number of ionic

crystals (Table 1) and inorganic glasses (Table 2) are the

same. This agrees with Anderson’s notion [23] of similarity

of the atomic dynamics in glasses and ionic salts.

As was expected, the dependence of Grüneisen param-

eter γ on function (1 + µ)/(1− 2µ) of the Poisson’s ratio
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Figure 7. Linear dependence of Grüneisen parameter γ on

function (1 + µ)/(1− 2µ) of the Poisson’s ratio for sodium

aluminosilicate glasses. Numbers at points correspond to the

numbers of glasses in Table 2.
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is, in accordance with Eq. (11), linear at A = const (Fig. 7).
This fact verifies the approximate constancy of factor A in

Eq. (11).
Using formula (5) for the mean-square sound velocity

squared (ν2
k ) and the above relations from the elasticity

theory, one may derive Belomestnykh–Tesleva formula (3)
from Leont’ev equation (4) [10].

5. On early approaches to the relation
between the Poisson’s ratio and
the Grüneisen parameter

An interrelation similar to (11) between the Poisson’s

ratio and the Grüneisen parameter has been established

for the first time in 1978 with the use of formulae for

internal pressure pi induced by the interatomic interaction

forces [24]. The value of pi is defined by the derivative

of internal energy with respect to volume at T = const

and represents the elastic response of a lattice to bulk

compression or strain. Therefore, the internal pressure

is closely related to the elastic moduli and the lattice

deformation [25].
It follows from an approximation of the Hooke’s law and

the elastic limit deformation of an interatomic bond that pi

is given by [25]

p1
∼=

(

1

6γ

)

E, (18)

where E is the elastic modulus under uniaxial deformation.

A similar formula is derived based on the Mie potential and

the relation between the Poisson’s ratio and the parameters

of this potential [24,26]:

p1
∼=

1− 2µ

6(1 + µ)
E. (19)

Comparing these two equalities, one arrives at an approx-

imate relation between the Grüneisen parameter and the

Poisson’s ratio [24,26]:

γ ≈
1 + µ

1− 2µ
. (20)

For example, ionic cubic crystals have µ ∼ 0.20−0.25,

and the corresponding γ ≈ 2 estimate obtained using this

formula agrees in a first approximation with the results of

calculation of γ in accordance with the Grüneisen equation.

It is evident that formula (20) is a particular case of (11)
at A ≈ 1. Equation (11) for vitreous solids has been

obtained earlier with the following interpretation of factor

A [5,6,27]:

A ≈
2

9
ln

(

1

f g

)

,

where f g = (V f /V )T=Tg is the fraction of fluctuation free

volume frozen at glass transition point Tg . The value of f g

depends only weakly on the glass nature. Within one

and the same class of vitreous systems, it is practically a

universal constant ( f g ≈ const) [26,28,29]. The estimate

of A obtained using this formula agrees in the order of

magnitude with the results of calculations performed in

accordance with relations (13) and (14).

6. Microscopic interpretation
of the Grüneisen parameter. Limit
deformation of an interatomic bond

Let us consider a linear chain of coupled atoms (oscilla-
tors). Let l be the

”
lattice period“ (i.e., the distance between

neighboring atoms). At l = l0, an atom is in an equilibrium

position. The harmonic and anharmonic coefficients of the

series expansion of pairwise potential U(r) are denoted as

a0 and b0, respectively. Here, r is the interatomic distance

in a two-atom (pair) model. Coefficients a0 and b0 are

defines by the second and the third derivatives of U(r) at

equilibrium point r = r0.
One may sum up the potential curves characterizing the

interaction of an atom with its left and right neighbors (U
−

and U+) to gain a qualitative understanding of the potential

within which the atoms of a linear chain are moving.

Although each of these curves has its own minimum (at
r = r0) in the vicinity of which

U = U0 +
a0

2
(r − r0)

2 −
b0

6
(r − r0)

3 + . . . , (21)

they add up to potential 8 = U
−

+ U+, which is symmetric

in displacement from the position equidistant from both

neighbors [25,26,30]. Restoring force F applied to this atom

is also the sum of forces acting on it from the left and from

the right: F = f
−

+ f +. Both of them are defined by the

same derivative of pairwise potential f (r) = dU/dr . Using
expansion (21), one may find that function f (r) near a

lattice site is expressed as [25]

f (r) ≈ a0(r − l0) −
b0

2
(r − l0)

2

≈ c(l − l0)
2 + a(r − l) −

b
2

(r − l)2, (22)

where c = a0 − b0(l − l0)/2, b = b0,

a = a0 − b0(l − l0). (23)

In the general case, 1l = (l − l0) 6= 0, since a lattice

may be either compressed or strained. 1l/l0 is usually so

small that the mismatch of U
−

and U+ minima does not

preclude one from obtaining a parabolic shape, which is

typical of a harmonic potential, after summation. Therefore,

the motion of atoms in a solid is of the same nature as

harmonic oscillations about the equilibrium position. As

was demonstrated by Debye (see [2,25]), the frequencies

of oscillations vary within the range from 0 to maximum
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frequency νm that is written as

νm =
1

π

√

a
m
. (24)

Here, m is the mass of an atom, and a is defined by

relation (23).

The Grüneisen parameter is expressed in the Debye

theory in terms of characteristic temperature θD = hνm (h is

the Planck constant):

γ = −
d ln θD

d lnV
= −

d ln(hνm)

d lnV
.

Let us insert maximum frequency νm from relation (24) into
this formula:

γ = −
d ln θD

d lnV
= −

1

2

d ln a
d lnV

= −
V
2a

da
dV

. (25)

If the deformation is isotropic, we have dV/V = 3(dl/l).
Performing differentiation in (25) with this equality and

expression (23) for a taken into account, we arrive at the

following formula for the Grüneisen parameter:

γ = −
l
6a

da
dl

=
lb0

6a
.

Since equality l/a = l0/a0 holds true, the final form of the

microscopic interpretation of γ is [2,25,31]:

γ =
l0b0

6a0

. (26)

As was expected, Grüneisen parameter γ is proportional to

anharmonic coefficient b0; at b0 = 0, it is also equal to zero

(γ = 0).

These results remain valid after switching to a three-

dimensional solid body. Ya.I. Frenkel’ [30, p. 171] has pro-

posed a formula for the coefficient of thermal expansion of

a three-dimensional solid body that includes the parameters

already known to us (a0, b0, and l0):

β =
b0k

2a0l20B
.

Multiplying the right-hand side of this equation by

(3NAl0/3NAl0), we present it in the following form [31]:

β =

(

l0b0

6a0

)

CV

BV
,

where CV = 3NAk = 3R is the molar heat capacity,

V = NAl30 is the molar volume, NA is the Avogadro number,

k is the Boltzmann constant, R is the gas constant, and B is

the isothermal bulk compression modulus.

Comparing this relation to Grüneisen equation (2)

β = γ
CV

BV
,

we find the above microscopic interpretation of Grüneisen

parameter (26) [31] γ = l0b0/6a0, which turns out to be

valid for a three-dimensional solid body.

Let us turn our attention to estimating the limit deforma-

tion of an interatomic bond 1lm = (lm − l0) in solids. At

l = lm, interatomic interaction force f = −dU/dr reaches

its maximum at the point of inflection of the potential curve:

d f
dr

∣

∣

∣

∣

r=lm

= 0.

Using dependence f (r) in the form of a series expan-

sion (22), one finds easily that the maximum relative

elongation of a bond between neighboring atoms is given

by equality
1lm

l0
=

a0

l0b0

,

which assumes the following form if we take the mi-

croscopic interpretation of Grüneisen parameter (26) into

account [25,26,32,33]:

1lm

l0
=

1

6γ
. (27)

The limit deformation of an interatomic bond (1/6γ) is

included into formula (18) for the internal pressure.

If we take dependence γ(µ) in the form given by

Belomestnykh–Tesleva (3) into account, limit deforma-

tion (27) becomes a single-valued function of Poisson’s

ratio µ
1lm

l0
=

2− 3µ

9(1 + µ)
. (28)

The results of calculations in accordance with this formula

for, e.g., inorganic glasses (Table 3) [34,35]

1lm

l0
∼= 0.09−0.13

agree with the results provided by other methods of

estimating this deformation [4,6,25,26].

7. Discussion

(1) Let us consider the obtained results using the model

of randomly packed spherical atoms that interact with each

other at the contact point via two mutually perpendicu-

lar forces: central forces (normal to the contact plane)
f n = knxn and friction forces (tangential) f t = k tx t . The

Poisson’s ratio in this Berlin–Rothenburg–Bathurst (BRB)
model [36,37] is defined by ratio λ = (k t/kn) of tangential

k t and normal kn stiffness values of an interatomic bond

(BRB formula):

µ =
1− λ

4 + λ
. (29)

It follows from equalities (7) and (29) that the ratio

of squares of sound velocities (ν2
L/ν

2
S ) is also defined by

microscopic parameter λ
(

ν2
L

ν2
S

)

=
2(3 + λ)

2 + 3λ
. (30)
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Table 3. Characteristics of inorganic glasses (the data

from [34,35] were used)

Glass µ γ 1lm/l0

Potassium borate glasses

K2O−B2O3

K2O, mol. %

1.1 0.292 0.72 0.10

2.5 0.293 1.73 0.10

3.9 0.293 1.73 0.10

8.5 0.293 1.73 0.10

13.0 0.295 1.74 0.10

18.0 0.301 1.78 0.09

22.8 0.295 1.74 0.10

28.2 0.288 1.70 0.10

33.5 0.303 1.79 0.09

Sulphate-phosphate glasses

NaPO3 0.294 1.74 0.10

NaPO3−Na2SO4

Na2SO4, mol. %

10 0.299 1.77 0.09

20 0.292 1.72 0.10

30 0.288 1.70 0.10

NaPO3−K2SO4

K2SO4, mol. %

10 0.316 1.88 0.09

20 0.316 1.88 0.09

30 0.313 1.86 0.09

0.4NaPO3 · 0.6Na2SO4 0.320 1.90 0.09

Alkali-silicate glasses

Li2O−SiO2

Li2O, mol. %

10 0.187 1.24 0.13

25 0.223 1.38 0.12

33.3 0.232 1.42 0.12

Na2O−SiO2

Na2O, mol. %

13 0.205 1.31 0.13

26 0.245 1.48 0.11

33.3 0.255 1.52 0.11

K2O-SiO2

K2O, mol. %

13 0.230 1.41 0.12

25 0.270 1.60 0.10

32 0.250 1.50 0.11

According to (3) and (29), parameter λ is, in turn, related

to anharmonicity (γ)

γ =
3

2(1 + λ)
. (31)

If we follow this line of reasoning, the relation between

(ν2
L/ν

2
S ) and anharmonicity is attributable to the dependence

of this ratio on relative tangential stiffness λ = (k t/kn) of

an interatomic bond, which is a single-valued function of

Grüneisen parameter γ (31).

A

B

C

1 2

Figure 8. Diagrams of linear (A), linear-branched (B), and

network (C) structures of amorphous substances [38]. 1 — anions,

2 — cations. A — n = 0, µ ≈ 0.4; B — n = 1, µ ≈ 0.3; C —
n = 2, µ ≈ 0.15. n is the density of transverse bonds. Arrows

denote tension stresses.

In the case of amorphous organic polymers and inorganic

glasses, the dependence of parameter λ on the density of

transverse interatomic bonds, which is defined as number n
of valence bonds per a single cation (Fig. 8), is evident [38].
Linear structures (polyvinyl chloride, rubber, selenium) with

a connectivity of 2 (two anions bound to a cation along a

chain) have n = 0 and µ ≈ 0.4, linear-branched structures

with a connectivity of 3 (B2O3, P2O5, As2O3) have n = 1

and µ ≈ 0.3, and structural networks with a connectivity

of 4 (SiO2, GeO2) have n = 2 and µ ≈ 0.15.

It is evident that the nonlinearity of the interatomic

interaction force becomes less pronounced, anharmonicity γ

decreases, and, according to (31), relative tangential stiff-

ness λ of an interatomic bond increases as density n of

transverse valence bonds grows (Fig. 8). According to BRB

formula (29), an increase in λ translates into a reduction in

transverse deformation coefficient µ.

Lateral branches of the backbone chain of a macro-

molecule (
”
lateral pendants“ of the backbone chain) exert

a significant influence on the values of µ and γ in
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amorphous polymers. Polyethylene with a light hydrogen

atom being its lateral pendant has the minimum values of µ

and γ . When hydrogen is substituted with a larger and

heavier fluorine atom in transition from polyethylene to

polytetrafluorethylene, µ increases from 0.25 to 0.33, and

γ increases accordingly from 3 to 4 [39].
If light atoms are substituted with larger and heavier

atoms in the lateral (and end) regions of the chain, the

nonlinearity of the intermolecular interaction force and

anharmonicity of lattice oscillations become more pro-

nounced, and Grüneisen parameter γ increases. According

to relation (31) between λ and γ , this should result in a

reduction in relative tangential bond stiffness λ = (k t/kn)
and, consequently, lead to an increase in Poisson’s ratio µ

(see BRB formula (29)).
Thus, µ and γ naturally depend on the specifics of

the atomic and molecular structure of vitreous solids, and

this dependence is mediated primarily via microscopic

parameter λ.

The following values of the Poisson’s ratio and the

Grüneisen parameter correspond to central forces (kn ≫ k t ,

λ ≈ 0):

µ =
1− λ

4 + λ
= 0.25 and γ =

3

2(1 + λ)
= 1.5.

The other limit value of λ (kn ≪ k t , λ ≈ ∞) corresponds to

µ =
1− λ

4 + λ
∼= −1, γ =

3

2(1 + λ)
≈ 0.

By definition, Poisson’s ratio µ is the ratio of the relative

transverse deformation of a body (1r/r) to its relative

longitudinal elongation (1l/l) under uniaxial strain [16]:

µ = −
1r/r
1l/l

. (32)

When a body (rod) is subjected to uniaxial strain,

it normally undergoes transverse compression: 1r < 0.

Therefore, µ > 0. In accordance with the definition

of µ (32), negative Poisson’s ratio µ < 0 implies that a body

extends in the transverse direction (1r > 0) under uniaxial

strain. Generally speaking, this runs counter to common

sense. However, it has to be noted that several papers

confirming the existence of isotropic bodies with a negative

transverse deformation coefficient µ have been published

recently [36,37,40].
(2) Product ρν2

k , which has the characteristic features of

elastic moduli, in Leont’ev formula (4) is called the effective

elastic modulus [32,41]: K = ρν2
k . Relations of the elasticity

theory for cubic crystals (see, e.g., [12])

B =
C11 + 2C12

3
and ρν2

k =
C11 + 2C44

3

demonstrate that effective elastic modulus K = ρν2
k is equal

to the bulk compression modulus (K = B) if Cauchy

condition C12 = C44 is satisfied (when central forces act

between uniformly deformed regions of a cubic lattice). In
any other case, it differs from B . Here, C11, C12, and C44 are

the second-order elastic constants.

According to Leont’ev formula (4), the Grüneisen param-

eter is defined by the ratio of the bulk compression modulus

and the effective elastic modulus.

γ =
3

2

(

B
K

)

. (33)

With Cauchy condition K = B satisfied, the Grüneisen

parameter is equal to 1.5, and a solid body is in the

central force field; if K 6= B , deviations from this field (from
γ = 1.5) are observed.

It follows from Leont’ev (4) and Belomestnykh–
Tesleva (3) relations that ratio B/K is, just as the ratios

of other elastic moduli, a single-valued function of Poisson’s

ratio µ [16],
B
K

=
1 + µ

2− 3µ
. (34)

This expression agrees with the experimental data both for

crystals and for vitreous solids (Figs. 9 and 10 [42]). It

can also be seen that individual elastic moduli are harmonic

characteristics of solids, while their ratios (e.g., B/G) are

single-valued functions of Grüneisen parameter γ , which is

a measure of anharmonicity [see first the dependence of

(B/G) on µ and then the dependence of µ on γ] (Figs. 11
and12). In contrast to isotropic glasses (Fig. 11), the studied
crystals are divided into two groups with respect to the

dependence of (B/G) on γ (Fig. 12).
(3) Pineda [13] has studied theoretically the influence

of structural changes on the elastic properties of metallic

glasses. His analysis is based on the following three as-

sumptions: (1) the interatomic interaction potential includes

harmonic and anharmonic parts,

U(r) = a(r − r0)
2 − b(r − r0)

3, (35)

where a and b are the harmonic and anharmonic coef-

ficients, respectively, and r0 is the interatomic distance

corresponding to the potential minimum; (2) the distri-

bution of distances between nearest-neighbor atoms is

Gaussian; (3) the elastic properties are defined by the first

coordination sphere (the immediate surroundings of atoms).
The resulting (rather cumbersome) formulae for instan-

taneous bulk compression B and shear G moduli include

dimensionless parameters

s =
δ

r1
, 1 =

δ1

r0
, γ1 =

br0
a

,

where δ = (r1 − r0), r1, δ1 are the average radius and

width of the first coordination sphere, respectively. The

values of s and δ characterize the deviation of the in-

teratomic distance from its equilibrium value r0 and the

average variance near r0 . Parameter γ1 characterizes the

degree of anharmonicity of the potential and is proportional

to Grüneisen parameter γ = br0/6a (26).
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Figure 9. Dependence of the ratio of the bulk compression

modulus and the effective elastic modulus (B/K) on function

(1 + µ)/(2− 3µ) of the Poisson’s ratio for multicomponent optical

glasses: 1 — LK7, 2 — KF6, 3 — F6, 4 — KF7, 5 — K14,

6 — LF5, 7 — K8, 8 — KF4, 9 — F13, 10 — K19, 11 — F4,

12 — TF1, 13 — BK6, 14 — BF21, 15 — BF8, 16 — BK10,

17 — TF7, 18 — FK14, 19 — TK13, 20 — TK23, 21 — BF11,

22 — TK17, 23 — OF2, 24 — STK7, 25 — STK9, 26 — LK4,

27 — TBF4. The data were taken from handbook [42].
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Figure 10. Dependence of (B/K) on function (1 + µ)/(2− 3µ)
of the Poisson’s ratio for crystals (data from [23] were used).
1 — Be, 2 — LiF, 3 — NaF, 4 — LiCl, 5 — LiI, 6 — NaClO3,

7 — KBr, 8 — RbI, 9 — Ta, 10 — AgBr, 11 — AgCl, 12 — Au.
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Figure 11. Linear correlation between the ratio of elastic

moduli (B/G) and Grüneisen parameter γ . Sodium aluminosilicate

glasses Na2O−Al2O3−SiO2 with different concentrations of oxides.

Numbers at points correspond to the numbers of glasses in Table 2.

B is the bulk compression modulus and G is the shear modulus.
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Figure 12. Dependence of the ratio of elastic moduli (B/G) on

Grüneisen parameter γ for a number of crystals. B is the bulk

compression modulus and G is the shear modulus. 1 — LiF, 2 —
NaCl, 3 — W, 4 — RbI, 5 — Cu, 6 — LiCl, 7 — NaBr, 8 — KCl,

9 — KI, 10 — Fe, 11 — Co. The data provided by Belomestnykh

and Tesleva [7] were used.

This theory was applied by Pineda to interpret the

results of experiments on structural relaxation and triaxial

compression of metallic glasses. It provides a generally

correct qualitative description of changes in the elastic

characteristics occurring in these experiments.

We used the Pineda theory to verify the dependence of

ratio (B/G) of elastic moduli and, consequently, Poisson’s

ratio µ on anharmonicity parameter γ1. The theory

demonstrates that such a dependence exists. Indeed, it

follows from the formulae that elastic moduli B and G
are proportional to harmonic coefficient a (the interatomic

potential parameter), while their ratio (B/G) is almost
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independent of a and is defined primarily by anharmonicity

parameter γ1. This implies that Poisson’s ratio µ depends

on Grüneisen parameter γ (measure of anharmonicity). It is
known [16] that µ is a single-valued function of ratio (B/G)
of elastic moduli.

Thus, the Pineda theory provides a certain justification

for Belomestnykh–Tesleva equation (3) that establishes the

relation between the Poisson’s ratio and the Grüneisen

parameter.

(4) The single-valued correspondence between the Pois-

son’s ratio and the Grüneisen parameter is not the only

example of this kind; e.g., the empirical Barker rule [43]
characterizes the relation between elastic modulus E and

the thermal expansion coefficient: Eβ2 = const.

The approach of Kontorova [14,15] to interpreting the

interrelation between linear (harmonic) and nonlinear (an-
harmonic) quantities is not without interest. As was

already noted, harmonic a and anharmonic b coefficients are

defined by the second and the third derivatives of function

U(r) at r = r0, respectively (see Section 6). Using U(r)
in the form of Mie potential (U = −Ar−m + Br−n) in these

derivatives, Kontorova [14] has found the following relation

between coefficients a and b:

b =
m + n + 3

2r0
a . (36)

The discussed phenomenon is then attributed to the exis-

tence of a relation between a and b of the indicated type

and the functional dependence (also obtained by Kontorova)
of linear and nonlinear properties of solids on a and b.
Thus, the studies of Kontorova [14,15] and Pineda [13]

demonstrate the possibility of existence of certain correla-

tions between harmonic and anharmonic characteristics of

solids.

(5) According to the definitions of µ and γ , Poisson’s

ratio µ and Grüneisen parameter γ characterize, first and

foremost, the volume change of a body being deformed.

For example, Poisson’s ratio function (1− 2µ) and, con-

sequently, transverse deformation coefficient µ itself are

related to the volume change of a solid body under uniaxial

deformation [44]:

1V
V

= εx (1− 2µ). (37)

where εx is the relative uniaxial deformation.

Kuz’menko [18] believes that the Poisson’s ratio char-

acterizes the ability of solids to resist changes in their

volume. The higher the transverse deformation coefficient,

the smaller the change in volume of a solid being deformed.

The upper limit of µ = 0.5 corresponds to the condition

that the change in volume in the process of deformation

is compensated completely by the counteraction of matter

(1V = 0). This condition is relevant to liquids. Since solid

bodies do not compensate the change in volume completely,

they have µ < 0.5.

It is, in fact, evident from (37) that the higher the

Poisson’s ratio of a given body is, the smaller is its relative

volume deformation (1V/V ). At µ = 0.5, 1V/V = 0.

Similar reasoning may be applied to the Grüneisen

parameter. It follows from the definition of γ that the

higher the Grüneisen parameter is, the smaller is the volume

change of a body needed to alter the oscillation frequency

(in the process of deformation).

1V
V

= −
1

γ

(

1ν

ν

)

. (38)

Viewed in this way, the Grüneisen parameter is similar

to the Poisson’s ratio in that it characterizes the ability of

a solids to resist changes in its volume. It follows from

Belomestnykh–Tesleva formula (3) that the maximum value

of transverse deformation coefficient µ = 0.5 corresponds

to the limit value of Grüneisen parameter γmax = 4.5. As

was noted in Section 3, the Grüneisen parameter may

reach its maximum value of 4.5 in the process of structural

transformations (specifically, polymorphic transformations

in crystals).
(6) We have discussed the obtained results on a qualita-

tive level by appealing to the currently available theoretical

approaches relevant to the matter under investigation. Note

that certain questions without a definitive answer arise in

discussion of the problems under consideration. First, why

does a linear (harmonic) quantity and a parameter of the

elasticity theory µ turn out to be a single-valued function of

a purely nonlinear (anharmonic) quantity γ? Second, why

do certain isotropic solid bodies have negative values of the

Poisson’s ratio? This implies, counterintuitively, that a body

undergoes transverse extension under uniaxial strain. Third,

why do formulae derived for anisotropic cubic crystals

remain valid for isotropic vitreous solids? An universally

recognized microscopic theory of mechanical and thermal

properties of crystalline and vitreous solids is needed to

answer such questions in full.

8. Conclusion

We developed further the idea that the right-hand parts

of Leont’ev (4) and Belomestnykh–Tesleva (3) formulae

depend on anharmonicity via the dependence of the ratio

of squares of longitudinal and transverse sound velocities

on the Grüneisen parameter.

A formula for the dependence of the ratio of squares

of sound velocities (ν2
L/ν

2
S ) on Grüneisen parameter γ

was derived. This formula agrees with experimental data

(at least for vitreous solids). The Berlin–Rothenburg–
Bathurst model provides an explanation for the dependence

of (ν2
L/ν

2
S ) on anharmonicity (γ): it is attributable to the

dependence of this ratio on relative tangential stiffness λ of

an interatomic bond, which is a single-valued function of

Grüneisen parameter λ(γ).
It was demonstrated that the Leont’ev and Belo-

mestnykh–Tesleva formulae may be derived from the
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Grüneisen equation. Coefficient A in modified Grüneisen

equation (11) characterizes the proportion of the mean

interatomic interaction energy accounted for by the elastic

energy needed for shear deformation. The relation between

Poisson’s ratio µ (parameter of the elasticity theory) and

Grüneisen parameter γ (measure of anharmonicity) was

examined as an example of a specific correlation between

harmonic and anharmonic characteristics of solids. The

Pineda theory provides a qualitative justification for the

single-valued correspondence between the Poisson’s ratio

and the Grüneisen parameter.

The microscopic representation of the Grüneisen pa-

rameter was used to demonstrate that the limit elastic

deformation of an interatomic bond is a single-valued

function of the Poisson’s ratio.
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